2011-2012大学数学A2试卷_A
2011-2012年第3届全国大学生数学竞赛各赛区预赛及决赛试题和答案(非数学类&数学类)
…………………5 分
这个引力在水平方向的分量为 dFx
Gm xdx . 从而 ( h 2 x 2 )3 2
Fx
Gmxdx Gm 2 2 3/ 2 (h x ) 2 a
d (x2 ) Gm (h 2 x 2 ) 1 / 2 2 2 3/ 2 a (h x ) a
2 2 2
I f ( ax by cz ) dS . 求证: I 2 f ( a 2 b 2 c 2 u )du
1
1
解:由 的面积为 4 可见:当 a, b, c 都为零时,等式成立. 当它们不全为零时, 可知:原点到平面 ax by cz d 0 的距离是
…………………2 分
|d | a2 b2 c2
设平面 Pu : u
.
…………………………5 分
ax by cz a2 b2 c2
n
2. 如果存在正整数 p,使得 lim( an p an ) ,则 lim
an . n n p
证明:1. 由 lim an a , M 0 使得 | an | M ,且 0, N1 ,当 n > N1 时,
n
2 N ( M | a |) 因为 N 2 N1 ,当 n > N2 时, 1 . n 2
解:令 S ( x )
x
x
2n 1 2 n 2 ,则其的定义区间为 ( 2, 2) . x ( 2, 2) , x 2n n 1
2n 1 2 n 2 x 2 n 1 x x 2 S ( t ) dt t dt n n 2 2 2 n 1 2 n 1 n 1 0 0
《大一高等数学》试卷(十份)
《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。
大学生高等数学竞赛试题汇总与答案
原式=
(ln(1t)t)1/(1t)111
2
2(1t)
t2t2
limelimelimee
t0t0t0
(3)
11
sxnnsxnsxsxn
Iexdx()xde()[xe|edx]
n0
000
ss
nnn(n1)n!n!
sxn1
exdxIII
n12n2n0n1
sssss
0
二、(15分)设函数f(x)在(,)上具有二阶导数,并且
''()(2'
t2t)2(t)''()(2'
3
dxdx/dt(22t)
=。。。
上式可以得到一个微分方程,求解即可。
四、(15分)设
n
a0,Sa,证明:
nnk
k1
(1)当1时,级数
a
n
S
nn
1
收敛;
(2)当1且()
sn时,级数
n
a
n
S
nn
1
发散。
解:
(1)
a>0,
n
s单调递增
n
当
n1
a收敛时,
n
aa
nn
一、(25分,每小题5分)
(1)设
n
22
x(1a)(1a)(1a),其中|a|1,求limxn.
n
n
(2)求
x
lim e1
x
1
x
2
x
。
(3)设s0,求
sxn
Iexdxn。
(1,2,)
0
(4)设函数f(t)有二阶连续导数,
2011年高考江西省数学试卷-理科(含详细答案)
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni ini ini i iy yx xy y x xr 12121)()())(( 其中nx x x x n +++= (21)ny y y y n+++= (21)锥体的体积公式 13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若ii z 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2 答案:C 解析: i i ii i ii z -=--=+=+=21222122(2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0) 答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f(5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini i iyyxxyy x xr 12121第一组变量正相关,第二组变量负相关。
学应用概率统计大学数学2试卷(A卷)附答案
2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===U ,则()P A B =U ______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________.3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). A. 0.05B. 0.06C. 0.07D. 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤D. ()()B A P A P ≥3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).A. 21,0()11,0x F x x x ⎧≤⎪=+⎨⎪>⎩ B. 0,0() 1.1,011,1x F x x x <⎧⎪=≤≤⎨⎪>⎩14. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ). A. (1,41)N B. (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A. 100B. 10C. 5D. 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A. XB. 123X X X +-C. 1230.20.30.5X X X ++D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1) 常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分) 4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)(2){}(,)y xP Y X f x y dxdy <<=⎰⎰330[]xy e dy dx -=⎰⎰ (6分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分)因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异.(8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86yx =-+ (8分)。
