《统计学概论》(第六版)电子教案、实训答案 统计第3章
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)适用性审核
弄清楚数据的来源、数据的口径以及有关的 背景材料
确定这些数据是否符合自己分析研究的需要
(2)时效性审核
应尽可能使用最新的统计数据
(3)确认是否必要做进一步的加工整理
(二)统计分组:分类 (三)统计汇总:加总,求合计数 (四)编制统计表
第二节 统计分组
一、概念 1、概念:总体
二、组织形式
1、逐级汇总:自下而上逐级汇总
如:班组
车间
厂部
2、集中汇总:集中起来,一次汇总
厂部
车间
班组 3、综合汇总:以上两种方式结合使用
三、技术方法
1、手工汇总:常用的有 划记法 过录法 折叠法 卡片法
2、计算机汇总
第六节 统计表
一. 统计表的概念
统计表是表示统计资料的表格,在由横 行、纵栏交叉结合而成的表格上,它能系统 地组织和合理地安排大量数字资料。
原始统计资料
综合统计资料
二、统计整理的步骤
(一)资料审核: 1、对原始资料的审核
完整性审核:检查应调查的单位或个体是否有遗漏;
所有的调查项目或指标是否填写齐全。
准确性审核:逻辑检查:检查数据是否真实反映客观实际情
况,内容是否符合实际。
计算检查:检查数据是否有错误,计算是否正
确等。
2、对第二手资料的审核:
2、圆形图(饼形图)
房地产广告 招生招聘广告 8.0% 5.8%
金融广告
4.5%
其他广告 1.0%
服务广告 25.5%
商品广告
56.0%
某城市居民关注不同类型广告的人数构成
第五节 统计汇总
一、概念
在分组的基础上,将总体各单位分别归入 各组,计算各组及总体的单位数,各组及总体 的标志总量,使原始统计资料转化为综合统计 资料的工作过程。即加总合计的过程。
元
755.94
六、平均每人居住面积
平方米
11.90
39080 3.16 1.80
5458.34 5322.95 4331.61 987.17
12.40
总标题 纵栏标题
数 字 资 料
主词
宾词
资料来源:《中国统计摘要1999》,中国统计出版社,1999,第79页。
从内容来看,一张统计表由两部分构成:
1、主词:即统计表所要说明的对象。即横行标题。 2、宾词:即用来说明统计表所要说明的对象,包括用
四、统计分组的种类
(一)按分组标志的性质不同分
1、按品质标志分组
如:学生按性别分组,企业按所有制性质分组等
2、按数量标志分组
如:学生按年龄分组,企业按产值分组等
(二)按分组标志的多少不同分
1、简单分组:对总体只按一个标志分组。
例:对企业这个总体按所有制性质、规模大小分别分组。
(1)
(2)
国有
大型
城市名称
北京市 上海市
人口数(人)
10 819 407 8 787 402
● 简单分组表
中国人口年龄结构状况
(单位:%)
年龄组
0―14岁 15―64岁 65岁以上
1953年 1964年
36.3 59.3 4.4
40.7 55.7 3.6
1982年
33.6 61.5 4.9
1990年
27.7 66.7 5.6
C、累计次数折线图
累计次数折线图
累计次数折线图有两种形状:或持续增 长的或持续减少的。这分别取决于向上累计 或向下累计。
D、曲线图:
当变量数列中的组数愈加增多,变量值也非常多时, 折线图会逐步过渡到平滑曲线。频数分布曲线图实质上 是对应于连续变量的频数分布的函数关系图。
年龄 25岁以下
25~30 30~35 35~40 40~45 45~50 50岁以上
学生按成绩分组 60以下
60——70 70——80 80——90
90以上 合计
学生数(人) 3 7 20 8 2 40
三、组距数列中的有关概念
1、组限:有:上限(μ)
下限( L )
A、组限的表示方法有:
(1)重叠组限: 如:10 —— 20 20 —— 30 …
(2)不重叠组限: 如:10 —— 20
全距(R)= 最大变量值 – 最小变量值
3、组中值
概念:每组中点的数值 计算公式:组中 值 上限 下限
2
对于开口组,需先假定其所缺的上限或下限(假设开口 组的组距与其相邻组的组距相等)。 如:
