Wartung Sina2 REV1 0
Signal Hound VSG25A 矢量信号生成器用户手册说明书
VSG25A Vector Signal Generator User ManualSignal Hound VSG25A User Manual© 2023, Signal Hound, Inc.1502 SE Commerce Ave, Suite 101Battle Ground, WA USAPhone 360.217.0112This information is being released into the public domain in accordance with the Export AdministrationRegulations 15 CFR 734Contents1 Introduction (1)2 Understanding the Hardware (1)3 Capabilities (2)4 Calibration (5)5 Adjustments (5)6 VSG25A Specifications (5)7 Warranty and disclaimer (12)8 Appendix A: Bit Mapping for Digital Modulation (13)1 IntroductionThe Signal Hound VSG25A Vector Signal Generator is capable of producing many of the complex signals used in today’s ever-evolving wireless communications industry. Featuring a frequency range of 100 MHz to 2.5 GHz, output amplitude from -40 dBm to +10 dBm, and 100 MHz of modulation bandwidth, the VSG25A covers most telecom frequencies, as well as two major ISM bands (902-928 MHz and 2.4 to 2.5 GHz). It may be used down to 80 MHz, and -80 dBm to +13 dBm with reduced performance. It is USB-powered, weighs 5 ounces, and is small enough to carry in a pocket.2 Understanding the HardwareAt the heart of the VSG25A is a quadraturemodulator driven by an arbitrary waveformgenerator consisting of 2, 12-bit DAC channels,a direct digital synthesizer (DDS), and patternmemory. The waveforms represent the I and Qchannels of the complex signal to be produced.Inside the arbitrary waveform generator, there istightly coupled pattern memory of 4k words.These words may represent an instantaneous frequency, or an I or Q value. This may not seem like a lot, but when combined with the flexibleDAC clock, this can represent 512, QAM-256 symbols with a root raised cosine filter applied, at virtually any data rate from 16 kSPS to 45 MSPS.There is approximately 47 dB of gain control available for full 12-bit resolution. By using fewer bits, over 80 dB of gain control is possible.The waveform period may be set longer than the pattern length as well. This is great for generating periodic shaped pulses. The pattern memory is clocked at a rate from 800 kHz to 180 MHz, divided by a prescaler (1 to 15). The pattern period shares the 800 kHz to 180 MHz clock, but has a separate prescaler, and a 16 bit counter, for periods up to 15 * 65535 = 983025 clock cycles.3 CapabilitiesThe VSG25A is capable of producing a wide variety of signals, with a good degree of precision.AM / FM MODULATIONAmplitude modulation uses a fixed frequency, and varies the amplitude of the signal. Frequency modulation uses a fixed amplitude and varies the instantaneous frequency of the signal. Choose sine, triangle, square, ramp modulation. Modulation rates can be set from 30 Hz to 45 MHz. AM modulation depth may be set from 1% to 99%. FM peak deviation may be set up to 50 MHz. The AM and FM waveforms, being digitally generated, are quite accurate. Total harmonic distortion on an FM waveform with sine wave modulation is typically below 0.02%.For low frequency AM / FM, where the sine / square / triangle pattern repeats at a fixed rate, the pattern memory is typically filled with 2000 amplitudes or frequencies. For example, if you select 1 kHz AM, the sample clock will be set to 2000 kHz (2 MHz), and the I and Q buffers will be filled with the selected waveform.PULSE MODULATIONPulse modulation is single frequency signal than is “on” for a specified width, then “off” for the remainder of the specified period. The on/off ratio is the difference in amplitude between the “on” state and the “off” state.The typical rise time (10-90% amplitude) of 3.5 ns and fall time (90-10% amplitude) of 2.5 ns (tested at 2.45 GHz) make the VSG25A a good source for pulse modulation. These are independent of pulse width or pulse period.If these rise / fall times are too steep, they may be shaped using a custom CSV file for an arbitrary waveform. See section on custom modulation files.Capabilities|Multi-TonePulse modulation is clocked at a rate from 800 kHz to 180 MHz, where the pulse width is an integer number of clocks, divided by a prescaler (1 to 15). The pulse period shares the same 800 kHz to 180 MHz clock, but has a separate prescaler, and a 16 bit counter, for periods up to 15 * 65535 = 983025 clock cycles. This allows very low duty cycle pulses (10.2 ns on, 10 ms off). Based on your requested pulse width and pulse period, the VSG25A software will automatically select the best clock rate and prescaler values. Pulse modulation will always have an “on” state and “off” state of at least one clock cycle.The minimum pulse width is 6 nanoseconds, and can be adjusted in very small increments. The on/off ratio is typically >50 dB.MULTI-TONEThe multi-tone generator can produce between 2 and 1023 equally spaced tones. These frequencies are simultaneously and continuously output. The phase relationship between tones is either random, or parabolic for minimum peak-to-average power ratio. There is even a selectable center notch built in for tests like noise power ratio, and the LO feed-through can be manually nulledfor best notch performance.Evenly spaced tones are required because ofthe pattern memory limitations. The sampleclock is set to an integer multiple of the tonespacing. For tone spacing below 90 kHz, thismultiple is set to 2000.For noise power ratio, many sets of 1001 tones with random phase are required to adequately simulate a multi-channel carrier. Contact Signal Hound for additional information.The only pre-distortion that is applied is an inverse sinc filter for flattening tone amplitudes. The VSG25A’s two-tone third order intercept at the final amplifier is typically around +25 dBm, which may or may not be adequate for testing your amplifier. If additional predistortion is required for two-tone testing, a custom arbitrary waveform generator file may be used and adjusted until 3rd order products are nulled. See the section on Arbitrary / custom modulation.DIGITAL MODULATIONDigital modulation takes user-supplied binary data and modulatesthe carrier signal using a pre-defined modulation type. Forexample, binary phase shift keying (BPSK) encodes a “0” and aCapabilities|ASK / FSK Modulation“1” at two phases separated by 180 degrees (π radians). The binary sequence is continuously repeated without gaps.BPSK, DBPSK, QPSK, DQPSK, OQPSK, π/4 DQPSK, 8PSK, 16PSK, 16QAM, 64QAM, and 256QAM are supported. Symbol rates from 4 kHz (max 128 symbols) or 16 kHz (max 512 symbols), up to 45 MHz are supported. Raised cosine and root-raised cosine filtering are available, with selectable filter roll-off. Typical EVM for a π/4 DQPSK signal is below 1% RMS. A digital pattern editor, with the ability to add PN7 and PN9 sequences with one click, and save-load support, is included. When the number of bits is not evenly divisible by the number of bits per symbol, the data will be padded with zeros. For differentially encoded signals, the last symbol may be modified or an additional symbol may be appended for smooth pattern repetition.The software automatically converts the symbols to a repeating pattern of 1024 to 2048 samples, where each symbol is encoded into 4, 8, or 16 samples (depending on number of symbols and symbol rate). More samples per symbol means lower out-of-band spurious.ASK / FSK MODULATIONAmplitude- and frequency- shift keyed (ASK and FSK) modulation types are available, and use the same digital pattern editor as PSK / QAM. A Gaussian filter, with adjustable roll-off, may be turned on or off. For MSK modulation, simply set your modulation index to 0.5. For GMSK modulation, enable the Gaussian filter and set the filter coefficient (typically 0.3 to emulate GSM, 0.5 to emulate Bluetooth, etc.).CUSTOM / ARBITRARY WAVEFORM MODULATIONModulation using a custom / arbitrary waveform is also available. While the Signal Hound software does not have advanced signal generation software, I/Q waveforms can be built using other software packages, and then pasted into a CSV or text file. This input file, which can be modified in any spreadsheet software, controls center frequency, amplitude, baseband clock rate, number of samples, and signal period, followed by the actual samples. Several examples are provided, including a simple 1 MSPS, 8-bit unfiltered BPSK packet, a windowed sinc pulse, and a chirp radar signal. There are also some spreadsheet examples of how to generate these waveforms.SWEPT MODERamp Sweep frequency modulates the local oscillator, giving you a sweep of up to a 100 MHz span. However, due to pattern memory limitations, this sweep would be limited to 100 µs. Maximum ramp sweep time is inversely related to sweep span, so it must be ≤10 ms for a 1 MHz span, and ≤1 ms for a 10 MHz span, etc.Calibration|Talking to the HardwareStep sweep is just that. It operates as a CW generator at your first frequency. After an interval of at least dwell time, it steps to the next frequency, until all frequencies are complete, then it repeats. Even with a 1 ms dwell time, you may only get 8-10 steps per second.TALKING TO THE HARDWAREMost users will choose to use our included software to communicate with the VSG25A. If you need to develop your own software, an Application Programming Interface, or API, exposes all of the functions of the hardware and software. See the API manual for more information.4 CalibrationContact Signal Hound for calibration services or software.5 AdjustmentsTIMEBASEThe 24 MHz internal timebase is easily adjusted to within 1 ppm using a 1.8 mm or 1/16” slotted screwdriver, found in many common jewelers screwdriver kits. To accomplish this, generate a CW signal of known frequency (e.g. 1 GHz), and adjust using a spectrum analyzer, measuring receiver, or counter.Contact Signal Hound for any additional adjustments.6 VSG25A SpecificationsNote: For Option 15 (Reconstruction Filter), all modulation specifications are “typical” and will be affected by the addition of the reconstruction filter.FrequencyRange: 100 MHz to 2.5 GHz (useable down to 80 MHz with unspecified performance) Resolution: < 1 HzTimebase Accuracy (excluding temperature drift): ±5 ppm / yearTimebase drift over temperature: typically -0.2 ppm / o C.Timebase adjustable to ±1 ppm after 15 minute warmup, using 1.8mm slotted screwdriverBaseband I/Q Symbol ClockRange: 53.333 kHz to 180 MHzVSG25A Specifications|AmplitudeAccuracy: Timebase Accuracy + Clock PLL ErrorClock PLL error: zero for 3 ½ significant digits, and for standard communications ratesWorst case Clock PLL error: 0.07%. Software reports errors greater than 0.001%See Clock Notes for some examples.AMPLITUDECW Absolute Amplitude Accuracy: -40 to +10 dBm, +/- 1.5 dB (as measured by an RF power meter)Resolution 0.01 dBModulation Relative Amplitude AccuracyBandwidth (BW) ≤ 10 MHz, BW < 3% of Center frequency (CF): ±0.25 dB(Option 15: ±0.25 dB typical)For multi-tone and PSK/QAM, inverse sinc correction is applied automatically. Typical roll-off after correction is roughly parabolic, down 0.2 dB at 25 MHz offset from center and 0.8 dB at 50 MHz offset from center (Option 15 becomes 1 dB at 25 MHz offset and 2.4 dB at 50 MHz offset).All other modulation conditions: ±1 dB typical (Option 15 unspecified)Carrier feed-thru (0 dBm output power) < -45 dBc, <-60 dBc typicalVSWR100 MHz to 2.2 GHz, <2.0:1 typical80 MHz to 2.5 GHz, <3.0:1 typicalDEVICE CONFIGURATION TIME500 ms typicalSPECTRAL PURITYTypical SSB Phase NoiseTypical Phase Noise (1 GHz) Offset dBc/Hz 100 Hz -68 1 kHz -88 10 kHz -102 100 kHz -105 1 MHz-132HarmonicsHarmonic output filter: Single 2.7 GHz (nominal) low pass filterResidual Signals10 MHz to 2.5 GHz: < -80 dBm typicalBaseband Reconstruction FilterStandard: NoneOption 15: Elliptic Low Pass, full bandwidth. When the full 100 MHz bandwidth is used, spurs from DAC aliasing are reduced typically below -45 dBc. Modulation amplitude flatness is unspecified, but typically +0 / -2.4 dB across the full bandwidth.