应用概率统计大学数学2试卷(A卷)附答案
2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===,则()P AB =______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________. 3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). ﻩ A. 0.05ﻩB . 0.06ﻩC. 0.07ﻩﻩD . 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤ D. ()()B A P A P ≥ 3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).1,0x ⎧≤⎪0,0x <⎧⎪C . x x F sin )(= D. 211)(x x F +=4. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ).A. (1,41)N B . (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A . 100 B. 10 C. 5 D . 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A . X B. 123X X X +- C. 1230.20.30.5X X X ++ D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率; (2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1)常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(2xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分)4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分) 因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异. (8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分)。
2012高等数学下试题及参考答案
华南农业大学期末考试试卷(A 卷)2011~2012学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.设有向量(1,2,2)a =-,(2,1,2)b =-,则数量积()()a b a b -⋅+ 。
2.曲面22z x xy y =++在点(1,1,3)M 处的切平面方程是 。
3.设u =(1,1,1)u =grad 。
4.幂级数0()3n n x∞=∑的收敛半径R = 。
35.微分方程430y y y '''-+=的通解是 。
(今年不作要求)二、单项选择题(本大题共5小题,每小题3分,共15分)1.已知(1,1,1)A ,(2,2,1)B ,(2,1,2)C ,则AB 与AC 的夹角θ是(B )A .4π B .3π C .6π D .2π2.函数2z xy =在点(1,2)处的全微分是 ( D )A .8B .4dx dy +C .22y dx xydy +D .4()dx dy + 3.设L 为圆周222x y a +=,取逆时针方向,则2222()Lx ydx x xy dy ++=⎰( B )A .2a πB .42a π C .2πD .04.下列级数中收敛的是 ( C )A.1n ∞= B.1n ∞= C .114n n ∞=∑ D .114n n∞=∑5.微分方程12x y e-'=的通解是 ( C )A .12x y eC -=+ B .12x y e C =+ C .122x y e C -=-+ D .12x y Ce-=三、计算题(本大题共7小题,每小题7分,共49分) 1.设2,,xs f x xyz y⎛⎫= ⎪⎝⎭,且f 具有一阶连续偏导数,求s x ∂∂,s y ∂∂,s z∂∂. 2. 设由方程22240x y z z +++=确定隐函数(,)z z x y =,求全微分dz 。
南京工业大学2021-211期末高等数学A-2试卷A(2021.06)
南京工业大学2021-211期末高等数学A-2试卷A(2021.06) 南京工业大学高等数学A-2 试卷(A)卷(闭)2021--2021学年第二学期使用班级江浦10级学院 __ 班级__学号 __ 姓名 __ ___题号得分评卷人一二三四五六七总分一、选择题(本题共4小题,每小题3分,满分12分,每小题给出四个选项,请将正确答案填在题后的括号内)1.若f(x,y)在(x0,y0)处可微,则在(x0,y0)点下列结论中不一定成立的是( C )(A)连续 (B)偏导数存在 (C)偏导数连续 (D)切平面存在2. 直线x?5y?3z?1??与平面x?2y?5z?11?0的位置关系是( D ) 2?23(A)平行但不在平面上 (B)在平面上 (C)垂直 (D)斜交3. 若曲面?:x2?y2?z2?a2,则2(x?y?z)dS=( C ) ????(A)pa4 (B)2pa4 (C)4pa4 (D)6pa41n),则级数( B ) 4.设un?(?1)ln(1?n(A)?un与?un都收敛(B)2n?1?n?1???n?1??un收敛而?un发散2n?1???(C)?un与?un都发散 (D)?un发散而?un收敛22n?1n?1n?1n?1二、填空题(本题共4小题,每小题3分,满分12分,请将正确答案填在题后的横线上)????????1.已知矢量a,b的模分别为|a|?2,|b|?2,及a?b?6,则a?b??2 ? 2 __ 。