各组 60以下
60——70 70——80 80——90
90以上
组中值
55 65 75 85 95
4、组数(K)
1、选择品质标志作为分组标志 2、确定组数并表示出各组(根据品质标志的具体表现) 3、把各单位归入相应的组汇总出各组的单位数(次数)
有的很简单,如人口按性别分组。 有的很复杂(如人口按职业分组),可查相应的专业分类目录。
(二)按数量标志分组
1、选择数量标志作为分组标志 2、确定组数、划定各组的界限(较复杂) 3、把各单位归入相应的组汇总得出各组的单位数(称
例:我国第五次人口普查我国大陆人口年龄分布:
人口按年龄分组 14岁以下
15 —— 64 65岁以上 合计
人口数(亿人) 2.8979 8.8793 0.8811 12.6583
比率(%) 22.89 70.15 6.96 100.00
2、构成:
由两部分构成:(1)各组 (2)各组次数(或频率)
3、种类:根据分组标志的不同可分为:
二、图示法
常用图形有: 次数分布直方图 次数分布折线图 次数分布曲线图 累计次数折线图 饼状图(圆形图)
根据上述资料可绘制如下图形
A、直方图
B、折线图
折线图又称频数多边形图。 对于组距数列,把直方图中各顶边的中点用
直线连接起来( 注意与横轴的交点)。 对于单项变量数列也可以画次数折线图。
为次数或频数;也可用相对数表示,称为频率)
六、分组结果的表示方法
分组后的结果通常用如下形式来表示:
所分得的各组 各组次数(或频率)
合计
总次数
这种形式称为分布数列(或次数分布或频率分布)
第三节 分布数列
一、分布数列 1、概念:在统计分组的基础上,将总体的各单
位按组归类整理,形成总体单位在各 组间的分布。这种表明总体单位数在 各组分配情况的资料称为次数(频率) 分布,又称分布数列。
2000年
22.9 70.1 7.0
● 复合分组表
我国社会福利主要费用情况
( 单位:亿元)
项目
(一)优抚对象补助金额 国家支出 集体供给
(二)农村传统救济金额 国家支出 集体供给
(三)城乡各种福利院支 出
国家支出 集体供给
合计
1998
68.0 32.4 35.6 29.8 7.0 22.8 20.2 10.3 9.9
企业 民营
企业 中型
其他
小型
微型
若干个相互联系的简单分组构成平行分组体系
2、复合分组:对同一总体按照两个或两个以上的标志层 叠起来进行分组
例:
大型
国有企业
中型
小型
微型
大型
企业 民营企业
中型
小型
微型
大型
其他经济类型 中型
小型
微型
在复合分组方法下形成复合分组体系
五、统计分组的方法
(一)按品质标志分组
根据上述资料编制变量数列
第四节 分布数列的表示方法
一、表示法
学生按 成绩分
组
60以下
组中 值
55
学生数 (人)
2
比率 (%)
5.0
向上累计 工人数 比率
2
5.0
60 ~ 70 65
6
15.0
8
20.0
70 ~ 80 75
13
32.5
21
52.5
80 ~ 90 85
15
37.5
36
90.0
90~100 95
如:
某工厂同工种的50名工人完成生产定额百分数 (%)资料如下:
83 88 123 110 118 158 121 146 137 120 163 125 136 127 142 118 123 126 138 151 101 86 82 113 142 108 101 105 125 116 132 138 117 103 114 131 108 87 119 127 105 115 126 125 110 107 141 135 117 93
基尼系数
意大利经济学家基尼(Gini)根据洛仑兹曲线提出了判 断收入分配平均程度的量化指标。
G SA SA SB
合理界限;警戒线;红线。 中国:2013:
2012:,被称为亚洲贫富差距最大的国家) 日本:2007:0.249 印度:
品质数列可绘制的图形
例:为研究广告市场的状况,一家广告公司在某城市随机抽取200
品质分布数列: 数量分布数列:简称为变量数列
二、变量数列的种类
按各组表示方式不同可分为:
