偏微分积分方程的周期边值问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分积分方程的周期边值问题
偏微分方程周期边值问题可分为两大方面:解析解法和数值解法。
其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。
数值解法又可以分为最常见的有三种:差分法、有限体积法、有限元法。
其中,差分法是最普遍最通用的方法。
(1)直接积分的方法当场源与场域的形状比较简单,位函数仅是一个坐标的函数,所求解的泊松方程
和拉普拉斯方程为二阶的常微分方程,可采用直接积分的方法求解。
(2)分离变量法当位函数是两个或三个坐标的函数,但场域的边界与所选择的坐标系中坐标面相吻合时,常采用分离变量法。
先将待求的位函数如分离成两个或三个各自仅含一个坐标的函数的乘积,组成把它代入场方程,借助“分离常数”可得每一变量的常微分方程,并分别求得其通解,然后组合成偏微分方程的通解,再由边界条件决定分离常数与积分常数,得到位函数的解。
(3)复位函数法能用来处理场域边界的几何形状比较复杂的问题,如椭圆、多角形截面的电极、偏芯电缆、电机气隙及波导等电磁场问题。
它是利用复变函数中解析函数的实部与虚部在复平面的某一区域内都满足拉普拉斯方程的特性,当所求解的二维拉普拉斯场域边界与某一解析函数的图形一致时,则此解析函数的实部或虚部就是所求位函数的解。
(4)保角变换法是利用解析函数的保角变换特性,将平面上的
边界形状较复杂的场域,以对应的几何方式变换到边界形状较为简单的平面,求解后再反变换到平面,获得原问题的解。
(5)镜像法是边值问题中一种间接求解法,其理论依据是场的惟一性定理。
镜像法的基本原理是在求解的场域之外用虚设的镜像电荷或镜像电流等效替代边界上复杂分布的感应电荷、极化电荷或磁化电流等,只要求解区在等效前后满足同一边值问题,则其解答是惟一的。
应用镜像法的关键是找到镜像电荷或电流的位置与大小。
二阶线性与非线性偏微分方程始终是重要的研究对象。
这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。
近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度。
对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。
另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。