1?⒉ 已知z?ln(?1x),则dz(1,1)? ?dx?dy? 。
2y(x?1)n3.幂级数?n的收敛域是 ??1,3? ____ 。
2?nn?14.设函数f(x)????1,?1?x,2???x?00?x??,则其以2?为周期的傅里叶级数在点x??处收敛于 _ 。
三、计算题(本题共4小题,每小题7分,满分28分,写出必要的解题过程)1.求过点(3,1,?2)且通过直线L:x?4y?3z??的平面方程。
浙江大学大二数学专业《高等数学下》考试A卷及答案
《高等数学》(下)考试卷A适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题:(共6小题,每空2分,共14分)1.设z=22x xy y ++,则x z ∂∂= ; yz∂∂= . 2.改变积分顺序240(,)dy f x y dx ⎰⎰= .3.函数 z=2x 2+y 2在点P(1,1)处的梯度为__________4.级数∑∞=11n n的敛散性为 .5.设平面曲线L 为下半圆周y=-21x -,则曲线积分⎰+Lds y x )(22=__________6.曲线x=41t 4,y=31t 3,z=21t 2在相应点t=1处的切线方程为_______________二.单项选择. (共8小题,每小题3分,共24分)1.设D 为圆域:x 2+y 2≤1,Ddxdy ⎰⎰=A.则A =( ) .(A) π (B) 4π (C) 2π (D) 3π. 2.lim 0n n u →∞≠是级数1n n u ∞=∑发散的( )(A).充分条件 (B). 必要条件 (C).充要条件 (D).无关条件 3.积分()(),,LP x y dx Q x y dy +⎰与路径无关的充要条件是( )(A) .P Q y x ∂∂=∂∂ (B). P Q y x∂∂=-∂∂ (C). P Q x y ∂∂=∂∂ (D). P Q y y ∂∂=∂∂ 4.设3z x y =,则dz =( ).(A)dx dy + (B)233x ydx x dy + (C) 3x dx ydy + (D) 23x ydx ydy +5.曲线积分⎰++-c yx xdyydx 22的值为( ),其中C 取圆周221x y +=的正向. (A )、π (B)、-2π (C)、 2π (D)、-π 6.已知2)()(y x ydydx ay x +++为某一函数的全微分,则a=( ) (A) -1 (B) 0 (C) 2 (D) 17.设∑为锥面z=22y x +介于z=0与z=1之间的部分,1∑是∑在第一卦限的部分,则⎰⎰∑++ds xz yz xy )(=( )(A)0 (B)4⎰⎰∑1xyds (C) 4⎰⎰∑1zyds (D) 4⎰⎰∑1xzds8.f x (x 0,y 0) 与f y (x 0,y 0)均存在是函数f(x,y)在点(x 0,y 0)处连续的( )条件 (A) 充分 (B)必要 (C)充要 (D)无关三.(8分)设z=x 3y 2-3xy 3-xy+1,求22x z ∂∂ ,22yz∂∂。
浙江理工大学07~08高数A2期末试卷(含答案)
浙江理工大学2007~2008学年第二学期高等数学A 期终试题(A )卷班级 学号 姓名 一、 选择题(每小题4分,满分28分)1、函数2222),(y x y x y x f +-= 在点)1,1(处的全微分)1,1(df 为 ( )(A) 0 (B) dy dx + (C) dx 4 (D) dy dx -2 2、设L 是从A (1,0)到B (-1,2)的直线段,则()Lx y ds +⎰= ( )(B)(C) 2 (D) 03、方程234sin 2y y x '''+=+的特解为 ( )(A)1(cos 2sin 2);2y x x =-+ (B) 31cos 222y x x =- (C)31sin 222y x x =- (D)311cos 2sin 2.222y x x x =--4、设)(x f 在),0(+∞上有连续的导数,点A )2,1(,B )8,2(在曲线22x y =上。
L为由A 到B 的任一曲线,则=++-⎰dy x xy f x dx x y f x y xy L])(1[)](22[22223( )。
(A) 20, (B) 30, (C) 35, (D) 40。
5、 设b 为大于1的自然数,对幂级数∑∞=1n bnnx a,有a a a nn n =+∞→1l i m,(1,0≠>a a ),则其收敛半径=R ( )。
(A) a , (B) a1, (C)ba , (D)ba1。
6、下列级数收敛的是 ( )(A) ∑∞=1sin n n π; (B )∑∞=1100!n n n ; (C )∑∞=+12)11ln(n n ; (D )∑∞=+-12)11(21)1(n n n nn . 7、已知曲线)(x f y =过原点,且在原点处的法线垂直于直线)(,13x y y x y ==-是微分方程02=-'-''y y y 的解,则=)(x y ( )(A )x xe e--2 (B )x x e e 2-- (C )x x e e 2-- (D )x x e e --2二、填空题(每小题4分,满分20分)1、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值, 则常数a = 。
2011年全国高中数学联赛试题及答案详解(A卷)
一、填空题(每小题8分,共64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .二、解答题(本大题共3小题,共56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.加 试1. (40分)如图,Q P ,分别是圆内接四边形ABCD 的对角线BD AC ,的中点.若DPA BPA ∠=∠,证明:CQB AQB ∠=∠.2. (40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:4.(50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值。