1、单项变量数列:每组用一个数表示。 适合于离散变量,且变量值较少的情况。 这种类似于品质数列的编制,相对比较简单。
工人按日产量(件)分组 工人数(人)
2
5
3
10
4
3
2、组距数列: 适合于连续变量和变量值较多的离散型变量
来说明对象的有关标志或指标的名称(即纵栏 标题)及其具体数值(即数字资料)。
三、统计表的种类
根据主词是否经过分组及分组方法不同,可分为: 1、简单表:主词未分组 2、简单分组表:主词经过简单分组 3、复合分组表:主词经过复合分组
即主词的三种设计方法
简单表
第六次人口普查两大城市人口 (2010年11月1日0时)
二、统计表的结构
1997~1998年城镇居民家庭抽样调查资料
项目
单位
1997年
1998年
一、调查户数
户
37890
二、平均每户家庭人口数
人
3.19
横 三、平均每户就业人口数人 Nhomakorabea行 四、平均每人全部收入
元
标 题
五、平均每人实际支出
元
消费性支出
元
1.83 5188.54 4945.87 4185.64
非消费性支出
组数、组距、全距之间存在如下关系:
组距i( )组 全数 距KR( ( ) )
可用经验公式来确定:
但最佳决定还是依据常识和数列使用的目的而定。
四、变量数列的编制
1、排序: 排序后 :(1)求出全距 R (2)确定变量数列的种类 (等距数列或不等距数列)
2、确定组距和组数 3、划定各组的界限 4、汇总得出各组单位数(次数)
合计
获奖人数
15 34 70 68 53 37 28
305
曲线图常见的类型有:钟型分布、J型分布、U型分布
对称分布
右偏分布
左偏分布
正J型分布
反J型分布
U型分布
应用:洛仑兹曲线和基尼系数
● 洛仑兹(Lorenz)曲线是反映社会收入分配平均程度 的一种累计百分数曲线,其特点是在纵轴和横轴上都进 行累计。(下凹程度愈大,表明收入分配愈不公平)
第三章 统计整理
学习目的:通过本章的学习,使学生掌握统计资料整理 的程序、统计分组的方法以及分布数列的编制、统计汇 总的组织形式和技术方法,以及设计和编制统计表。
分以下几节来讲: 第一节 统计整理概述 第二节 统计分组 第三节 分布数列 第四节 统计汇总 第五节 统计表
第一节 统计整理概述
一、概念
0.560
56.0
51
0.255
25.5
9
0.045
4.5
16
0.080
8.0
10
0.050
5.0
2
0.010
1.0
200
1.000
100.0
1、条形图
2
其他广告
10
广招生招聘广告
16
告 房地产广告 类
9
型 金融广告
51
服务广告
112
商品广告
0
40
80 人数(人) 120
某城市居民关注不同类型广告的人数分布图
各组
2、分组原则:
(1)周延性:即一个不漏(又称穷举原则) (2)互斥性:即不能重复(又称互斥原则)
即:要求保持组内资料同质性和组间资料的差异性
二、统计分组的作用
1、区分社会经济现象的类型 2、研究总体的内部结构 3、研究现象之间的依存关系
三、分组标志(分组标准)
1、概念:即分组的依据 2、选择: (1)根据统计研究的目的选择 (2)选择具有本质性的重要标志 (3)结合现象所处的具体条件
(只适用于离散变量)
21 —— 30
…
B、组的表示方法:
(1)闭口组:上、下限都有
(2)开口组:上、下限有一缺一
2、组距
计算公式:组距(i) = 上限 – 下限 种类:
根据各组组距是否相等,组距数列可分为:等距数列 异距数列
表示方法:
一般用5、10、20、50、100等类似数字表示。 另一相似的概念:
4
10.0
40
100.0
合计 —
40
100.0
—
—
向下累计
工人数
比率
40
100.0
38
95.0
32
80.0
19
47.5
4
10.0
—
—
计算累计次数方法:
1、向上累计:由变量值小的组向大的组累计,累 计次数表示该组上限以下(比该组上限小)的组 的次数的总和,所以又称为较小制累计。
2、向下累计:由变量值大的组向小的组累计,累 计次数表示该组下限以上(比该组下限大)的组 的次数的总和,所以又称为较大制累计。
人就广告问题做了邮寄问卷调查,其中的一个问题是“您比较关心
下列哪一类广告?”