-60-50-40-30-20-10005001000150020002500H a r m o n i c A m p l i t u d e (d B c )Frequency (MHz)Typical VSG25A Harmonics (0 dBm output)2nd Harmonic 3rd HarmonicTypical Spurious from DAC Aliasing with no reconstruction filter:Note 1: Oversampling factor defined as (DAC clock rate) / (Bandwidth)VSG25A Specifications|Modulation modesSpurious from I/Q imbalance<-40 dBc typicalMODULATION MODESAMModulation Rate30 Hz to 40 MHz. Same accuracy as symbol clock accuracy.Modulation depth1% to 99%, ±1%Modulation shapes sine, triangle, square, and ramp.THD< 1% (1 kHz sine modulation)FMFM Modulation Rate30 Hz to 40 MHz. Same accuracy as symbol clock accuracy.Modulation deviation±1% (typically ±0.1%)Maximum Modulation Index (Deviation / Rate)Modulation Rate Max Modulation Index≤ 3 kHz15000>3 kHz, ≤ 12 kHz4000>12 kHz, ≤ 45 kHz1000>45 kHz, ≤ 75 kHz600> 75 kHz 300 (or 50 MHz)Please note that above 10% of maximum modulation index, spurious signals may be observed in nearby channels.Modulation shapes sine, triangle, square, and ramp.THD< 0.1% (100 kHz offset, 1 kHz rate sine modulation), 0.01% typical Step SweepFrequency accuracy Same as CWNumber of points 2 to 10,000VSG25A Specifications|PulsePULSEPulse width 6 ns to 25 msTypical rise time (10-90%) 3.5 ns at 2.4 GHz outputTypical fall time (90-10%) 2.5 ns at 2.4 GHz outputNote 1: Option 15 will significantly increase rise/fall times and cause overshoot.Pulse width resolution Typically better than 0.1%Pulse Period Must be rational function(1) of pulse width. 12 ns to 1 s.Duty cycle Minimum 0.00025% (pulse period ≤1.0 s), maximum 99.9% (“off” time > 6ns).Software reports actual pulse width and pulse period, which may vary slightly from requested values.On / off ratio> 45 dB (typically 60 dB)Note 2: Internally, pulse width must be 1 to 2047 * M clocks, where M is 1 to 15, and Pulse Period must be 2 to 65,535 * N clocks, where N is 1 to 15. Clock can be 800 kHz to 180 MHz.MULTI-TONETone count 2 to 1023Tone spacing 1 kHz to 10 MHz, accuracy same as symbol clock accuracy.Tone Phase Relationship P arabolic or random, where parabolic tone phases are π (k-1) 2 / N, whereN is the number of tones for the k'th tone from center.Maximum span100 MHzPSK / QAMModulation Type BPSK, QPSK, DQPSK, PI/4 DQPSK, OQPSK, 8-PSK, 16-PSK, 16 QAM,64 QAM, 256 QAM. Other modulation modes may be available.Filter Raised cosine or RRC (root Nyquist), alpha 0.01 to 1.0Pattern PN7, PN9, customVSG25A Specifications|Custom ModulationSamples per Symbol Max. symbol count Min. Symbol Rate Max. Symbol Rate4 512 (PN9) 16 kHz 45 MHz8 256 8 kHz 22.5 MHz16 128 (PN7) 4 kHz 11.25 MHzEVM (RMS), QPSK, 1 MSPS, < 1% typicalCUSTOM MODULATIONUser-defined continuous modulation patterns use a waveform memory of 2 to 2048 I/Q samples, and a period from 2 to 65535 samples, using a clock rate of 53.333 kHz to 180 MHz.When the active segment is shorter than the period, the first and last samples must match. This value (typically 0, 0) will be held during the "off" time.Amplitude accuracy: Same as digital modulation when RMS (I^2 + Q^2) = 1.0Input range-1. 5 to 1. 5DAC CLOCK NOTESDAC clock values to match your selected pattern are automatically selected for you, using the formula below. Where an exact match is not available, the software will select the set of values closest to the desired clock rate.DAC CLOCK = 24 MHz * N / (M * D * P), where N is 1 to 4095, D is 1 to 127, M is 1 to 511, P is 1 to 15, and 100 ≤ (24N/M) ≤ 200.Example 1: 13.4912 MHz (1.6864MHz x 8): (24 * 2108) / (375 * 10), 0 ppm errorExample 2: 2.1666667 MHz (270.833333 kHz x 8), GSM: (24 * 611) / (144 * 47), 0 ppm errorExample 3: 9.8304 MHz (1.2288 MHz x 8), CDMA: (24 * 768) / (125 * 15), 0 ppm errorExample 4: 1.0001 MHz: (24 * 1250) / (297 * 101), 0.01 ppm errorINPUTS / OUTPUTSData and Power USB 2.0 type BRF output SMA (F)Warranty and disclaimer|Mechanical / EnvironmentalMECHANICAL / ENVIRONMENTALPower Requirements: USB-powered, 4.75 – 5.25V, 450 mA typical. 4.75V-5.25V is required to meet published specifications. Typical behavior for USB voltages below 4.75V, such as tablet PCs, is increased rolloff and reduced amplitude for signals wider than 5 MHz bandwidth.Operating temperature (calibrated) 18 to 28 o C Operating temperature (uncalibrated): 0 o C to 50 o CSize 5.5” x 2.25” x 1”Weight 5 oz.7 Warranty and disclaimer©2013-2023 Signal Hound. All rights reserved.Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.allowed under the copyright laws.WARRANTYThe information contained in this manual is subject to change without notice. Signal Hound makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties or merchantability and fitness for a particular purpose. Signal Hound shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. This Signal Hound product has a warranty against defects in material and workmanship for a period of two years from date of shipment. During the warranty period, Signal Hound will, at its option, either repair or replace products that prove to be defective.WARRANTY SERVICEFor warranty service or repair, this product must be returned to Signal Hound. The Buyer shall pay shipping charges to Signal Hound and Signal Hound shall pay UPS Ground, or equivalent, shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes, to and from Signal Hound, for products returned from another country.LIMITATION OF WARRANTYThe foregoing warranty shall not apply to defects resulting from improper use by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outsideAppendix A: Bit Mapping for Digital Modulation|Exclusive Remediesof the environmental specifications for the product. No other warranty is expressed or implied. Signal Hound specifically disclaims the implied warranties or merchantability and fitness for a particular purpose.EXCLUSIVE REMEDIESThe remedies provided herein are the Buyer’s sole and exclusive remedies. Signal Hound shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.CERTIFICATIONSignal Hound certifies that, at the time of shipment, this product conformed to its published specifications.CREDIT NOTICEWindows® is a registered trademark of Microsoft Corporation in the United States and other countries.Intel® and Core™are trademarks or registered trademarks of the Intel Corp. in the USA and/or other countries.8 Appendix A: Bit Mapping for Digital ModulationQPSK8 PSK16-QAMNote: Positive I-axis is to the right, positive Q-axis is to the top.16-PSK is similar to 8-PSK, except for a phase step of π/8.Offset QPSK is the same as QPSK, except the Q is delayed by ½ symbol.64-QAM and 256-QAM are encoded similarly to 16-QAM (right-to-left, top-to-bottom).FSK / MSK data is type 2 (not differentially encoded). ASK data: “0” is low amplitude, “1” is high amplitude.。
阿尔法拉維ATEX加权系統UltraPure輕芯说明书
The Alfa Laval weighing system is a complete solution offered for process weighing installation,where level measurement,mixing,filling,dosing or batching is required.The weighing solution is as standard delivered in three different accuracy ranges:0.10%,0.05% and0.025%with a total measuring range from0to4000kg.Each weighing system consists of1to4load cells and a weighing module. The weighing modules are available with both analog4-20mA output andfieldbus interface(PROFINET,Profibus DP or EtherNet IP).For high hygienic demands,the Alfa Laval load cells are supplied electropolished and hermetically sealed to IP68(laser welded).Capacitive measurement principle(patented)The Alfa Laval robust digital load cells are based on a patented capacitive measurement principle where a non-contacting capacitive sensor is mounted inside the load cell body.As the capacitive sensor is not in contact with the load cell body,the load cells are to a very high degree unaffected by overloads,sideloads,torsion and welding voltages.Therefore,a straightforward and hygienic mechanical installation of the load cells can be done without expensive and complicated mounting kits and overload protection devices.The electrical installation of the digital load cells is pure plug-and-play as the signal from the non-contacting capacitive sensor is directly converted,compensated and calibrated by a patented ASIC.The digital signal is transmitted as RS485data on a reliable RG-58single wire coaxial cable which may be up to50meters long.The factory calibration of the digital load cells is independent of the load cell cable length.Technical dataStainless steel enclsure..........IP68Stainless steel enclosure with panelmounted display...............IP64Measuring range:..............from0to4000kg dependingon system selection. Accuracy:...................0.10%,0.05%,0.025% Compensated temperature range:...-10to50°COverload and sideload:..........300%overload tolerance Power supply:................24VDC,±10%min.2A Certificates•CE marked•Calibration certificate(option)• 3.1B certificate(option)Mechanical dataWeight:BL-EX Load cell:.............. 2.3kgWeighing module:..............approx.0.5kgMaterials:Load cells:..................AISI316and17-4PH Mounting kit:.................AISI304/AISI316(weldingcylinder)Operating temperature range:BL-EX Load cells:..............-40to50°CWeighing modules:.............-10to50°CProtection class:Load cells:..................IP68Weighing modules:.............IP20SpecificationParameter Unit0.10%0.05%0.025% Rated capacity(Emax)per load cell kg10,20,50,100,150,250,500,1000 Safe overload limit%of E max300to1000Safe sideload limit%of E max500to2000Minimum dead load%of E max0Accuracy%of E max0.1000.0500.025 Repeatability%of E max0.0180.0150.010 Hysteresis%of E max0.0330.0200.017 Creep30min.