高等数学a试卷及答案
高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。
一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。
5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。
''线性代数B 2011-2012学年第二学期期末考试A卷及答案
上海海洋大学试卷诚信考试承诺书本人郑重承诺:我已阅读且透彻理解了“上海海洋大学学生考场规则”和“上海海洋大学学生违反校纪校规处理规定”,承诺在考试中自觉遵守,如有违反,按有关条款接受处理。
承诺人签名: 日 期:考生姓名: 学号: 专业班名:一、选择题(每题4分,共20分)1.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1001110001100011的元素12a 的代数余子式值为( ).A. 1B. 1-C. 2D. 2-2.已知3阶矩阵A 的行列式为1,则A 2的行列式为( ).A. 2B. 3C. 4D. 8 3.设n 阶方阵A 不可逆,则必有( ).A. A 的秩小于nB. A 的秩等于1n -C. 0A =D. 线性方程组0=Ax 只有零解4.已知34⨯阶矩阵A 的列向量组线性无关,则T A 的秩为( ).A. 1B. 2C. 3D. 45. 设Ax=b 是一非齐次线性方程组,12,ηη是其任意2个解,则下列结论错误的是( ) A. 12ηη-是Ax=0的一个解 B.121122ηη+是Ax=b 的一个解 C. 12ηη+是Ax=0的一个解D. 122ηη-是Ax=b 的一个解二、填空题(每题4分,共20分)1.设矩阵⎥⎦⎤⎢⎣⎡--=3211A ,⎥⎦⎤⎢⎣⎡--=1111B ,则AB = . 2.已知向量组)3,1,2(1-=α,)6,,4(2-=k α线性相关,则=k .3.设3阶矩阵A 的秩为2,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020001P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100Q ,则PAQ 的秩为 . 4.设3151A ⎛⎫= ⎪-⎝⎭,则A 的特征值为 .5.设3阶可逆方阵A 与它的伴随矩阵*A 相等,则=A . 三、计算题(共54分)1. (8分)计算行列式1234112331101205---,并求1121314122A A A A +-+。
2.(8分)已知⎥⎦⎤⎢⎣⎡=1101A ,求n A .3.(8分)已知100025013A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1-A .4.(10分)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020101A ,且X A AX +=,求X .5.(10分)求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡422222323101的秩及其列向量组的一个极大无关组,并将不属于这个极大无关组的列向量用极大无关组线性表示.6.(10分)求线性方程组12341234123423222547x x x x x x x x x x x x +++=⎧⎪++-=⎨⎪+++=⎩的通解.四、证明题(6分)证明:若方阵A 的行列式0 A ,则A 可逆.课程考试标准答案和评分标准一、选择题(每题4分,共20分) 1. B 2. D 3. A 4. C 5. C 二、填空题(每题4分,共20分)1. 2255-⎡⎤⎢⎥-⎣⎦. 2. 2- .3. 2 . 4. 122,4λλ=-= . 5. 1 三、计算题(共54分)1. (8分)计算行列式1234112331101205---,并求1121314122A A A A +-+。
浙江工业大学高等数学期末05-06(二)卷A标准答案
⎨ ⎝浙江工业大学 05/06(二)高等数学 A Ⅱ考试试卷 A 标准答案一、填空题(每小题 4 分):y ⎛ y ⎫ 1.dx ln( x + y ) + dy , .... 2. (y + x ϕ '(x )) f '+ 2(x + y ϕ '(x )) f ' ,x + y+⎪x + y ⎭1 21e3. 0 , 4. ⎰0dy⎰e yf (x , y )dx , 5. 24ν , 6. 2 .二、选择题(每小题 4 分): 1. D , 2. B, 3. B 、C.三、试解下列各题(每小题 7 分):z∂z ∂2 z1. 隐函数 z = z (x ,y ) 由方程 xyz = e解:∂z = yz确定,求:∂x,∂x2∂x e z - xy∂2 z=2 y ze - 2 xy z - y z e 2 z 32 2 z∂x2(e z- xy )32.求圆柱面 x 2 + y 2 =1被平面 x + y + z = 0 截得椭圆的长半轴的长度. 解:椭圆过原点求函数u = x 2 + y 2 + z 2 在满足条件 x 2 + y 2 =1, x + y + z = 0下的最大值点令 F ( x , y , z ,Z , μ ) = x 2 + y 2 + z 2 + Z ( x + y + z ) + μ(x 2 + y2-1)⎧ F x ⎪F = 2x + Z + 2ux = 0= 2 y + Z + 2μy = 0 ⎧ 2 ⎪ x = ± 2⎪ y ⎨ F z ⎪= 2z + Z = 0 ⎪ ⇒ ⎪y = ± 2 2 ⎪ x + y + z = 0 ⎛⎪ x 2 + y 2 = 1 ⎪⎪ z = 2 ⎪ ⎩所以长半轴长度为 3y x 2 -1 45⎰ a 40 ⎰四、试解下列各题(每小题 7):1. 计算二次积分⎰1dy ⎰ ln x dx 2 x 2ln x 解:= ⎰1 dx ⎰1 2x 2 - dy 1=⎰1ln xdx=2 ln 2 - 12. 