1.商品广告 2.服务广告
3.金融广告
4.房地产广告 5.招生招聘广告 6.其他广告
某城市居民关注广告类型的频数分布表
广告类型
人数(人)
比例
频率(%)
商品广告 服务广告 金融广告 房地产广告 招生招聘广告 其他广告
合计
112
弄清楚数据的来源、数据的口径以及有关的 背景材料
确定这些数据是否符合自己分析研究的需要
(2)时效性审核
应尽可能使用最新的统计数据
(3)确认是否必要做进一步的加工整理
(二)统计分组:分类 (三)统计汇总:加总,求合计数 (四)编制统计表
第二节 统计分组
一、概念 1、概念:总体
二、组织形式
1、逐级汇总:自下而上逐级汇总
如:班组
车间
厂部
2、集中汇总:集中起来,一次汇总
厂部
车间
班组 3、综合汇总:以上两种方式结合使用
三、技术方法
1、手工汇总:常用的有 划记法 过录法 折叠法 卡片法
2、计算机汇总
第六节 统计表
一. 统计表的概念
统计表是表示统计资料的表格,在由横 行、纵栏交叉结合而成的表格上,它能系统 地组织和合理地安排大量数字资料。
原始统计资料
综合统计资料
二、统计整理的步骤
(一)资料审核: 1、对原始资料的审核
完整性审核:检查应调查的单位或个体是否有遗漏;
所有的调查项目或指标是否填写齐全。
准确性审核:逻辑检查:检查数据是否真实反映客观实际情
况,内容是否符合实际。
计算检查:检查数据是否有错误,计算是否正
确等。
2、对第二手资料的审核:
2、圆形图(饼形图)
房地产广告 招生招聘广告 8.0% 5.8%
金融广告
4.5%
其他广告 1.0%
服务广告 25.5%
商品广告
56.0%
某城市居民关注不同类型广告的人数构成
第五节 统计汇总
一、概念
在分组的基础上,将总体各单位分别归入 各组,计算各组及总体的单位数,各组及总体 的标志总量,使原始统计资料转化为综合统计 资料的工作过程。即加总合计的过程。
元
755.94
六、平均每人居住面积
平方米
11.90
39080 3.16 1.80
5458.34 5322.95 4331.61 987.17
12.40
总标题 纵栏标题
数 字 资 料
主词
宾词
资料来源:《中国统计摘要1999》,中国统计出版社,1999,第79页。
从内容来看,一张统计表由两部分构成:
1、主词:即统计表所要说明的对象。即横行标题。 2、宾词:即用来说明统计表所要说明的对象,包括用
四、统计分组的种类
(一)按分组标志的性质不同分
1、按品质标志分组
如:学生按性别分组,企业按所有制性质分组等
2、按数量标志分组
如:学生按年龄分组,企业按产值分组等
(二)按分组标志的多少不同分
1、简单分组:对总体只按一个标志分组。
例:对企业这个总体按所有制性质、规模大小分别分组。
(1)
(2)
国有
大型
城市名称
北京市 上海市
人口数(人)
10 819 407 8 787 402
● 简单分组表
中国人口年龄结构状况
(单位:%)
年龄组
0―14岁 15―64岁 65岁以上
1953年 1964年
36.3 59.3 4.4
40.7 55.7 3.6
1982年
33.6 61.5 4.9
1990年
27.7 66.7 5.6
C、累计次数折线图
累计次数折线图
累计次数折线图有两种形状:或持续增 长的或持续减少的。这分别取决于向上累计 或向下累计。
D、曲线图:
当变量数列中的组数愈加增多,变量值也非常多时, 折线图会逐步过渡到平滑曲线。频数分布曲线图实质上 是对应于连续变量的频数分布的函数关系图。
年龄 25岁以下
25~30 30~35 35~40 40~45 45~50 50岁以上
学生按成绩分组 60以下
60——70 70——80 80——90
90以上 合计
学生数(人) 3 7 20 8 2 40
三、组距数列中的有关概念
1、组限:有:上限(μ)
下限( L )
A、组限的表示方法有:
(1)重叠组限: 如:10 —— 20 20 —— 30 …
(2)不重叠组限: 如:10 —— 20
全距(R)= 最大变量值 – 最小变量值
3、组中值
概念:每组中点的数值 计算公式:组中 值 上限 下限
2
对于开口组,需先假定其所缺的上限或下限(假设开口 组的组距与其相邻组的组距相等)。 如:
各组 60以下