%of E max0.0350.0250.017 Temperature effect on zero%/10°C0.0400.0300.016 Temperature effect on sensitivity%/10°C0.0400.0300.016 Deflection at Emax mm max.0.10Mesuring rate Hz up to1000Internal resolution Bit24Maximum cable length m100OptionsOUTPUT:4-20mAPROFINETEtherNet IPProfibus DPRS485Local weighing display:Alfa Laval weighing terminal(options)Load cell cable:6m ATEX coaxial RG58with BNC connector(option:10,20or50m)Mounting:Mounting kit for BL-EX beam load cellDimensional drawingsBL-EX Beam load cell0-100kg with mounting kitBL-EX Beam load cell100-1000kg with mounting kitLayout and electrical connection schematic of weighing modules:Profinet weighing module for4load cells(4XXXA)(external dimensions is the same for Profilbus DP and Ethernet IP4-20mA output weighing module for4load cells(4X79A)RS485interface module(when ordered with display(4X40A)ATEX POWER SUPPLY(4051A)14mm/5.51in128mm/5.4in116mm/4.57in11mm/.43in29 mm / 1.14 in60 mm / 2.36 inø4.5 mm / ø0.18 in66 mm / 2.60 in14mm/5.51in128mm/5.4in116mm/4.57in11mm/.43in29 mm / 1.14 in60 mm / 2.36 inø4.5 mm / ø0.18 in66 mm / 2.60 inInstallation in ATEX zonesLoad cells x=number of loadcellsATEX Power Supply Gnd-+Interfaces: EtherNet IPPROFINET EtherCAT Profibus DP Modbus TCP/IP DeviceNet RS485Power Supply +24Vdc,2AHAZARDOUS AREA SAFE AREASelection guideWhen configuring a weighing system,you need the following information:•ATEX application•Number of tank legs or supporting points•Total weight of tank incl.product in kg•Required output and/or local display•Required accuracy for the application(e.g.dosing,mixing,level measurement etc.)With this information,you are able tofind the configuration you need in the pricelist or in the online configuration tool:Step1:Is the weighing system used in ATEX zone1,2,21,22classified operation.Step2:Calculate the total weight of the tank inclusive the product in kg and round up to the nearest standard load cell system.Step3:Decide on accuracy required by the application-0.10%accuracy systems are suitable for mixing applications-0.05%accuracy systems are suitable for dosing applications-0.025%accuracy systems are suitable for very precise dosing and batching applicationsStep4:Decide on the output signal type and/or a local weighing display:-4-20mA-PROFINET-EtherNet IP-Profibus DP Step5:Decide on the length of the load cell cables(the length of the cable is can be shortened without the need for recalibration)-6m(standard)-10m-20m-50mStep6:Decide on if you need calibration certificateTheoretical statistical weighing system accuracy System range System rangeItem no.3supporting points4supporting pointsNumber ofloadcells andlc type in systemSystem type0.10%System type0.05%System type0.025%TE67WB9KXXXXXX0-60kg.(132lb)(3*20kg.lc)0.035kg.(0.076lb)0,017kg(0.038lb)0.009kg.(0.019lb) TE67WBBJXXXXXX0-80kg.(176lb)(4*20kg.lc)0.040kg.(0.088lb)0,020kg.(0.044lb)0.010kg.(0.022lb) TE67WBCKXXXXXX0-90kg.(198lb)(3*30kg.lc)0.052kg.(0.115lb)0,026kg.(0.057lb)0.013kg.(0.029lb) TE67WBEXXXXXXX0-120kg.(265lb)(4*30kg.lc)0.060kg.(0.132lb)0.030kg.(0.066lb)0.015kg.(0.033lb) TE67WBFKXXXXXX0-150kg.(331lb)(3*50kg.lc)0.087kg.(0.191lb)0.043kg.(0.095lb)0.022kg.(0.048lb) TE67WBGKXXXXXX0-200kg.(441lb)(4*50kg.lc)0.100kg.(0.220lb)0.050kg.(0.110lb)0.025kg.(0.055lb) TE67WBIXXXXXXXX0-300kg.(661lb)(3*100kg.lc)0.173kg.(0.382lb)0.087kg.(0.191lb)0.043kg.(0.095lb) TE67WBJXXXXXXXX0-400kg.(882lb)(14*100kg.lc)0.200kg.(0.441lb)0.100kg.(0.220lb)0.050kg.(0.110lb) TE67WBNKXXXXXX0-450kg.(992lb)(3*150kg.lc)0.260kg.(0.573lb)0.130kg.(0.211lb)0,065kg.(0.143lb) TE67WBOXXXXXXX0-600kg.(1323lb)(4*150kg lc)0.300kg.(0.661lb)0.150kg.(0.331lb)0.075kg.(0.165lb) TE67WBPXXXXXXX0-750kg.(1653lb)(3*250kg lc)0.433kg.(0.955lb)0.217kg.(0.477lb)0.108kg.(0.239lb) TE67WBLXXXXXXX0-1000kg.(2205lb)(4*250kg lc)0.500kg.(1.102lb)0.250kg.(0.551lb)0.125kg.(0.276lb) TE67WBSXXXXXXX0-1500kg.(3307lb)(3*500kg.lc)0.866kg.(1.909lb)0.433kg.(0.955lb)0,217kg.(0.477lb) TE67WBTXXXXXXX0-2000kg.(4409lb)(4*500kg.lc) 1.000kg.(2.205lb)0.500kg.(1.102lb)0.250kg.(0.551lb) TE67WBUKXXXXXX0-3000kg.(6614lb)(3*1000kg.lc) 1.732kg.(3.819lb)0.866kg.(1.909lb)N/ATE67WBVXXXXXXX0-4000kg.(8818lb)(4*1000kg.lc) 2.000kg.(4,409lb) 1.000kg.(2.205lb)N/ANote:All calculations are the theoretical worst case accuracy that can be obtained with the Alfa laval weighing system solutions.The presented data It is solely for Informational purpose,all real life accuracies is highly dependable of proper weighing system installationAlfa Laval reserves the right to change specifications without prior notification.How to contact Alfa Laval Contact details for all countriesare continually updated on our website.Please visit to access the information direct.A l f a L a v a l i s a t r a d e m a r k r e g i s t e r e d a n d o w n e d b y A l f a L a v a l C o r p o r a t e AB . 100001495e n 1906。
巴特沃斯滤波器的幅度平方函数matlab
巴特沃斯滤波器的幅度平方函数matlab巴特沃斯滤波器是一种常用的模拟滤波器,可以对信号进行频率调整和抑制杂波。
它具有平滑的幅频特性和陡峭的截止特性,因此在信号处理和通信系统中得到了广泛应用。
巴特沃斯滤波器的幅度平方函数是指滤波器的幅度响应的平方,即输出信号的幅度与输入信号的幅度之比的平方。
幅度平方函数描述了滤波器对不同频率的输入信号的响应程度。
在matlab中,可以通过使用butter函数来设计巴特沃斯滤波器,并通过freqz函数绘制滤波器的幅度响应图。
首先,我们需要了解一些基本的滤波器设计概念。
巴特沃斯滤波器的设计基于两个重要参数:截止频率和阶数。
截止频率是指滤波器开始对输入信号进行抑制的频率,而阶数则决定了滤波器的衰减速度。
较高的阶数意味着在截止频率附近具有更陡峭的幅频特性。
在matlab中,我们可以使用butter函数来设计巴特沃斯滤波器。
该函数的语法为:[b, a] = butter(n, Wn, 'type')其中,n表示滤波器的阶数,Wn是一个长度为2的数组,用于指定滤波器的截止频率(以正规化频率表示)。
'type'参数用于指定滤波器类型,包括:- 'low':低通滤波器- 'high':高通滤波器- 'bandpass':带通滤波器- 'stop':带阻滤波器在设计完成滤波器后,我们可以使用freqz函数来计算滤波器的幅度响应。
该函数的语法为:[h, w] = freqz(b, a, n)其中,b和a是巴特沃斯滤波器的分子和分母多项式系数,n是计算频率响应的点数。
该函数将返回频率响应的复数值h和对应的频率w。
我们可以通过以下步骤在matlab中设计和绘制巴特沃斯滤波器的幅度响应:1.选择滤波器类型和参数:确定需要设计的滤波器的类型(低通、高通、带通或带阻)以及截止频率和阶数。
2.设计滤波器:使用butter函数根据选择的参数设计巴特沃斯滤波器。
genesis2000 cinfiguration参数
genesis2000 cinfiguration参数Genesis 2000 Configuration ParametersGenesis 2000 is a powerful software tool used for circuit simulation and analysis. In order to properly utilize this tool, it is essential to understand and utilize the various configuration parameters available. This article will provide an in-depth discussion of the Genesis 2000 configuration parameters and their significance in circuit design and analysis.1. Simulation TypeThe simulation type parameter in the Genesis 2000 configuration determines the type of analysis to be performed. This parameter offers various options, including DC, AC, transient, and small-signal analysis. The selection of the simulation type depends on the specific requirements of the circuit and the desired analysis outcomes.2. Time StepThe time step configuration parameter is crucial in transient analysis. It determines the interval at which the simulation progresses in time. Selecting an appropriate time step size is vital to accurately capture the behavior of the circuit over time. A smaller time step ensures better accuracy but increases the computational time required for simulation.3. Convergence CriteriaThe convergence criteria parameter ensures that the simulation results have reached a stable solution. It specifies the tolerance level for various circuit parameters, such as node voltages, currents, and devicecharacteristics, that must be met for the simulation to be considered converged. By setting appropriate convergence criteria, accurate and reliable simulation results can be obtained.4. Model ParametersGenesis 2000 allows the customization of device models by modifying specific model parameters. These parameters include transistor geometry, material properties, parasitic capacitances, and resistances. Adjusting these parameters enables designers to fine-tune device behavior and optimize circuit performance.5. Output OptionsThe configuration parameters also include options for defining the desired output from the simulation. These options may include waveform plots, voltage and current tables, and statistical data. By selecting the appropriate output options, designers can extract valuable information about circuit performance, identify potential issues, and make informed design decisions.6. Error ReportingThe error reporting configuration parameter enables users to control the level of detail in error messages generated during simulation. By choosing the appropriate error reporting setting, users can efficiently debug their circuit designs by identifying and resolving any issues or inconsistencies.7. Device LibrariesGenesis 2000 supports a wide range of device libraries, including MOSFETs, BJTs, diodes, and passive components. Configuration parameters allow designers to specify the desired device models and libraries to be used in the circuit simulation. This flexibility ensures accurate representation of different device characteristics and behavior during analysis.8. Optimization ParametersGenesis 2000 offers optimization capabilities to improve circuit performance. Configuration parameters allow designers to define optimization goals, such as maximizing gain or minimizing power consumption, as well as constraints on component values. These parameters enable automated optimization algorithms to refine circuit parameters and achieve desired performance objectives.In conclusion, understanding and utilizing the Genesis 2000 configuration parameters is essential for successful circuit simulation and analysis. By properly configuring simulation type, time step, convergence criteria, model parameters, output options, error reporting, device libraries, and optimization parameters, designers can accurately analyze circuit behavior, identify design issues, and optimize circuit performance. The availability of such parameters in Genesis 2000 enhances the efficiency and effectiveness of the circuit design process.。
Indradrive 系列 故障代码
Error MessagesF9001 Error internal function call.F9002 Error internal RTOS function callF9003 WatchdogF9004 Hardware trapF8000 Fatal hardware errorF8010 Autom. commutation: Max. motion range when moving back F8011 Commutation offset could not be determinedF8012 Autom. commutation: Max. motion rangeF8013 Automatic commutation: Current too lowF8014 Automatic commutation: OvercurrentF8015 Automatic commutation: TimeoutF8016 Automatic commutation: Iteration without resultF8017 Automatic commutation: Incorrect commutation adjustment F8018 Device overtemperature shutdownF8022 Enc. 1: Enc. signals incorr. (can be cleared in ph. 2) F8023 Error mechanical link of encoder or motor connectionF8025 Overvoltage in power sectionF8027 Safe torque off while drive enabledF8028 Overcurrent in power sectionF8030 Safe stop 1 while drive enabledF8042 Encoder 2 error: Signal amplitude incorrectF8057 Device overload shutdownF8060 Overcurrent in power sectionF8064 Interruption of motor phaseF8067 Synchronization PWM-Timer wrongF8069 +/-15Volt DC errorF8070 +24Volt DC errorF8076 Error in error angle loopF8078 Speed loop error.F8079 Velocity limit value exceededF8091 Power section defectiveF8100 Error when initializing the parameter handlingF8102 Error when initializing power sectionF8118 Invalid power section/firmware combinationF8120 Invalid control section/firmware combinationF8122 Control section defectiveF8129 Incorrect optional module firmwareF8130 Firmware of option 2 of safety technology defectiveF8133 Error when checking interrupting circuitsF8134 SBS: Fatal errorF8135 SMD: Velocity exceededF8140 Fatal CCD error.F8201 Safety command for basic initialization incorrectF8203 Safety technology configuration parameter invalidF8813 Connection error mains chokeF8830 Power section errorF8838 Overcurrent external braking resistorF7010 Safely-limited increment exceededF7011 Safely-monitored position, exceeded in pos. DirectionF7012 Safely-monitored position, exceeded in neg. DirectionF7013 Safely-limited speed exceededF7020 Safe maximum speed exceededF7021 Safely-limited position exceededF7030 Position window Safe stop 2 exceededF7031 Incorrect direction of motionF7040 Validation error parameterized - effective thresholdF7041 Actual position value validation errorF7042 Validation error of safe operation modeF7043 Error of output stage interlockF7050 Time for stopping process exceeded8.3.15 F7051 Safely-monitored deceleration exceeded (159)8.4 Travel Range Errors (F6xxx) (161)8.4.1 Behavior in the Case of Travel Range Errors (161)8.4.2 F6010 PLC Runtime Error (162)8.4.3 F6024 Maximum braking time exceeded (163)8.4.4 F6028 Position limit value exceeded (overflow) (164)8.4.5 F6029 Positive position limit exceeded (164)8.4.6 F6030 Negative position limit exceeded (165)8.4.7 F6034 Emergency-Stop (166)8.4.8 F6042 Both travel range limit switches activated (167)8.4.9 F6043 Positive travel range limit switch activated (167)8.4.10 F6044 Negative travel range limit switch activated (168)8.4.11 F6140 CCD slave error (emergency halt) (169)8.5 Interface Errors (F4xxx) (169)8.5.1 Behavior in the Case of Interface Errors (169)8.5.2 F4001 Sync telegram failure (170)8.5.3 F4002 RTD telegram failure (171)8.5.4 F4003 Invalid communication phase shutdown (172)8.5.5 F4004 Error during phase progression (172)8.5.6 F4005 Error during phase regression (173)8.5.7 F4006 Phase switching without ready signal (173)8.5.8 F4009 Bus failure (173)8.5.9 F4012 Incorrect I/O length (175)8.5.10 F4016 PLC double real-time channel failure (176)8.5.11 F4017 S-III: Incorrect sequence during phase switch (176)8.5.12 F4034 Emergency-Stop (177)8.5.13 F4140 CCD communication error (178)8.6 Non-Fatal Safety Technology Errors (F3xxx) (178)8.6.1 Behavior in the Case of Non-Fatal Safety Technology Errors (178)8.6.2 F3111 Refer. missing when selecting safety related end pos (179)8.6.3 F3112 Safe reference missing (179)8.6.4 F3115 Brake check time interval exceeded (181)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand ControlsI Bosch Rexroth AG VII/XXIITable of ContentsPage8.6.5 F3116 Nominal load torque of holding system exceeded (182)8.6.6 F3117 Actual position values validation error (182)8.6.7 F3122 SBS: System error (183)8.6.8 F3123 SBS: Brake check missing (184)8.6.9 F3130 Error when checking input signals (185)8.6.10 F3131 Error when checking acknowledgment signal (185)8.6.11 F3132 Error when checking diagnostic output signal (186)8.6.12 F3133 Error when checking interrupting circuits (187)8.6.13 F3134 Dynamization time interval incorrect (188)8.6.14 F3135 Dynamization pulse width incorrect (189)8.6.15 F3140 Safety parameters validation error (192)8.6.16 F3141 Selection validation error (192)8.6.17 F3142 Activation time of enabling control exceeded (193)8.6.18 F3143 Safety command for clearing errors incorrect (194)8.6.19 F3144 Incorrect safety configuration (195)8.6.20 F3145 Error when unlocking the safety door (196)8.6.21 F3146 System error channel 2 (197)8.6.22 F3147 System error channel 1 (198)8.6.23 F3150 Safety command for system start incorrect (199)8.6.24 F3151 Safety command for system halt incorrect (200)8.6.25 F3152 Incorrect backup of safety technology data (201)8.6.26 F3160 Communication error of safe communication (202)8.7 Non-Fatal Errors (F2xxx) (202)8.7.1 Behavior in the Case of Non-Fatal Errors (202)8.7.2 F2002 Encoder assignment not allowed for synchronization (203)8.7.3 F2003 Motion step skipped (203)8.7.4 F2004 Error in MotionProfile (204)8.7.5 F2005 Cam table invalid (205)8.7.6 F2006 MMC was removed (206)8.7.7 F2007 Switching to non-initialized operation mode (206)8.7.8 F2008 RL The motor type has changed (207)8.7.9 F2009 PL Load parameter default values (208)8.7.10 F2010 Error when initializing digital I/O (-> S-0-0423) (209)8.7.11 F2011 PLC - Error no. 1 (210)8.7.12 F2012 PLC - Error no. 2 (210)8.7.13 F2013 PLC - Error no. 3 (211)8.7.14 F2014 PLC - Error no. 4 (211)8.7.15 F2018 Device overtemperature shutdown (211)8.7.16 F2019 Motor overtemperature shutdown (212)8.7.17 F2021 Motor temperature monitor defective (213)8.7.18 F2022 Device temperature monitor defective (214)8.7.19 F2025 Drive not ready for control (214)8.7.20 F2026 Undervoltage in power section (215)8.7.21 F2027 Excessive oscillation in DC bus (216)8.7.22 F2028 Excessive deviation (216)8.7.23 F2031 Encoder 1 error: Signal amplitude incorrect (217)VIII/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage8.7.24 F2032 Validation error during commutation fine adjustment (217)8.7.25 F2033 External power supply X10 error (218)8.7.26 F2036 Excessive position feedback difference (219)8.7.27 F2037 Excessive position command difference (220)8.7.28 F2039 Maximum acceleration exceeded (220)8.7.29 F2040 Device overtemperature 2 shutdown (221)8.7.30 F2042 Encoder 2: Encoder signals incorrect (222)8.7.31 F2043 Measuring encoder: Encoder signals incorrect (222)8.7.32 F2044 External power supply X15 error (223)8.7.33 F2048 Low battery voltage (224)8.7.34 F2050 Overflow of target position preset memory (225)8.7.35 F2051 No sequential block in target position preset memory (225)8.7.36 F2053 Incr. encoder emulator: Pulse frequency too high (226)8.7.37 F2054 Incr. encoder emulator: Hardware error (226)8.7.38 F2055 External power supply dig. I/O error (227)8.7.39 F2057 Target position out of travel range (227)8.7.40 F2058 Internal overflow by positioning input (228)8.7.41 F2059 Incorrect command value direction when positioning (229)8.7.42 F2063 Internal overflow master axis generator (230)8.7.43 F2064 Incorrect cmd value direction master axis generator (230)8.7.44 F2067 Synchronization to master communication incorrect (231)8.7.45 F2068 Brake error (231)8.7.46 F2069 Error when releasing the motor holding brake (232)8.7.47 F2074 Actual pos. value 1 outside absolute encoder window (232)8.7.48 F2075 Actual pos. value 2 outside absolute encoder window (233)8.7.49 F2076 Actual pos. value 3 outside absolute encoder window (234)8.7.50 F2077 Current measurement trim wrong (235)8.7.51 F2086 Error supply module (236)8.7.52 F2087 Module group communication error (236)8.7.53 F2100 Incorrect access to command value memory (237)8.7.54 F2101 It was impossible to address MMC (237)8.7.55 F2102 It was impossible to address I2C memory (238)8.7.56 F2103 It was impossible to address EnDat memory (238)8.7.57 F2104 Commutation offset invalid (239)8.7.58 F2105 It was impossible to address Hiperface memory (239)8.7.59 F2110 Error in non-cyclical data communic. of power section (240)8.7.60 F2120 MMC: Defective or missing, replace (240)8.7.61 F2121 MMC: Incorrect data or file, create correctly (241)8.7.62 F2122 MMC: Incorrect IBF file, correct it (241)8.7.63 F2123 Retain data backup impossible (242)8.7.64 F2124 MMC: Saving too slowly, replace (243)8.7.65 F2130 Error comfort control panel (243)8.7.66 F2140 CCD slave error (243)8.7.67 F2150 MLD motion function block error (244)8.7.68 F2174 Loss of motor encoder reference (244)8.7.69 F2175 Loss of optional encoder reference (245)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG IX/XXIITable of ContentsPage8.7.70 F2176 Loss of measuring encoder reference (246)8.7.71 F2177 Modulo limitation error of motor encoder (246)8.7.72 F2178 Modulo limitation error of optional encoder (247)8.7.73 F2179 Modulo limitation error of measuring encoder (247)8.7.74 F2190 Incorrect Ethernet configuration (248)8.7.75 F2260 Command current limit shutoff (249)8.7.76 F2270 Analog input 1 or 2, wire break (249)8.7.77 F2802 PLL is not synchronized (250)8.7.78 F2814 Undervoltage in mains (250)8.7.79 F2815 Overvoltage in mains (251)8.7.80 F2816 Softstart fault power supply unit (251)8.7.81 F2817 Overvoltage in power section (251)8.7.82 F2818 Phase failure (252)8.7.83 F2819 Mains failure (253)8.7.84 F2820 Braking resistor overload (253)8.7.85 F2821 Error in control of braking resistor (254)8.7.86 F2825 Switch-on threshold braking resistor too low (255)8.7.87 F2833 Ground fault in motor line (255)8.7.88 F2834 Contactor control error (256)8.7.89 F2835 Mains contactor wiring error (256)8.7.90 F2836 DC bus balancing monitor error (257)8.7.91 F2837 Contactor monitoring error (257)8.7.92 F2840 Error supply shutdown (257)8.7.93 F2860 Overcurrent in mains-side power section (258)8.7.94 F2890 Invalid device code (259)8.7.95 F2891 Incorrect interrupt timing (259)8.7.96 F2892 Hardware variant not supported (259)8.8 SERCOS Error Codes / Error Messages of Serial Communication (259)9 Warnings (Exxxx) (263)9.1 Fatal Warnings (E8xxx) (263)9.1.1 Behavior in the Case of Fatal Warnings (263)9.1.2 E8025 Overvoltage in power section (263)9.1.3 E8026 Undervoltage in power section (264)9.1.4 E8027 Safe torque off while drive enabled (265)9.1.5 E8028 Overcurrent in power section (265)9.1.6 E8029 Positive position limit exceeded (266)9.1.7 E8030 Negative position limit exceeded (267)9.1.8 E8034 Emergency-Stop (268)9.1.9 E8040 Torque/force actual value limit active (268)9.1.10 E8041 Current limit active (269)9.1.11 E8042 Both travel range limit switches activated (269)9.1.12 E8043 Positive travel range limit switch activated (270)9.1.13 E8044 Negative travel range limit switch activated (271)9.1.14 E8055 Motor overload, current limit active (271)9.1.15 E8057 Device overload, current limit active (272)X/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage9.1.16 E8058 Drive system not ready for operation (273)9.1.17 E8260 Torque/force command value limit active (273)9.1.18 E8802 PLL is not synchronized (274)9.1.19 E8814 Undervoltage in mains (275)9.1.20 E8815 Overvoltage in mains (275)9.1.21 E8818 Phase failure (276)9.1.22 E8819 Mains failure (276)9.2 Warnings of Category E4xxx (277)9.2.1 E4001 Double MST failure shutdown (277)9.2.2 E4002 Double MDT failure shutdown (278)9.2.3 E4005 No command value input via master communication (279)9.2.4 E4007 SERCOS III: Consumer connection failed (280)9.2.5 E4008 Invalid addressing command value data container A (280)9.2.6 E4009 Invalid addressing actual value data container A (281)9.2.7 E4010 Slave not scanned or address 0 (281)9.2.8 E4012 Maximum number of CCD slaves exceeded (282)9.2.9 E4013 Incorrect CCD addressing (282)9.2.10 E4014 Incorrect phase switch of CCD slaves (283)9.3 Possible Warnings When Operating Safety Technology (E3xxx) (283)9.3.1 Behavior in Case a Safety Technology Warning Occurs (283)9.3.2 E3100 Error when checking input signals (284)9.3.3 E3101 Error when checking acknowledgment signal (284)9.3.4 E3102 Actual position values validation error (285)9.3.5 E3103 Dynamization failed (285)9.3.6 E3104 Safety parameters validation error (286)9.3.7 E3105 Validation error of safe operation mode (286)9.3.8 E3106 System error safety technology (287)9.3.9 E3107 Safe reference missing (287)9.3.10 E3108 Safely-monitored deceleration exceeded (288)9.3.11 E3110 Time interval of forced dynamization exceeded (289)9.3.12 E3115 Prewarning, end of brake check time interval (289)9.3.13 E3116 Nominal load torque of holding system reached (290)9.4 Non-Fatal Warnings (E2xxx) (290)9.4.1 Behavior in Case a Non-Fatal Warning Occurs (290)9.4.2 E2010 Position control with encoder 2 not possible (291)9.4.3 E2011 PLC - Warning no. 1 (291)9.4.4 E2012 PLC - Warning no. 2 (291)9.4.5 E2013 PLC - Warning no. 3 (292)9.4.6 E2014 PLC - Warning no. 4 (292)9.4.7 E2021 Motor temperature outside of measuring range (292)9.4.8 E2026 Undervoltage in power section (293)9.4.9 E2040 Device overtemperature 2 prewarning (294)9.4.10 E2047 Interpolation velocity = 0 (294)9.4.11 E2048 Interpolation acceleration = 0 (295)9.4.12 E2049 Positioning velocity >= limit value (296)9.4.13 E2050 Device overtemp. Prewarning (297)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG XI/XXIITable of ContentsPage9.4.14 E2051 Motor overtemp. prewarning (298)9.4.15 E2053 Target position out of travel range (298)9.4.16 E2054 Not homed (300)9.4.17 E2055 Feedrate override S-0-0108 = 0 (300)9.4.18 E2056 Torque limit = 0 (301)9.4.19 E2058 Selected positioning block has not been programmed (302)9.4.20 E2059 Velocity command value limit active (302)9.4.21 E2061 Device overload prewarning (303)9.4.22 E2063 Velocity command value > limit value (304)9.4.23 E2064 Target position out of num. range (304)9.4.24 E2069 Holding brake torque too low (305)9.4.25 E2070 Acceleration limit active (306)9.4.26 E2074 Encoder 1: Encoder signals disturbed (306)9.4.27 E2075 Encoder 2: Encoder signals disturbed (307)9.4.28 E2076 Measuring encoder: Encoder signals disturbed (308)9.4.29 E2077 Absolute encoder monitoring, motor encoder (encoder alarm) (308)9.4.30 E2078 Absolute encoder monitoring, opt. encoder (encoder alarm) (309)9.4.31 E2079 Absolute enc. monitoring, measuring encoder (encoder alarm) (309)9.4.32 E2086 Prewarning supply module overload (310)9.4.33 E2092 Internal synchronization defective (310)9.4.34 E2100 Positioning velocity of master axis generator too high (311)9.4.35 E2101 Acceleration of master axis generator is zero (312)9.4.36 E2140 CCD error at node (312)9.4.37 E2270 Analog input 1 or 2, wire break (312)9.4.38 E2802 HW control of braking resistor (313)9.4.39 E2810 Drive system not ready for operation (314)9.4.40 E2814 Undervoltage in mains (314)9.4.41 E2816 Undervoltage in power section (314)9.4.42 E2818 Phase failure (315)9.4.43 E2819 Mains failure (315)9.4.44 E2820 Braking resistor overload prewarning (316)9.4.45 E2829 Not ready for power on (316)。