求 ⎰⎰⎰(x 2 + y 2 )dv ,其中Ω 是由曲面4z 2 = 25( x 2 + y 2 ) 及平面 z = 5 所围成的闭区 Ω域. 解: =⎰ 5dz ⎰⎰ ( x 2 + y2)dxdyD z= = ⎰2νdz2zd 0 5r 3dr0 = 8ν3 . 求 :⎰⎰ xz 2dydz + (x 2y - z 3)dzdx + (2xy + y 2z )dxdy ∑, 其中 ∑ 为上半球体x 2+ y 2≤ a 2, 0 ≤ z ≤解: = ⎰⎰⎰ x 2 + y 2 + z 2 )dxdydz Ω的表面外侧.2νν= ⎰d 0 ⎰ 2 d ϕ ⎰r sin ϕdr2νa 5 = 5五、(8 分)求幂级数∑ n = 0n 2 +1xn3nn !的收敛区间及和函数.解: limn →∞∞ n 2+1= 0 ,收敛半径 R == ∞ , 收敛区间为(-∞,+∞)∞n (n - 1) + n + 1⎛ x ⎫n∑ x n= ∑⎪ n = 0 3n n ! n = 0 n ! ⎝ 3 ⎭⎛ x ⎫ 2 ∞ 1 ⎛ x ⎫ n ⎛ x ⎫ ∞ 1 ⎛ x ⎫n ∞ 1 ⎛ x ⎫n⎛ x 2x⎫ x= ⎪ ∑ ⎪ + ⎪∑ ⎪ + ∑ ⎪ =+ + 1⎪e 3 ⎝ 3 ⎭n =0n !⎝ 3 ⎭ ⎝ 3 ⎭n = 0 n !⎝ 3 ⎭n = 0 n !⎝3 ⎭ ⎝ 9 3 ⎭六、(8 分)设 f (x ) 是周期为2ν 的周期函数,它在[-ν ,ν ) 上的表达式为 f (x ) = x ,1.将∞ a 2 - x 2 - y 2a n +1a n0 2a 2 - x 2 f 2( x ) - y 2ba⎰ 1f (x ) 展开成傅里叶级数2. 若设该傅里叶级数的和函数为 S ( x ) ,则求 S (3ν ) , S ( 7 2解:1. f (x ) 是周期为2ν 的奇函数, a n = 0 ,ν ) 的值.b =2 νx sin nxdx = 2 (-1) n +1(n = 1,2,3, )nν ⎰0nf (x ) = 2(sin x - 1 sin 2x + 1 sin 3x - + (-1) n +1 1sin nx + )2 3 n(-∞ < x < +∞, x ≠ ±ν , x ≠ ±3ν , )7 ν2. S (3ν ) =0, S ( 2 ν ) = - .2七、(9 分)设 y = f (x ) ≥ 0 (a ≤ x ≤ b ) 是 xOy 平面上一条单调光滑曲线,将此曲线绕 x 轴 旋转一周得旋转曲面∑ .1.试证:曲面∑ 的面积计算公式 S = 2ν⎰Lyds ,其中 L 为曲线 y = (即可以用关于弧长的曲线积分计算此类曲面∑ 的面积).f (x )(a ≤ x ≤ b ) ,2.用此公式计算曲线 y = (0 ≤ x ≤ a ) 绕 x 轴旋转一周得旋转曲面∑ 的面积.1. 证法1:面积元素dS = 2νyds ,积分区域为曲线 L ,故 S = ⎰ dS = 2ν ⎰Lyds .L证法2:由对称性知,只须计算 z ≥ 0, y ≥ 0 的部分∑1∑1 在 xoy 面投影区域为a ≤ x ≤ b ,0 ≤ y ≤ f ( x )∑1 的方程为 z = , dsS = ⎰⎰ ds = 4⎰⎰ ds = 4⎰b f ( x ) 1 + f '2( x )dx ⎰f ( x )dya∑∑1f 2 ( x ) - y 2= 2ν +af (x )1+ f '2 (x )dx = 2ν Lyds2. S = 2ν⎰Lyds = = 2ν +0f ( x )1 + f '2( x )dx = 2ν a adx = 2νa 2 0八、(4分)设 u = u (x , y ) , v = v ( x , y ) 具有二阶连续偏导数且使曲线积分⎰L udx + vdy 与⎰⎪ ⎪ ∂v ∂ v + = ⇒ ⎰ vdx - udy 都与路径无关,证明:函数u = u (x , y ) , v = v ( x , y ) 分别满足方程L 1∂2u + ∂2u = ∂2v + ∂2v =∂x 2 0 ∂y 2 及 ∂x 20 ∂y 2证明: ⎰Ludx + vdy 与 ⎰vds - udy 都与路径无关1⎧ ∂u = ∂vL 1⎧ ∂ 2u =∂2 v⎪ ∂y ∂x ⎪ ∂y 2 ∂x ∂y 所以⎨ ∂v ∂u ⇒ ⎨ ∂ 2v = - ∂ 2u ⎪⎩∂y ∂x ⎪⎩ ∂y ∂x∂x 2∂ 2 v∂ 2v 又v = v ( x , y ) 具有二阶连续偏导数,所以∂y ∂x= ∂x ∂y∂2u 所以 ∂x 2 + ∂2u = ∂y 2⎧ ∂u = ∂v ⎧ ∂ 2u = ∂ 2v⎪ ∂y ∂x⎪ ∂y ∂x ∂x 2 ⎨ ⎪ = - ⎪⎩∂y ∂x ⎨ 2 ⎪ = - ⎪⎩ ∂y 2∂2 u∂x ∂y ∂2u∂ 2 uu = u (x , y ) 具有二阶连续偏导数,所以 ∂y ∂x = ∂x ∂y∂2v 所以∂x 2 ∂2v∂y2 0= - ∂u。
安徽大学高数A(二)期末试卷答案
安徽大学 2009—2010 学年第二学期 《高等数学 A(二)、B(二)》考试试卷(A 卷)
(闭卷 时间 120 分钟)
题号 一
二
三
四
五
总分
得分
阅卷人
学号
姓名
专业
一、填空题(本大题共五小题,每小题 2 分,共 10 分)
1.点 (2,1,1) 到平面 x + y − z +1 = 0 的距离为
.
2.极限
f (x, y) 在点 (x0 , y0 ) 处取极小值的充分条件的是
()
A.
fxx (x0 ,
y0 )
>
0,
fxx (x0 ,
y0 )
f yy (x0 ,
y0 ) −
f
2 xy
(
x0
,
y0fxx (x0 ,
y0 )
>
0,
fxx (x0 ,
y0 )
f yy (x0 ,
y0 ) −
f
2 xy
18.将 f (x) = 1 展开为 (x + 2) 的幂级数,并求该幂级数的收敛域. 1+ 2x
四、应用题(本大题共 8 分)
19. 在椭圆 x2 + 4 y2 = 4 上求一点,使该点到直线 2x + 3y −12 = 0 的距离最短.
《高等数学 A(二) 、B(二)》(A 卷) 第 5 页 共 6 页
_________.
2. 设 f (x, y) = x y ,则 lim f (x, y) =_____________ .
