概率统计正态分布模型PPT课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程进行检查,可见
上述监控生产过程的方法是合理的.
(ii)由x=9.97,s≈0.212,得μ的估计值=9.97,σ的估计值=0.212,由样本数据可以看出
有一个零件的尺寸在(μ-3σ,μ+3σ)之外,因此需对当天的生产1过程进行检查.
剔除(μ-3σ,μ+3σ)之外的数据9.22,剩下数据的平均数为
≈0.09.
0.008
0.008≈0.09.
(2)(i)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天
内抽取的16个零件中,
出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小.因此一
旦发生这种情况,
就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产
及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产
过程可能出现了异常情况,需对当天的生产过程进行检查.
(i)试说明上述监控生产过程方法的合理性;
(ii)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 10.12 9.96 9.96 10.01 9.92
9.98 10.04 10.26 9.91 10.13 10.02
9.22 10.04 10.05 9.95
经计算得
,
,
其用1的故9中样概X.~率本x解iB为为:(平1抽60均(,.10取)0抽数02.的0取x60作,2第的6为i一)个.μ个零因的零此件估件的计的尺值尺寸,寸,用在(i样=μ1-本,23,标σ…,,准1μ6+差.3sσ作)之为内σ的的概估率计为值0.,99利7 4用,估从计而零值件判的断尺是寸否在需(μ对-3当σ,天μ的+生3σ产)之过外程 进P(X行≥1检)=查1-.P剔(X除=0(μ)=-13-σ0,.9μ9+7 431σ6≈)1之-0外.95的92数=0据.04,0 8用. 剩下的数据估计μ和σ(精确到0.01). 附X的:数若学随期机望变E(量X)Z服=从16正×0态.0分02布6=N0(.μ0,41σ62. ),则P(μ-3σ<Z<μ+3σ)=0.997 4,0.997 416≈0.959 2,
概率统计正态分布模型
[2017·全国卷Ⅰ] 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,
并测量
其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布
N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)
1 15
15
×(16×9.97-9.22)=10.02,
因此μ的估计值为10.02.
16×0.2122+16×9.972≈1591.134,
剔除(μ-3σ,μ+3σ)之外的数据9.22,剩下数据的样本方差为
1 15
×(1591.134-9.222-15×10.022)≈0