Glider Flying Handbook说明书
Glider Flying Handbook2013U.S. Department of TransportationFEDERAL AVIATION ADMINISTRATIONFlight Standards Servicei iPrefaceThe Glider Flying Handbook is designed as a technical manual for applicants who are preparing for glider category rating and for currently certificated glider pilots who wish to improve their knowledge. Certificated flight instructors will find this handbook a valuable training aid, since detailed coverage of aeronautical decision-making, components and systems, aerodynamics, flight instruments, performance limitations, ground operations, flight maneuvers, traffic patterns, emergencies, soaring weather, soaring techniques, and cross-country flight is included. Topics such as radio navigation and communication, use of flight information publications, and regulations are available in other Federal Aviation Administration (FAA) publications.The discussion and explanations reflect the most commonly used practices and principles. Occasionally, the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). Persons working towards a glider rating are advised to review the references from the applicable practical test standards (FAA-G-8082-4, Sport Pilot and Flight Instructor with a Sport Pilot Rating Knowledge Test Guide, FAA-G-8082-5, Commercial Pilot Knowledge Test Guide, and FAA-G-8082-17, Recreational Pilot and Private Pilot Knowledge Test Guide). Resources for study include FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8083-2, Risk Management Handbook, and Advisory Circular (AC) 00-6, Aviation Weather For Pilots and Flight Operations Personnel, AC 00-45, Aviation Weather Services, as these documents contain basic material not duplicated herein. All beginning applicants should refer to FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, for study and basic library reference.It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at . The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from .This handbook supersedes FAA-H-8083-13, Glider Flying Handbook, dated 2003. Always select the latest edition of any publication and check the website for errata pages and listing of changes to FAA educational publications developed by the FAA’s Airman Testing Standards Branch, AFS-630.This handbook is available for download, in PDF format, from .This handbook is published by the United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, AFS-630, P.O. Box 25082, Oklahoma City, OK 73125.Comments regarding this publication should be sent, in email form, to the following address:********************************************John M. AllenDirector, Flight Standards Serviceiiii vAcknowledgmentsThe Glider Flying Handbook was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America (SRCA). The FAA wishes to acknowledge the following contributors: Sue Telford of Telford Fishing & Hunting Services for images used in Chapter 1JerryZieba () for images used in Chapter 2Tim Mara () for images used in Chapters 2 and 12Uli Kremer of Alexander Schleicher GmbH & Co for images used in Chapter 2Richard Lancaster () for images and content used in Chapter 3Dave Nadler of Nadler & Associates for images used in Chapter 6Dave McConeghey for images used in Chapter 6John Brandon (www.raa.asn.au) for images and content used in Chapter 7Patrick Panzera () for images used in Chapter 8Jeff Haby (www.theweatherprediction) for images used in Chapter 8National Soaring Museum () for content used in Chapter 9Bill Elliot () for images used in Chapter 12.Tiffany Fidler for images used in Chapter 12.Additional appreciation is extended to the Soaring Society of America, Inc. (), the Soaring Safety Foundation, and Mr. Brad Temeyer and Mr. Bill Martin from the National Oceanic and Atmospheric Administration (NOAA) for their technical support and input.vv iPreface (iii)Acknowledgments (v)Table of Contents (vii)Chapter 1Gliders and Sailplanes ........................................1-1 Introduction....................................................................1-1 Gliders—The Early Years ..............................................1-2 Glider or Sailplane? .......................................................1-3 Glider Pilot Schools ......................................................1-4 14 CFR Part 141 Pilot Schools ...................................1-5 14 CFR Part 61 Instruction ........................................1-5 Glider Certificate Eligibility Requirements ...................1-5 Common Glider Concepts ..............................................1-6 Terminology...............................................................1-6 Converting Metric Distance to Feet ...........................1-6 Chapter 2Components and Systems .................................2-1 Introduction....................................................................2-1 Glider Design .................................................................2-2 The Fuselage ..................................................................2-4 Wings and Components .............................................2-4 Lift/Drag Devices ...........................................................2-5 Empennage .....................................................................2-6 Towhook Devices .......................................................2-7 Powerplant .....................................................................2-7 Self-Launching Gliders .............................................2-7 Sustainer Engines .......................................................2-8 Landing Gear .................................................................2-8 Wheel Brakes .............................................................2-8 Chapter 3Aerodynamics of Flight .......................................3-1 Introduction....................................................................3-1 Forces of Flight..............................................................3-2 Newton’s Third Law of Motion .................................3-2 Lift ..............................................................................3-2The Effects of Drag on a Glider .....................................3-3 Parasite Drag ..............................................................3-3 Form Drag ...............................................................3-3 Skin Friction Drag ..................................................3-3 Interference Drag ....................................................3-5 Total Drag...................................................................3-6 Wing Planform ...........................................................3-6 Elliptical Wing ........................................................3-6 Rectangular Wing ...................................................3-7 Tapered Wing .........................................................3-7 Swept-Forward Wing ..............................................3-7 Washout ..................................................................3-7 Glide Ratio .................................................................3-8 Aspect Ratio ............................................................3-9 Weight ........................................................................3-9 Thrust .........................................................................3-9 Three Axes of Rotation ..................................................3-9 Stability ........................................................................3-10 Flutter .......................................................................3-11 Lateral Stability ........................................................3-12 Turning Flight ..............................................................3-13 Load Factors .................................................................3-13 Radius of Turn ..........................................................3-14 Turn Coordination ....................................................3-15 Slips ..........................................................................3-15 Forward Slip .........................................................3-16 Sideslip .................................................................3-17 Spins .........................................................................3-17 Ground Effect ...............................................................3-19 Chapter 4Flight Instruments ...............................................4-1 Introduction....................................................................4-1 Pitot-Static Instruments ..................................................4-2 Impact and Static Pressure Lines................................4-2 Airspeed Indicator ......................................................4-2 The Effects of Altitude on the AirspeedIndicator..................................................................4-3 Types of Airspeed ...................................................4-3Table of ContentsviiAirspeed Indicator Markings ......................................4-5 Other Airspeed Limitations ........................................4-6 Altimeter .....................................................................4-6 Principles of Operation ...........................................4-6 Effect of Nonstandard Pressure andTemperature............................................................4-7 Setting the Altimeter (Kollsman Window) .............4-9 Types of Altitude ......................................................4-10 Variometer................................................................4-11 