xy +1−1
(x, y)→(0,0)
∫ ∫ 3. 累次积分
2012年普通高等学校招生全国统一考试 数学试卷含答案(文科)
2012年普通高等学校招生全国统一考试(课标全国卷)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=-的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.D.14.设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A. B. C. D.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )A. B.4 C.4 D.69.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )A. B. C. D.10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.811.当0<x≤时,4x<log a x,则a的取值范围是( )A.,B.,C.(1,D.(,2)12.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( )A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为.14.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|= .16.设函数f(x)=()的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点. (Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为,.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.2012年普通高等学校招生全国统一考试(课标全国卷)一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.评析本题考查了集合的关系以及二次不等式的解法.=-=-1+i,=-1-i,故选D.2.D z=-=(-)(-)()(-)评析本题考查了复数的运算,易忽略共轭复数而错选.3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C.4.C 设直线x=a与x轴交于点Q,由题意得∠PF2Q=60°,|F2P|=|F1F2|=2c,|F2Q|=a-c,∴a-c=×2c,e==,故选C.评析本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要. 5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+,2)时,z min=1-;当过点B(1,3)时,z max=2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a1<a2<a3,则有k=1,A=a1,B=a1;x=a2,A=a2;x=a3,A=a3,故输出A=a3,B=a1,选C. 评析本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O所得圆的圆心为O1,则|OO1|=,|O1A|=1,∴球的半径R=|OA|==.∴球的体积V=πR3=4π.故选B.评析本题考查了球的基础知识,利用勾股定理求球的半径是关键.9.A 由题意得=2-,∴ω=1,∴f(x)=sin(x+φ),则+φ=kπ+(k∈Z),φ=kπ+(k∈Z),又0<φ<π,∴φ=,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2).∵点A在双曲线x2-y2=a2上,∴16-12=a2,a=2,∴双曲线的实轴长2a=4.故选C.评析本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x的大致图象如图,则只需满足log a>2,解得a>,故选B.评析本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=()=30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x·=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-2解析由S 3+3S2=0得4a1+4a2+a3=0,有4+4q+q2=0,解得q=-2.评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3解析把|2a-b|=两边平方得4|a|2-4|a|·|b|·cos 45°+|b|2=10.∵|a|=1,∴|b|2-2|b|-6=0.∴|b|=3或|b|=-(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)==1+,令g(x)=,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=asin C-c·cos A及正弦定理得·sin A·sin C-cos A·sin C-sin C=0.由于sin C≠0,所以sin-=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥17时,利润y=85.当日需求量n<17时,利润y=10n-85.所以y关于n的函数解析式为y=-,,,(n∈N).(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力.19.解析(Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.评析本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析(Ⅰ)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4所以|BD|·d=4即·2p·p=4解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(Ⅱ)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m的截距b1=,||||=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.评析本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<-+x(x>0).①令g(x)=-+x,则g'(x)=--(-)+1=(--)(-).由(Ⅰ)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.评析本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明(Ⅰ)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析(Ⅰ)由已知可得A ,,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].评析本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析(Ⅰ)当a=-3时,f(x)=-,, ,,-,.当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].评析本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.。
常州大学怀德学院大学数学A(中)试题库
