平湖市实验中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平湖市实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在曲线y=x 2上切线倾斜角为的点是(
)
A .(0,0)
B .(2,4)
C .(,
)
D .(,)
2. 若几何体的三视图如图所示,则该几何体的体积为(
)
A .
B .
C .
D .π
3. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有(
)
A .3个
B .2个
C .1个
D .无穷多个
4. 已知集合,,则( )
{2,1,1,2,4}A =--2{|log ||1,}B y y x x A ==-∈A B = A .
B .
C .
D .{2,1,1}--{1,1,2}-{1,1}-{2,1}
--【命题意图】本题考查集合的交集运算,意在考查计算能力.
5. 已知的终边过点,则等于( )()2,37tan 4πθ⎛⎫
+ ⎪⎝⎭
A .
B .
C .-5
D .5
15-156. 的外接圆圆心为,半径为2,为零向量,且,则在方向上
ABC ∆O OA AB AC ++ ||||OA AB =
CA BC 的投影为( )
A .-3
B .
C .3
D 7. 以下四个命题中,真命题的是( )
A .2
,2
x R x x ∃∈≤-
B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<
C .,函数都不是偶函数
R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件
//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
8. 函数是周期为4的奇函数,且在上的解析式为,则
()()f x x R Î02[,](1),01
()sin ,12
x x x f x x x ì-££ï=íp <£ïî( )1741
()()46f f +=A . B . C . D .
71691611161316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
9. △的内角,,所对的边分别为,,,已知
,则
ABC A B C a =
b =6
A π
∠=
( )111]
B ∠=A .
B .
或
C .
或
D .
4
π
4
π
34
π
3
π
23
π
3
π
10.过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )
A .3条
B .2条
C .1条
D .0条
二、填空题
11.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .12.设满足条件,若有最小值,则的取值范围为
.
,x y ,
1,
x y a x y +≥⎧⎨
-≤-⎩z ax y =-a 13.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .
14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{
5
2128
lnx x x
f x m x mx x +>=-++≤,,
,,
若有三个零点,则实数m 的取值范围是________.
()()g x f x m =-15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆
的方程为 .
16.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }
的前n 项的和)为它的各项的和,记为S ,即S=S n =
,则循环小数0. 的分数形式是 .
三、解答题
17.已知等差数列
满足:=2,且,成等比数列。
(1) 求数列的通项公式。
(2)记为数列
的前n 项和,是否存在正整数n ,使得
若存在,求n 的最小
值;若不存在,说明理由.
18.(本题满分14分)
在ABC ∆中,角,,所对的边分别为,已知cos (cos )cos 0C A A B +-=.A B C c b a ,,(1)求角B 的大小;
(2)若,求b 的取值范围.
2=+c a 【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
19.我市某校某数学老师这学期分别用m ,n 两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k 2.072 2.706 3.841 5.024 6.6357.87910.828
(参考公式:K2=,其中n=a+b+c+d)
20.证明:f(x)是周期为4的周期函数;
(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.
18.已知函数f(x)=是奇函数.
21.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.
22.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN 与y轴垂直时,求k1k2的值.
平湖市实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】D
【解析】解:y'=2x ,设切点为(a ,a 2)
∴y'=2a ,得切线的斜率为2a ,所以2a=tan45°=1,∴a=,
在曲线y=x 2上切线倾斜角为的点是(,).
故选D .
【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
2. 【答案】B
【解析】解:根据几何体的三视图,得该几何体是圆锥被轴截面截去一半所得的几何体,底面圆的半径为1,高为2,
所以该几何体的体积为V 几何体=×π•12×2=.
故选:B .
【点评】本题考查了利用空间几何体的三视图求几何体体积的应用问题,是基础题目.
3. 【答案】B
【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N ,又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3,即M={x|﹣1≤x ≤3},
在此范围内的奇数有1和3.
所以集合M ∩N={1,3}共有2个元素,故选B .
4. 【答案】C
【解析】当时,,所以,故选C .{2,1,1,2,4}x ∈--2log ||1{1,1,0}y x =-∈-A B = {1,1}-5. 【答案】B 【
解
析
】
考点:三角恒等变换.6.【答案】B
【解析】
考点:向量的投影.7.【答案】
D
8.【答案】
C
9.【答案】B
【解析】
试题分析:由正弦定理可得
或,故选B.