Total Energy System .............................................4-14 Netto .....................................................................4-14 Electronic Flight Computers ....................................4-15 Magnetic Compass .......................................................4-16 Yaw String ................................................................4-16 Inclinometer..............................................................4-16 Gyroscopic Instruments ...............................................4-17 G-Meter ........................................................................4-17 FLARM Collision Avoidance System .........................4-18 Chapter 5Glider Performance .............................................5-1 Introduction....................................................................5-1 Factors Affecting Performance ......................................5-2 High and Low Density Altitude Conditions ...........5-2 Atmospheric Pressure .............................................5-2 Altitude ...................................................................5-3 Temperature............................................................5-3 Wind ...........................................................................5-3 Weight ........................................................................5-5 Rate of Climb .................................................................5-7 Flight Manuals and Placards ..........................................5-8 Placards ......................................................................5-8 Performance Information ...........................................5-8 Glider Polars ...............................................................5-8 Weight and Balance Information .............................5-10 Limitations ...............................................................5-10 Weight and Balance .....................................................5-12 Center of Gravity ......................................................5-12 Problems Associated With CG Forward ofForward Limit .......................................................5-12 Problems Associated With CG Aft of Aft Limit ..5-13 Sample Weight and Balance Problems ....................5-13 Ballast ..........................................................................5-14 Chapter 6Preflight and Ground Operations .......................6-1 Introduction....................................................................6-1 Assembly and Storage Techniques ................................6-2 Trailering....................................................................6-3 Tiedown and Securing ................................................6-4Water Ballast ..............................................................6-4 Ground Handling........................................................6-4 Launch Equipment Inspection ....................................6-5 Glider Preflight Inspection .........................................6-6 Prelaunch Checklist ....................................................6-7 Glider Care .....................................................................6-7 Preventive Maintenance .............................................6-8 Chapter 7Launch and Recovery Procedures and Flight Maneuvers ............................................................7-1 Introduction....................................................................7-1 Aerotow Takeoff Procedures .........................................7-2 Signals ........................................................................7-2 Prelaunch Signals ....................................................7-2 Inflight Signals ........................................................7-3 Takeoff Procedures and Techniques ..........................7-3 Normal Assisted Takeoff............................................7-4 Unassisted Takeoff.....................................................7-5 Crosswind Takeoff .....................................................7-5 Assisted ...................................................................7-5 Unassisted...............................................................7-6 Aerotow Climb-Out ....................................................7-6 Aerotow Release.........................................................7-8 Slack Line ...................................................................7-9 Boxing the Wake ......................................................7-10 Ground Launch Takeoff Procedures ............................7-11 CG Hooks .................................................................7-11 Signals ......................................................................7-11 Prelaunch Signals (Winch/Automobile) ...............7-11 Inflight Signals ......................................................7-12 Tow Speeds ..............................................................7-12 Automobile Launch ..................................................7-14 Crosswind Takeoff and Climb .................................7-14 Normal Into-the-Wind Launch .................................7-15 Climb-Out and Release Procedures ..........................7-16 Self-Launch Takeoff Procedures ..............................7-17 Preparation and Engine Start ....................................7-17 Taxiing .....................................................................7-18 Pretakeoff Check ......................................................7-18 Normal Takeoff ........................................................7-19 Crosswind Takeoff ...................................................7-19 Climb-Out and Shutdown Procedures ......................7-19 Landing .....................................................................7-21 Gliderport/Airport Traffic Patterns and Operations .....7-22 Normal Approach and Landing ................................7-22 Crosswind Landing ..................................................7-25 Slips ..........................................................................7-25 Downwind Landing ..................................................7-27 After Landing and Securing .....................................7-27viiiPerformance Maneuvers ..............................................7-27 Straight Glides ..........................................................7-27 Turns.........................................................................7-28 Roll-In ...................................................................7-29 Roll-Out ................................................................7-30 Steep Turns ...........................................................7-31 Maneuvering at Minimum Controllable Airspeed ...7-31 Stall Recognition and Recovery ...............................7-32 Secondary Stalls ....................................................7-34 Accelerated Stalls .................................................7-34 Crossed-Control Stalls ..........................................7-35 Operating Airspeeds .....................................................7-36 Minimum Sink Airspeed ..........................................7-36 Best Glide Airspeed..................................................7-37 Speed to Fly ..............................................................7-37 Chapter 8Abnormal and Emergency Procedures .............8-1 Introduction....................................................................8-1 Porpoising ......................................................................8-2 Pilot-Induced Oscillations (PIOs) ..............................8-2 PIOs During Launch ...................................................8-2 Factors Influencing PIOs ........................................8-2 Improper Elevator Trim Setting ..............................8-3 Improper Wing Flaps Setting ..................................8-3 Pilot-Induced Roll Oscillations During Launch .........8-3 Pilot-Induced Yaw Oscillations During Launch ........8-4 Gust-Induced Oscillations ..............................................8-5 Vertical Gusts During High-Speed Cruise .................8-5 Pilot-Induced Pitch Oscillations During Landing ......8-6 Glider-Induced Oscillations ...........................................8-6 Pitch Influence of the Glider Towhook Position ........8-6 Self-Launching Glider Oscillations During Powered Flight ...........................................................8-7 Nosewheel Glider Oscillations During Launchesand Landings ..............................................................8-7 Tailwheel/Tailskid Equipped Glider Oscillations During Launches and Landings ..................................8-8 Aerotow Abnormal and Emergency Procedures ............8-8 Abnormal Procedures .................................................8-8 Towing Failures........................................................8-10 Tow Failure With Runway To Land and Stop ......8-11 Tow Failure Without Runway To Land BelowReturning Altitude ................................................8-11 Tow Failure Above Return to Runway Altitude ...8-11 Tow Failure Above 800' AGL ..............................8-12 Tow Failure Above Traffic Pattern Altitude .........8-13 Slack Line .................................................................8-13 Ground Launch Abnormal and Emergency Procedures ....................................................................8-14 Abnormal Procedures ...............................................8-14 Emergency Procedures .............................................8-14 Self-Launch Takeoff Emergency Procedures ..............8-15 Emergency Procedures .............................................8-15 Spiral Dives ..................................................................8-15 Spins .............................................................................8-15 Entry Phase ...............................................................8-17 Incipient Phase .........................................................8-17 Developed Phase ......................................................8-17 Recovery Phase ........................................................8-17 Off-Field Landing Procedures .....................................8-18 Afterlanding Off Field .............................................8-20 Off-Field Landing Without Injury ........................8-20 Off-Field Landing With Injury .............................8-20 System and Equipment Malfunctions ..........................8-20 Flight Instrument Malfunctions ................................8-20 Airspeed Indicator Malfunctions ..........................8-21 Altimeter Malfunctions .........................................8-21 Variometer Malfunctions ......................................8-21 Compass Malfunctions .........................................8-21 Glider Canopy Malfunctions ....................................8-21 Broken Glider Canopy ..........................................8-22 Frosted Glider Canopy ..........................................8-22 Water Ballast Malfunctions ......................................8-22 Retractable Landing Gear Malfunctions ..................8-22 Primary Flight Control Systems ...............................8-22 Elevator Malfunctions ..........................................8-22 Aileron Malfunctions ............................................8-23 Rudder Malfunctions ............................................8-24 Secondary Flight Controls Systems .........................8-24 Elevator Trim Malfunctions .................................8-24 Spoiler/Dive Brake Malfunctions .........................8-24 Miscellaneous Flight System Malfunctions .................8-25 Towhook Malfunctions ............................................8-25 Oxygen System Malfunctions ..................................8-25 Drogue Chute Malfunctions .....................................8-25 Self-Launching Gliders ................................................8-26 Self-Launching/Sustainer Glider Engine Failure During Takeoff or Climb ..........................................8-26 Inability to Restart a Self-Launching/SustainerGlider Engine While Airborne .................................8-27 Self-Launching Glider Propeller Malfunctions ........8-27 Self-Launching Glider Electrical System Malfunctions .............................................................8-27 In-flight Fire .............................................................8-28 Emergency Equipment and Survival Gear ...................8-28 Survival Gear Checklists ..........................................8-28 Food and Water ........................................................8-28ixClothing ....................................................................8-28 Communication ........................................................8-29 Navigation Equipment ..............................................8-29 Medical Equipment ..................................................8-29 Stowage ....................................................................8-30 Parachute ..................................................................8-30 Oxygen System Malfunctions ..................................8-30 Accident Prevention .....................................................8-30 Chapter 9Soaring Weather ..................................................9-1 Introduction....................................................................9-1 The Atmosphere .............................................................9-2 Composition ...............................................................9-2 Properties ....................................................................9-2 Temperature............................................................9-2 Density ....................................................................9-2 Pressure ...................................................................9-2 Standard Atmosphere .................................................9-3 Layers of the Atmosphere ..........................................9-4 Scale of Weather Events ................................................9-4 Thermal Soaring Weather ..............................................9-6 Thermal Shape and Structure .....................................9-6 Atmospheric Stability .................................................9-7 Air Masses Conducive to Thermal Soaring ...................9-9 Cloud Streets ..............................................................9-9 Thermal Waves...........................................................9-9 Thunderstorms..........................................................9-10 Lifted Index ..........................................................9-12 K-Index .................................................................9-12 Weather for Slope Soaring .......................................9-14 Mechanism for Wave Formation ..............................9-16 Lift Due to Convergence ..........................................9-19 Obtaining Weather Information ...................................9-21 Preflight Weather Briefing........................................9-21 Weather-ReIated Information ..................................9-21 Interpreting Weather Charts, Reports, andForecasts ......................................................................9-23 Graphic Weather Charts ...........................................9-23 Winds and Temperatures Aloft Forecast ..............9-23 Composite Moisture Stability Chart .....................9-24 Chapter 10Soaring Techniques ..........................................10-1 Introduction..................................................................10-1 Thermal Soaring ...........................................................10-2 Locating Thermals ....................................................10-2 Cumulus Clouds ...................................................10-2 Other Indicators of Thermals ................................10-3 Wind .....................................................................10-4 The Big Picture .....................................................10-5Entering a Thermal ..............................................10-5 Inside a Thermal.......................................................10-6 Bank Angle ...........................................................10-6 Speed .....................................................................10-6 Centering ...............................................................10-7 Collision Avoidance ................................................10-9 Exiting a Thermal .....................................................10-9 Atypical Thermals ..................................................10-10 Ridge/Slope Soaring ..................................................10-10 Traps ......................................................................10-10 Procedures for Safe Flying .....................................10-12 Bowls and Spurs .....................................................10-13 Slope Lift ................................................................10-13 Obstructions ...........................................................10-14 Tips and Techniques ...............................................10-15 Wave Soaring .............................................................10-16 Preflight Preparation ...............................................10-17 Getting Into the Wave ............................................10-18 Flying in the Wave .................................................10-20 Soaring Convergence Zones ...................................10-23 Combined Sources of Updrafts ..............................10-24 Chapter 11Cross-Country Soaring .....................................11-1 Introduction..................................................................11-1 Flight Preparation and Planning ...................................11-2 Personal and Special Equipment ..................................11-3 Navigation ....................................................................11-5 Using the Plotter .......................................................11-5 A Sample Cross-Country Flight ...............................11-5 Navigation Using GPS .............................................11-8 Cross-Country Techniques ...........................................11-9 Soaring Faster and Farther .........................................11-11 Height Bands ..........................................................11-11 Tips and Techniques ...............................................11-12 Special Situations .......................................................11-14 Course Deviations ..................................................11-14 Lost Procedures ......................................................11-14 Cross-Country Flight in a Self-Launching Glider .....11-15 High-Performance Glider Operations and Considerations ............................................................11-16 Glider Complexity ..................................................11-16 Water Ballast ..........................................................11-17 Cross-Country Flight Using Other Lift Sources ........11-17 Chapter 12Towing ................................................................12-1 Introduction..................................................................12-1 Equipment Inspections and Operational Checks .........12-2 Tow Hook ................................................................12-2 Schweizer Tow Hook ...........................................12-2x。
SHGOPEN 2007经典战役回顾 新科状元的对决
SHGOPEN 2007经典战役回顾新科状元的对决
粥脂弱
【期刊名称】《电子竞技》
【年(卷),期】2007(000)006
【摘要】在刚刚结束的shgOpen 2007上,去年的ESWC和WCG两大新科世界
冠军MIBR和PGS会师决赛,不管最后结果如何,他们都再次向世人证明了他们的实力。
而这场火星撞地球的精彩对决也一定会吊起大家的胃口,实际上本场比赛也是
异常惨烈,比分呈交替上升状。
但做为以稳定和整体配合为特点的两支战队,他们的
比赛节奏也是十分之缓慢,同时没有什么新的打法和战术,完全就是在拼发挥和应变。
而这场发生在这两者之间的战斗则可以当作一场nuke标准打法的典型教材来使用,下面就让我们从整体的角度来观察一下整场比赛的走势:
【总页数】1页(P)
【作者】粥脂弱
【作者单位】
【正文语种】中文
【中图分类】G899
【相关文献】
1.经典回顾:冰封十大经典战役! [J],
2.SHGOPEN 2007经典战役回顾冷静冷静再冷静侦查侦查再侦查 [J], Beezilbub
3.DotA经典对决回顾——AOE流 [J], flyzy
4.四保一流 GL vs Nebula经典对决回顾 [J], 大熊猫
5.War3经典战役回顾 [J], 柳子
因版权原因,仅展示原文概要,查看原文内容请购买。
Sec15-复特征值分析解析
● INV
–
Inverse power逆幂法
● HESS –
Upper Hessenberg上海森伯格法
● CLAN –
Complex Lanczos复兰索斯法
NAS122, Section 15, August 2010 Copyright 2010 MSC.Software Corporation
S15-10
复特征值分析(续)
● 在Patran设置复特征值分析
NAS122, Section 15, August 2010 Copyright 2010 MSC.Software Corporation
S15-11
复特征值分析(续)
● 执行控制段
● 直接复特征值分析为SOL 107 ● 模态复特征值分析为SOL 110
● 模态法(SOL 110)用h集(即h-set,模态自由度和附加自 由度)的质量阵、阻尼阵和刚度阵来求解特征方程
NAS122, Section 15, August 2010 Copyright 2010 MSC.Software Corporation
S15-5
复特征值分析(续)
● MD Nastran有3种复特征值求解方法:
S15-6
复特征值分析(续)
INV逆幂法
● 与实特征值分析中的实INV方法相似
● [M]可以是奇异阵
● 用户必须在复平面中指定搜索区域
● 对于相当规模的模型,计算花销比较大,不容易得到结果
● 没有HESS法可靠
● 不推荐使用该方法
NAS122, Section 15, August 2010 Copyright 2010 MSC.Software Corporation
牛熊时空转换指标 -回复
牛熊时空转换指标-回复牛熊时空转换指标-NBC(Niu-Bear Conversion)是一种股市技术指标,用于帮助投资者判断市场是处于牛市阶段还是熊市阶段。
该指标的发明者认为,市场存在一种特殊的能量变换,当市场从牛市转向熊市时,这种能量会发生转换。
NBC指标通过计算市场的趋势和价格,识别市场的主导方向,并提供投资决策的重要参考。
NBC指标的计算非常简单,主要基于以下几个因素:1. 市场趋势:通过计算市场的涨跌动力指标(DMI)来判断趋势。
DMI 测量价格趋势的强度和方向,由正向动力指数(+DI)和负向动力指数(-DI)组成。
2. 价格变动:通过计算股价的相对强弱指数(RSI)来衡量价格的涨跌幅度。
RSI指标衡量价格在一段时间内的涨幅与跌幅的比例,判断价格的强度和反弹趋势。
NBC指标的具体计算公式如下:NBC = (+DI - -DI)/RSI在计算指标值时,如果结果大于零,则市场处于牛市状态;如果结果小于零,则市场处于熊市状态;如果结果接近零,则市场可能处于震荡或调整状态。
通过NBC指标,投资者可以更好地理解市场的涨跌动力和价格走势,从而做出更准确的投资决策。
下面将一步一步回答有关NBC指标的一些常见问题。
一、NBC指标的计算步骤:1. 首先,计算市场的动力指数(DI)。
DI由两个指标组成,即正向动力指数(+DI)和负向动力指数(-DI)。
计算方法如下:+DI = 当日最高价- 前一日最高价-DI = 前一日最低价- 当日最低价2. 然后,计算股价的相对强弱指数(RSI)。
RSI是衡量价格涨跌幅度的指标,计算方法如下:RSI = (当日收盘价- 前一日收盘价)/(前一日收盘价×100)3. 最后,通过计算NBC指标的值来判断市场处于牛市还是熊市状态:NBC = (+DI - -DI)/RSI二、如何判断牛市和熊市状态:通过NBC指标的计算结果,可以判断市场处于牛市、熊市还是震荡或调整状态。
MORNSUN B05_XT-2WR3 Series DC DC Converter Datashe