60——70 70——80 80——90
90以上
组中值
55 65 75 85 95
4、组数(K)
1、选择品质标志作为分组标志 2、确定组数并表示出各组(根据品质标志的具体表现) 3、把各单位归入相应的组汇总出各组的单位数(次数)
有的很简单,如人口按性别分组。 有的很复杂(如人口按职业分组),可查相应的专业分类目录。
(二)按数量标志分组
1、选择数量标志作为分组标志 2、确定组数、划定各组的界限(较复杂) 3、把各单位归入相应的组汇总得出各组的单位数(称
例:我国第五次人口普查我国大陆人口年龄分布:
人口按年龄分组 14岁以下
15 —— 64 65岁以上 合计
人口数(亿人) 2.8979 8.8793 0.8811 12.6583
比率(%) 22.89 70.15 6.96 100.00
2、构成:
由两部分构成:(1)各组 (2)各组次数(或频率)
3、种类:根据分组标志的不同可分为:
二、图示法
常用图形有: 次数分布直方图 次数分布折线图 次数分布曲线图 累计次数折线图 饼状图(圆形图)
根据上述资料可绘制如下图形
A、直方图
B、折线图
折线图又称频数多边形图。 对于组距数列,把直方图中各顶边的中点用
直线连接起来( 注意与横轴的交点)。 对于单项变量数列也可以画次数折线图。
为次数或频数;也可用相对数表示,称为频率)
六、分组结果的表示方法
分组后的结果通常用如下形式来表示:
所分得的各组 各组次数(或频率)
合计
总次数
这种形式称为分布数列(或次数分布或频率分布)
第三节 分布数列
一、分布数列 1、概念:在统计分组的基础上,将总体的各单
位按组归类整理,形成总体单位在各 组间的分布。这种表明总体单位数在 各组分配情况的资料称为次数(频率) 分布,又称分布数列。
2000年
22.9 70.1 7.0
● 复合分组表
我国社会福利主要费用情况
( 单位:亿元)
项目
(一)优抚对象补助金额 国家支出 集体供给
(二)农村传统救济金额 国家支出 集体供给
(三)城乡各种福利院支 出
国家支出 集体供给
合计
1998
68.0 32.4 35.6 29.8 7.0 22.8 20.2 10.3 9.9
企业 民营
企业 中型
其他
小型
微型
若干个相互联系的简单分组构成平行分组体系
2、复合分组:对同一总体按照两个或两个以上的标志层 叠起来进行分组
例:
大型
国有企业
中型
小型
微型
大型
企业 民营企业
中型
小型
微型
大型
其他经济类型 中型
小型
微型
在复合分组方法下形成复合分组体系
五、统计分组的方法
(一)按品质标志分组
根据上述资料编制变量数列
第四节 分布数列的表示方法
一、表示法
学生按 成绩分
组
60以下
组中 值
55
学生数 (人)
2
比率 (%)
5.0
向上累计 工人数 比率
2
5.0
60 ~ 70 65
6
15.0
8
20.0
70 ~ 80 75
13
32.5
21
52.5
80 ~ 90 85
15
37.5
36
90.0
90~100 95
如:
某工厂同工种的50名工人完成生产定额百分数 (%)资料如下:
83 88 123 110 118 158 121 146 137 120 163 125 136 127 142 118 123 126 138 151 101 86 82 113 142 108 101 105 125 116 132 138 117 103 114 131 108 87 119 127 105 115 126 125 110 107 141 135 117 93
基尼系数
意大利经济学家基尼(Gini)根据洛仑兹曲线提出了判 断收入分配平均程度的量化指标。
G SA SA SB
合理界限;警戒线;红线。 中国:2013:
2012:,被称为亚洲贫富差距最大的国家) 日本:2007:0.249 印度:
品质数列可绘制的图形
例:为研究广告市场的状况,一家广告公司在某城市随机抽取200
品质分布数列: 数量分布数列:简称为变量数列
二、变量数列的种类
按各组表示方式不同可分为:
1、单项变量数列:每组用一个数表示。 适合于离散变量,且变量值较少的情况。 这种类似于品质数列的编制,相对比较简单。
工人按日产量(件)分组 工人数(人)
2
5
3
10
4
3