()
sin0,,
4
B B B
π
π
=∴=∈∴=
3
4
π
考点:1、正弦定理的应用;2、特殊角的三角函数.
10.【答案】C
【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,
则.
即2a﹣2b=ab
直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,
即ab=﹣16,
联立,
解得:a=﹣4,b=4.
∴直线l的方程为:,
即x﹣y+4=0,
即这样的直线有且只有一条,
故选:C
【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.
二、填空题
11.【答案】 [1,)∪(9,25] .
【解析】解:∵集合,
得(ax﹣5)(x2﹣a)<0,
当a=0时,显然不成立,
当a>0时,原不等式可化为
,
若时,只需满足
,
解得;
若,只需满足
,
解得9<a ≤25,
当a <0时,不符合条件,综上,
故答案为[1,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.
12.【答案】[1,)
+∞【解析】解析:不等式表示的平面区域如图所示,由得,当,
1,x y a x y +≥⎧⎨-≤-⎩
z ax y =-y ax z =-01
a ≤<时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A 处取得最小
1l z 1a ≥2l z 值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,
10a -<<3l z 1a ≤-4l
.
1a ≥13.【答案】1-1,3]【解析】
试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈ ≤≤≤=1-1,3]考点:集合运算【方法点睛】
1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.14.【答案】714⎛⎤ ⎥
⎝
⎦
,
【解析】
15.【答案】 (x﹣1)2+(y+1)2=5 .
【解析】解:设所求圆的圆心为(a,b),半径为r,
∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,
∴圆心(a,b)在直线x+y=0上,
∴a+b=0,①
且(2﹣a)2+(1﹣b)2=r2;②
又直线x﹣y+1=0截圆所得的弦长为,
且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,
即r2﹣()2=③;
由方程①②③组成方程组,解得;
∴所求圆的方程为(x﹣1)2+(y+1)2=5.
故答案为:(x﹣1)2+(y+1)2=5.
16.【答案】 .
【解析】解:0. = + +…+==,故答案为:.
【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
三、解答题
17.【答案】见解析。
【解析】(1)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成比数列,故有(2+d )2=2(2+4d ),化简得d 2﹣4d=0,解得d=0或4,
当d=0时,a n =2,
当d=4时,a n =2+(n ﹣1)•4=4n ﹣2。
(2)当a n =2时,S n =2n ,显然2n <60n+800,
此时不存在正整数n ,使得S n >60n+800成立,
当a n =4n ﹣2时,S n =
=2n 2,令2n 2>60n+800,即n 2﹣30n ﹣400>0,解得n >40,或n <﹣10(舍去),
此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41,
综上,当a n =2时,不存在满足题意的正整数n ,
当a n =4n ﹣2时,存在满足题意的正整数n ,最小值为41
18.【答案】(1);(2).3B π=
[1,2)【解析】
19.【答案】
【解析】
【专题】综合题;概率与统计.
【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;
(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.
【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2
P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉
则随机变量ξ的分布列为
ξ012
P
数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉
(Ⅲ)2×2列联表为
甲班乙班合计
优秀31013
不优秀171027
合计202040
┉┉┉┉┉
K2=≈5.584>5.024
因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉
【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.
20.【答案】
【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,
有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).
又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).
从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.
(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],
.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],
.
从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.
【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.
21.【答案】
【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面AEC⊥平面PDB.
(Ⅱ)解:设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE∥PD,,
又∵PD⊥底面ABCD,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.
【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
22.【答案】
【解析】解:(Ⅰ)由题意得,2c=2,=1;
解得,a2=4,b2=1;
故椭圆E的方程为+y2=1;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,
直线MN与y轴垂直,
则点N的纵坐标为0,
故k2=k1=0,这与k2≠k1矛盾.
当k1≠0时,直线PM:y=k1(x+2);
由得,
(+4)y2﹣=0;
解得,y M=;
∴M(,),
同理N(,),
由直线MN与y轴垂直,则=;
∴(k2﹣k1)(4k2k1﹣1)=0,
∴k2k1=.
【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题. 。