常州大学怀德学院大学数学A 〔中〕试题库〔一〕定积分应用一、选择题1.图中暗影局部的面积的总和可暗示为 ( ) .〔A 〕()b af x dx ⎰;〔B 〕|()|baf x dx ⎰;〔C 〕1212()()()c c bac c f x dx f x dx f x dx ++⎰⎰⎰;〔D 〕1212()()()c c bac c f x dx f x dx f x dx -+⎰⎰⎰.2.曲线(1)(2)y x x x =--与x 轴所围成的图形面积为〔〕 〔A 〕20(1)(2)x x x dx --⎰;〔B 〕121(1)(2)(1)(2)x x x dx x x x dx -----⎰⎰;〔C 〕20|(1)(2)|x x x dx --⎰; 〔D 〕121(1)(2)(1)(2)x x x dx x x x dx --+--⎰⎰.3.由曲线x y cos =和直线0=x ,π=x ,0=y 所围成的图形面积为〔〕 〔A 〕0cos xdx π⎰;〔B 〕0|cos |xdx π⎰;〔C 〕0cos x dx π⎰;〔D 〕20cos xdx π⎰+2cos xdx ππ⎰.4.曲线ln y x =与直线ln ,ln ,0y a y b a b ==<<及y 轴所围成的面积值为〔〕 〔A 〕ln ln by a e dy ⎰;〔B 〕by ae dy ⎰;〔C 〕ln ln ln baxdx ⎰;〔D 〕ln b axdx ⎰.5.曲线x e y =与该曲线过原点的切线及y 轴所围成的面积值为〔〕 〔A 〕10()x e ex dx -⎰;〔B 〕1(ln ln )ey y y dy -⎰;〔C 〕1()ex x e xe dx -⎰;〔D 〕10(ln ln )y y y dy -⎰.6.曲线)0(cos 2a >a r θ=所围成图形的面积A 为〔〕〔A 〕2212cos 2a d πθθ⎰();〔B 〕212cos 2a d ππθθ-⎰(); 〔C 〕22012cos 2a d πθθ⎰(); 〔D 〕22212cos 2a d ππθθ-⎰().7.曲线()y f x =、()y g x =(()()0)f x g x >>及直线,x a x b ==所围成图形绕x 轴旋转而成的旋转体的体积为〔〕 〔A 〕120[()()]f x g x dx π-⎰;〔B 〕1220[()()]f x g x dx π-⎰;〔C 〕1201[()()]2f x g x dx π-⎰;〔D 〕12201[()()]2f x g x dx π-⎰.8.曲线)1ln(2x y -=在210≤≤x 上的一段弧长为〔〕〔A 〕; 〔B 〕1222011x dx x +-⎰;〔C 〕;〔D 〕.9.矩形闸门宽m a ,高m h ,将其垂直放入水中,上沿与水面平齐,那么闸门一侧所受压力为〔〕 〔A 〕0h ag xdx -⎰;〔B 〕0aag xdx ⎰;〔C 〕0()h ag x h dx -⎰ ; 〔D 〕0h ag xdx ⎰.10*.矩形闸门宽m a ,高m h ,将其垂直放入水中,上沿与水面相距为m b ,那么闸门一侧所受压力为〔〕〔A 〕0()hag b h x dx +-⎰;〔B 〕0()hag b x h dx +-⎰;〔C 〕0()hag b h x dx ++⎰ ; 〔D 〕0()h ag x h b dx --⎰.二、填空题1.由b x a x g y x f ≤≤≤≤),()(围成图形的面积=S 。
高等数学a2教材答案
高等数学a2教材答案第一章:极限与连续1. 极限的概念与性质2. 极限的运算法则3. 无穷小量与无穷大量4. 极限存在准则5. 无穷小量比较6. 连续函数的概念与性质第二章:导数与微分1. 导数的定义与性质2. 基本求导公式3. 高阶导数与莱布尼兹公式4. 隐函数与参数方程的导数5. 高阶导数的计算方法6. 微分的定义与计算7. 微分中值定理与泰勒公式第三章:一元函数积分学1. 不定积分的基本性质2. 基本积分表与常用积分公式3. 定积分的概念与性质4. 牛顿—莱布尼兹公式5. 定积分的计算方法6. 反常积分的概念与性质7. 反常积分的审敛法与计算方法第四章:向量代数与空间解析几何1. 向量的概念与性质2. 向量的线性运算与数量积3. 向量的标准正交基与坐标表示4. 空间曲线与曲面方程5. 空间直线与平面方程6. 空间几何体积与曲面积分第五章:多元函数微分学1. 多元函数的极限与连续2. 多元函数的偏导数3. 隐函数与参数方程的偏导数4. 多元函数的全微分与导数5. 多元函数的泰勒公式6. 多元函数的极值与条件极值7. 重积分的概念与性质第六章:多元函数积分学1. 二重积分的计算方法2. 二重积分的换元法与极坐标法3. 三重积分的计算方法4. 三重积分的换序法与柱面坐标法5. 曲线积分的概念与性质6. 曲线积分的计算方法7. 曲面积分的概念与性质8. 曲面积分的计算方法第七章:常微分方程与级数1. 一阶常微分方程的解法2. 高阶常微分方程的解法3. 常微分方程的数值解法4. 幂级数与展开式5. 幂级数解常微分方程6. 傅里叶级数与函数展开以上为《高等数学A2》教材的章节及内容概述,希望对您的学习有所帮助。
请根据教材中的具体问题进行答案撰写与解答。
深圳大学线性代数试卷A
一、选择(每题4分,共20分) 1. 设A 、B 均为n 阶矩阵,当()时,(A+B)(A-B)=A 2-B 2不成立。
(A) A=E(B) A,B 为任意矩阵 (C) AB=BA (D) A=B2. 设行列式D=nn n n n n a a a a a a a a a (2)12222111211,则nnn n nnka ka ka ka ka ka ka ka ka (21222)2111211=( )(A) k k D (B) k n D (C) n k D (D) kD3. 线性方程组Ax=b ,其中A 为m ×n 阶矩阵,则( )(A) 当R(A)=m 时,必有解 (B) m=n 时,有唯一解 (C) R(A) =n 时,必有解 (D) R(A) <n 时,有无穷多解 4. 下面命题正确的是( )(A) 如矩阵AB=E ,则A 可逆且A -1=B(B) 如矩阵A ,B 均为n 阶可逆矩阵,则A+B 必可逆 (C) 如矩阵A ,B 均为n 阶不可逆矩阵,则A+B 必不可逆 (D) 如矩阵A ,B 均为n 阶不可逆矩阵,则AB 必不可逆5. 设向量组a 、b 、c 线性无关,向量组a 、b 、d 线性相关,则( )(A) a 必可由b ,c ,d 线性表示 (B) b 必不可由a ,c ,d 线性表示 (C) d 必可由a ,b ,c 线性表示 (D) d 必不可由a ,b ,c 线性表示二、填空(每题4分,共20分)1. 设行列式D= nnn n a b b a b a b 0 (00)...000......... 00 (000)...0a 112211-- =2. 已知()T3,2,11=α,()T1,2,32=α,()T2,0,23-=α,()T4,2,14=α,则31α+22α-53α+44α=3. 已知A ,B 均是3阶矩阵,且A =5,2-=B ,则1*31-B A =4. 当k= 时,A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡k 23654321不可逆。
2012-四川大学大学数学微积分期中考试试卷
3分,共15分)1()f x 、若为连续函数,则220()( )xdtf x t dt dx -=⎰A .21()2f x B. 2()xf x C. 22()xf x D. 22()xf x -2、设在区间[a ,b ]上 ()0f x >,()0f x '<,()0f x ''>,令1()ba S f x dx =⎰2()()S f b b a =-,3()()()2f a f b S b a +=-,下列不等式中正确的是( ) A .123S S S << B. 132S S S << C. 213S S S << D. 321S S S <<3、函数) ,(y x f 在点00(,) x y 处偏导数都存在是函数在该点连续的( )A .充分条件;B .必要条件; C.充要条件; D .以上都不是。
4、 下列广义积分中,发散的是( ) A. 3120x d x -⎰ B. 1-⎰C .20xedx +∞-⎰D. 22ln dxx x+∞⎰5、设2y z x =,则下列正确的是( )A.220z z x y y x ∂∂->∂∂∂∂ B. 220z zx y y x ∂∂-<∂∂∂∂ C.220z zx y y x ∂∂-=∂∂∂∂ D.以上都不是三、计算题(每题8分,共32分)1、计算 10020(sin sin 2)sin x x xdx π+⎰2、设()0sin xtf x dt tπ=-⎰,求 0()f x dx π⎰3、设zy u x=,求, , .u u u x y z∂∂∂∂∂∂4、设函数),(y x z z =由方程22()z x z y y ϕ+=确定,其中 ϕ具有连续偏导数,求z x∂∂,zy∂∂.四、解答题(每题8分,共24分)1.求曲线32y x x =-与2y x =所围成的平面图形的面积S ,并求该平面图形位于y 轴右侧部分绕y 轴旋转一周所得的旋转体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古大学2011-2012学年第2学期
高等数学A2 期末考试试卷(A 卷)
一、填空题(本题满分 30 分,每小题 3 分) 1.函数y x u 2sin 2=的全微分=u d _________________.