2、组距数列: 适合于连续变量和变量值较多的离散型变量
来说明对象的有关标志或指标的名称(即纵栏 标题)及其具体数值(即数字资料)。
三、统计表的种类
根据主词是否经过分组及分组方法不同,可分为: 1、简单表:主词未分组 2、简单分组表:主词经过简单分组 3、复合分组表:主词经过复合分组
即主词的三种设计方法
简单表
第六次人口普查两大城市人口 (2010年11月1日0时)
二、统计表的结构
1997~1998年城镇居民家庭抽样调查资料
项目
单位
1997年
1998年
一、调查户数
户
37890
二、平均每户家庭人口数
人
3.19
横 三、平均每户就业人口数人 Nhomakorabea行 四、平均每人全部收入
元
标 题
五、平均每人实际支出
元
消费性支出
元
1.83 5188.54 4945.87 4185.64
非消费性支出
组数、组距、全距之间存在如下关系:
组距i( )组 全数 距KR( ( ) )
可用经验公式来确定:
但最佳决定还是依据常识和数列使用的目的而定。
四、变量数列的编制
1、排序: 排序后 :(1)求出全距 R (2)确定变量数列的种类 (等距数列或不等距数列)
2、确定组距和组数 3、划定各组的界限 4、汇总得出各组单位数(次数)
合计
获奖人数
15 34 70 68 53 37 28
305
曲线图常见的类型有:钟型分布、J型分布、U型分布
对称分布
右偏分布
左偏分布
正J型分布
反J型分布
U型分布
应用:洛仑兹曲线和基尼系数
● 洛仑兹(Lorenz)曲线是反映社会收入分配平均程度 的一种累计百分数曲线,其特点是在纵轴和横轴上都进 行累计。(下凹程度愈大,表明收入分配愈不公平)
第三章 统计整理
学习目的:通过本章的学习,使学生掌握统计资料整理 的程序、统计分组的方法以及分布数列的编制、统计汇 总的组织形式和技术方法,以及设计和编制统计表。
分以下几节来讲: 第一节 统计整理概述 第二节 统计分组 第三节 分布数列 第四节 统计汇总 第五节 统计表
第一节 统计整理概述
一、概念
0.560
56.0
51
0.255
25.5
9
0.045
4.5
16
0.080
8.0
10
0.050
5.0
2
0.010
1.0
200
1.000
100.0
1、条形图
2
其他广告
10
广招生招聘广告
16
告 房地产广告 类
9
型 金融广告
51
服务广告
112
商品广告
0
40
80 人数(人) 120
某城市居民关注不同类型广告的人数分布图
各组
2、分组原则:
(1)周延性:即一个不漏(又称穷举原则) (2)互斥性:即不能重复(又称互斥原则)
即:要求保持组内资料同质性和组间资料的差异性
二、统计分组的作用
1、区分社会经济现象的类型 2、研究总体的内部结构 3、研究现象之间的依存关系
三、分组标志(分组标准)
1、概念:即分组的依据 2、选择: (1)根据统计研究的目的选择 (2)选择具有本质性的重要标志 (3)结合现象所处的具体条件
(只适用于离散变量)
21 —— 30
…
B、组的表示方法:
(1)闭口组:上、下限都有
(2)开口组:上、下限有一缺一
2、组距
计算公式:组距(i) = 上限 – 下限 种类:
根据各组组距是否相等,组距数列可分为:等距数列 异距数列
表示方法:
一般用5、10、20、50、100等类似数字表示。 另一相似的概念:
4
10.0
40
100.0
合计 —
40
100.0
—
—
向下累计
工人数
比率
40
100.0
38
95.0
32
80.0
19
47.5
4
10.0
—
—
计算累计次数方法:
1、向上累计:由变量值小的组向大的组累计,累 计次数表示该组上限以下(比该组上限小)的组 的次数的总和,所以又称为较小制累计。
2、向下累计:由变量值大的组向小的组累计,累 计次数表示该组下限以上(比该组下限大)的组 的次数的总和,所以又称为较大制累计。
人就广告问题做了邮寄问卷调查,其中的一个问题是“您比较关心
下列哪一类广告?”
1.商品广告 2.服务广告
3.金融广告
4.房地产广告 5.招生招聘广告 6.其他广告
某城市居民关注广告类型的频数分布表
广告类型
人数(人)
比例
频率(%)
商品广告 服务广告 金融广告 房地产广告 招生招聘广告 其他广告
合计
112