2. 已知空间曲线的参数方程为:32,,t z t y t x ===,曲线在点)1,1,1(处的切向量为_______________.
3. 设),(y x f 为连续函数, 若交换积分次序, 则
220
d (,)d x x f x y y =⎰
⎰
________________________.
4. 设平面区域)0,(1:2222>≤+b a b
y a x D , 则32
d D x y σ=⎰⎰_________________.
5. 若级数∑∞
=1
n n a 收敛, 则=∞
→n n a lim ____________________.
6. 级数∑∞
=0!
n n
n x 的收敛区间为:_________________.
7. 设y x e y x f xy ln ),(+=, 则=)2,1(f grad ________________.
8. x e x y y
=+⎪⎪⎭
⎫ ⎝⎛3
22d d 是______________阶微分方程. 9. 设**,*,321y y y 是某二阶非齐次线性微分方程的三个解, 且它们线性无关,
则方程的通解)(x y 可表示为______________________.
10.曲面在1222=-+z y x 在点)1,1,1(处的切平面方程为_________________.
二、选择题(本题满分 18分,每小题 3 分)
1.若使函数),(y x f 在),(00y x 连续, 则f 应满足如下条件中的 ( ) (A) ),(),(lim 0000
y x f y x f x x =→, 且),(),(lim 0000
y x f y x f y y =→.
(B) ),(y x f 在),(00y x 处沿l 方向有
l
f
∂∂存在. (C) ),(y x f 有偏导数),(),,(0000y x f y x f y x . (D ) ),(y x f 在),(00y x 处可微分.
2. 根据判定极值的充分条件, 函数532),(22++-=y xy x y x f 在点)0,0(处 ( )
(A) 取得极大值 (B) 取得极小值
(C) 不取得极值 (D ) 不能判定是否取得极值 3. 设)(x f 为连续函数, 1
()d ()d t
t
y
F t y f x x =⎰⎰, 则=)2('F ( )
(A) )2(f (B) )2(2f (C) )2(f - (D ) 0
4. 设),2,1()1(1
=-=
-n n
a n n , 则以下级数中收敛的是 ( ) (A)
n n n a ∑∞
=--1
1
)
1( (B)
2
1
n n a ∑
∞
= (C)
1
1
+∞
=∑n n n a
a (D )
)(1
1
n n n a a
∑∞
=++
5. 设
⎪⎩
⎪⎨
⎧
<<-≤≤=1
21
,22210,)(x x x x x f , 且
∞
<<∞-=∑∞
=x x n b x S n n 1
,sin )(π,
其中 1
02()sin d (1,2,)n b f x n x x n π==⎰ , 则=-)2
1
(S ( )
(A) 21- (B) 41- (C) 43- (D ) 4
3
6.微分方程中11
'=+
y x
y 的通解是 ( ) (A)
x x x c ln +
(B) x x cx ln + (C) 2x x c + (D ) 2
2x
x c +
三、简单计算题(本题满分 28 分,每小题 7 分)
1. 设),(y xy f z =, 其中f 具有二阶连续偏导, 求y
x z
∂∂∂2.
2. 求函数xy z =在满足条件1=+y x 时的极值(利用Lagrange 乘数法).
3. 计算曲线积分⎰++L
y x x y x d d )(, 其中L 表示以)1,0(),0,1(),0,0(为顶点的三角
形的边界正方向.
4. 将函数x y -=51
展开成)2(-x 的幂级数的形式, 并写出展开式成立的区间.
计算题(本题满分 10 分)
计算曲面积分
⎰⎰∑
+++++y x x z x z z y z y y x
d d )(d d )(d d )(232323
, 其中∑为上半球面
221y x z --=的上侧.
计算题 (本题满分 7分)
把函数)0(2
)(ππ≤≤-=x x
x f 展开成余弦级数.
四、计算题 (本题满分 7分)
求微分方程x y y y cos '2''=+-的通解.
得分。