2W isolated DC-DC converterFixed input voltage,unregulated single outputPatent Protection RoHSFEATURES●Continuous short-circuit protection ●No-load input current as low as 8mA●Operating ambient temperature range:-40℃to+105℃●High efficiency up to 86%●Compact SMD package●I/O isolation test voltage 1.5k VDC●Industry standard pin-outB05_XT-2WR3series are designed for use in distributed power supply systems and especially suitable in applications such as pure digital circuits,low frequency analog circuits,relay-driven circuits and data switching circuits.Selection GuideCertificationPart No.Input Voltage (VDC)OutputFull Load Efficiency (%)Min./Typ.Capacitive Load(µF)Max.Nominal (Range)Voltage (VDC)Current(mA)Max./Min.--B0503XT-2WR35(4.5-5.5) 3.3400/4074/782400B0505XT-2WR35400/4080/842400B05X7XT-2WR37286/2980/841000B0509XT-2WR39222/2281/851000B0512XT-2WR312167/1781/85560B0515XT-2WR315133/1382/86560B0524XT-2WR32483/882/86220Input SpecificationsItemOperating ConditionsMin.Typ.Max.UnitInput Current(full load /no-load)5VDC input3.3VDC output--339/8357/--mA5VDC/7VDC output --477/8500/--9VDC/12VDC output --471/8494/--15VDC/24VDC output--466/8488/--Reflected Ripple Current*--15--Surge Voltage (1sec.max.)-0.7--9VDCInput Filter Capacitance filter Hot PlugUnavailableNote:*Reflected ripple current testing method please refer to DC-DC Converter Application Note for specific operation.Output SpecificationsItemOperating ConditionsMin.Typ.Max.UnitVoltage AccuracySee output regulation curve (Fig.1)Linear RegulationInput voltage change:±1%3.3VDC output----±1.5--5VDC/7VDC/9VDC/12V DC/15VDC/24VDC output ----±1.2Load Regulation10%-100%load3.3VDC output --1020%5VDC/7VDC output--9159VDC output--81012VDC/15VDC output --71024VDC output--610Ripple &Noise*20MHz bandwidth --75200mVp-p Temperature Coefficient Full load--±0.02--%/℃Short-circuit ProtectionContinuous,self-recoveryNote:*The“parallel cable”method is used for ripple and noise test,please refer to DC-DC Converter Application Notes for specific information. General SpecificationsItem Operating Conditions Min.Typ.Max.UnitIsolation Input-output electric strength test for1minute with aleakage current of1mA max.1500----VDC Insulation Resistance Input-output resistance at500VDC1000----MΩIsolation Capacitance Input-output capacitance at100kHz/0.1V--20--pFOperating Temperature Derating when operating temperature≥85℃,(seeFig.2)-40--105℃Storage Temperature-55--125Case Temperature Rise Ta=25℃--25--Storage Humidity Non-condensing5--95%RHReflow Soldering Temperature*Peak temp.Tc≤245℃,maximum durationtime≤60s over217℃Vibration10-150Hz,5G,0.75mm.along X,Y and Z Switching Frequency Full load,nominal input voltage--220--kHz MTBF MIL-HDBK-217F@25℃3500----k hours Moisture Sensitivity Level(MSL)IPC/JEDEC J-STD-020D.1Level1Note:*See also IPC/JEDEC J-STD-020D.1.Mechanical SpecificationsCase Material Black plastic;flame-retardant and heat-resistant(UL94V-0)Dimensions13.20x11.40x7.25mmWeight 1.4g(Typ.)Cooling Method Free air convectionElectromagnetic Compatibility(EMC)Emissions CE CISPR32/EN55032CLASS B(see Fig.4for recommended circuit) RE CISPR32/EN55032CLASS B(see Fig.4for recommended circuit)Immunity ESD IEC/EN61000-4-2Air±8kV,Contact±6kV perf.Criteria B Typical Characteristic Curves3.3VDC output5VDC/7VDC/9VDC/12VDC/15VDC/24VDC outputFig.1Design Reference1.Typical applicationInput and/or output ripple can be further reduced,by connecting a filter capacitor from the input and/or output terminals to ground as shown in Fig.3.Choosing suitable filter capacitor values is very important for a smooth operation of the modules,particularly to avoid start-up problems caused by capacitor values that are too high.For recommended input and output capacitor values refer to Table 1.Vin0VDCCinDC CoutFig.3Table 1:Recommended input and output capacitor valuesVin Cin Vo Cout5VDC 4.7µF/16V3.3VDC/5VDC 10µF/16V ----7VDC/9VDC4.7µF/16V ----12VDC 2.2µF/25V ----15VDC 1µF/25V ----24VDC0.47µF/50V2.EMC compliance circuitFig.4EmissionsC1,C24.7µF /16VC3Refer to the Cout in Fig.3CY 270pF/2kV LDM6.8µH3.For additional information,please refer to DC-DC converter application notes on80O u t p u t P o w e r P e r c e n t (%)Ambient Temp.()℃Temperature Derating CurveSafe Operating AreaFig.2Dimensions and Recommended Layout Tape and Reel InfoNotes:1.For additional information on Product Packaging please refer to .Tube Packaging bag number:58210024,RollPackaging bag number:58200054;2.If the product is not operated within the required load range,the product performance cannot be guaranteed to comply with allparameters in the datasheet;3.The maximum capacitive load offered were tested at input voltage range and full load;4.Unless otherwise specified,parameters in this datasheet were measured under the conditions of Ta=25℃,humidity<75%RH with nominalinput voltage and rated output load;5.All index testing methods in this datasheet are based on our company corporate standards;6.We can provide product customization service,please contact our technicians directly for specific information;7.Products are related to laws and regulations:see"Features"and"EMC";8.Our products shall be classified according to ISO14001and related environmental laws and regulations,and shall be handled byqualified units.MORNSUN Guangzhou Science&Technology Co.,Ltd.Address:No.5,Kehui St.1,Kehui Development Center,Science Ave.,Guangzhou Science City,Huangpu District,Guangzhou,P.R.China Tel:86-20-38601850Fax:86-20-38601272E-mail:***************。
外汇期权二项式定价公式推导及经济涵义
期权交易是八十年代以来国际金融市场颇具特色的合同交易,其最基本用途是为了转移利率和汇率变动风险,最大特点是在保留从有利价格变动中获取收益可能性的同时,也防止了不利价格变动可能带来的更大损失。
另外,期权是许许多多有价证券、金融工具的建筑砌块,因此无论怎样强调期权定价的重要性都不过分。
black─scholes(1973)假设股票价格的对数变化遵循wiener-levy过程,建立一个使用期权、股票的无风险套期保值资产组合,导致一个偏微分方程式,解一个热力学扩散方程,得到期权价格解析解,即著名的不支付红利的欧式股票call期权定价公式;garman与kohlhagen(1983)及grabbe(1983)等人基于同样思路,建立一个使用期权、国内货币债券和国外货币债券的无风险套期保值资产组合,得到欧式外汇call期权定价公式,以上计算都要使用较多的随机过程及解偏微分方程的知识。
期权定价的另一思路是cox、ross和rubinstein(1979)使用二项式分布得出的变动概率代替价格对数变化遵循wiener-levy过程的假设,利用代数知识得出一般的欧式和美式期权定价公式,随后geske和johnson(1984)推导出美式期权定价精确解析式。
本文目的一是通过二项式定价公式推导过程,进一步解释推导中假设条件的经济涵义;二是给出可适用于各类期权计算思路及结论。
首先,利用期权抛补的利率平价关系得到单周期外汇call期权二项式定价公式;其次,给出一般表达式。
一、期权抛补的利率平价关系由于国际外汇市场与国际货币市场通过广义利率平价关系联系在一起,与远期抛补利率平价(forward-cover irp)类似,货币期权市场也给出另一种期权抛补利率平价(option-cover irp)关系,以下就根据无风险资产组合(即套利)过程,不考虑佣金因素影响,应用单周期二项式即期价格分布推导call期权价格计算公式。
设s=周期初即期汇率,以每一个外币相当于若干本币来表示co=周期初外币call期权价格x=执行价格,以每一个外币相当于若干本币来表示t=单周期call期权有效期,单位:年r=本币无风险利率,单位:%p.a. f=外币无风险利率,单位:%p.a. st=期末的即期汇率第一步:根据二项式价格分布涵义,设将来(单周期末的)即期汇率只有us和ds两个值,看一看周期末即期汇率分布和外币call价值分布:不失一般性,可假设u>d>0 (1)当即期汇率从期初s升值到期末st=us,则此时外币call价值cu=max{0,us-x}≥0 (2)当即期汇率从期初s 贬值到期末st=ds,则此时外币call价值cd=max{0,ds-x}≥0 (3)根据期权性质,co≥0 (4)以上条件也就是推导期初call价值计算公式时所依据的边界条件。
阿尔法冷(Alphacool)Eiswolf 2 AIO 360mm RTX 3080 3090 V
Alphacool Eiswolf 2 AIO 360mm RTX 3080/3090 Ventus withBackplateAlphacool article number: 14420The Alphacool Eiswolf 2 is the first full cover GPU AIO waterblock from Alphacool. It is based on the Alphacool GPX Eisblock Aurora GPX water block, a pump unit and a 360mm NexXxoS ST30 full copper radiator. The latter is equipped with the Alpha-cool Aurora Rise Digital RGB fans.• Full copper radiator• Virtually silent DC-LT 2 pump• Nickel-plated copper cooler• Digital RGB illuminated cooler• Digital RGB 120 mm fansCompatibility1 x Alphacool Eiswolf2 1 x Mounting set GPU 1 x Radiator3 x Fans1x Backplate4 x M2x5 screws4 x M2x5 washers 5 x M2x11 screws12 x M3x30 screws12 x M3x5 screws1 x Y-Adaptor 4-Pin PWM1 x Thermal Grease1 x 3-Pin JST to 3-Pin 5V adaptor 1 x Plug toolThe Alphacool Eiswolf 2 is the first full cover GPU AIO waterblock from Alphacool. It is based on the Alphacool GPX Eisblock Aurora GPX water block, a pump unit and a 360mm NexXxoS ST30 full copper radiator. The latter is equipped with the Alpha-cool Aurora Rise Digital RGB fans.Fullcover Waterblock?The Eiswolf 2 graphics card AIO water block not only cools the GPU with liquid but also all relevant components that require active cooling. This includes the graphics memory, the VRM and, if necessary, other components that require direct cooling. By using the Eisblock GPX Aurora water cooler, the cooling capacity is identical to that of a DIY graphics card water cooler.Pump!The Eiswolf 2 has a pump unit in place of the normal connection terminal. This pump unit houses the DC-LT 2 pump. An im-proved and quieter version of the well-known DC-LT Low Noise Ceramic Pump. Despite looking rather large, the pump unit is only 5 mm wider than a normal connection terminal.Fittings and TubingAs with all new AIO units, Alphacool uses only TPV hoses from the Enterprise Solution range for (usually reserved for servers and workstations) in the Eiswolf 2. The tubing is made of EPDM/PP and are extremely heat-resistant, durable, and free of plas-ticizers. All fittings are also based on the Enterprise Solution range and match the TPV hoses perfectly.ExpandabilityBy using the quick-release fastener, the Eiswolf 2 can be connected to another Alphacool AIO unit to achieve a larger loop in seconds. Alphacool offers various prefilled components with which the loop can be easily extended. For safety reasons, the quick-release fasteners are firmly screwed together and not just plugged together.Lighting and fansThe Eiswolf 2 cooler has a digital RGB LED lighting, also called addressable RGB LEDs. They run along the entire back of the graphics card cooler and provide complete illumination of the water cooler. The pump unit is more discreet and offers a green glowing logo for Nvidia and a red glowing logo for AMD cards. The name "Eiswolf" on the pump unit remains unlit, discreetly in the background. The fan used is the Aurora Rise with 120mm. Due to the special blade design, the fan is extremely quiet and the addressable RGB LEDs provide brilliant illumination. The Alphacool Aurora Rise fan convinces with a max. statistical pres-sure of 3.17mm/H2O and offers a max. air flow of 119.8m3/h. The PWM control allows the fan to be controlled over a wide speed range. In addition, it offers a zero control. It can therefore be regulated down to 0 rpm and then starts with approx. 350 rpm.NexXxoS RadiatorAs with all AIO units, Alphacool uses radiators from the world renowned NexXxoS series. The full copper radiators offer a much higher cooling capacity than aluminium radiators and have contributed significantly to Alphacool's worldwide success.The combination of all of the components results in a solution that is as simple as an AIO solution to install, but with the per-formance of a pre-assembled and prefilled custom loop.Technical note!Due to long storage times and various transport routes, the liquid in the Eiswolf 2 AIO remains still for a long time. The ingre-dients of the liquid can therefore deposit and lead to a brownish discoloration. As soon as the pump starts operating, the ingre-dients mix again and the liquid should regain an approximately clear color. This is not a reason for complaint as neither the performance nor the function of the AIO are restricted by this. If the discolouration of the cooling liquid does not disappear after the AIO has been put into operation, please contact our support team via E-Mail(******************).Youwillreceive quick and uncomplicated help there.。
r语言 反正弦平方根转换 -回复
r语言反正弦平方根转换-回复R语言中提供了一系列的数学函数,包括反正弦函数(asin)和平方根函数(sqrt)。
本文将介绍如何在R语言中进行反正弦平方根的转换。
一、反正弦函数(asin)反正弦函数是一个单调递增的函数,它的定义域是[-1, 1],值域是[-π/2, π/2]。
反正弦函数可以用来解决一些三角方程,例如求解角度或者三角函数值。
在R语言中,反正弦函数的函数名是asin,语法如下:asin(x)其中x是函数的自变量,它的取值范围应在[-1, 1]之间。
函数将返回一个实数,表示x的反正弦函数值。
二、平方根函数(sqrt)平方根函数是一个单调递增的函数,它的定义域是非负实数集合,值域也是非负实数集合。
平方根函数可以用来求解一些和平方相关的问题,例如求解平方值或者平方数根。
在R语言中,平方根函数的函数名是sqrt,语法如下:sqrt(x)其中x是函数的自变量,它的取值范围应为非负实数。
函数将返回一个实数,表示x的平方根值。
三、反正弦平方根转换反正弦平方根转换是指在已知一个数x的范围为[-1, 1],求解其平方根的过程。
由于平方根函数无法直接对负数取平方根,因此需要对负数进行特殊处理。
在R语言中,反正弦平方根转换的一般步骤如下:步骤一:判断x是否在[-1, 1]之间,若不在则输出错误提示信息;若在则继续。
步骤二:判断x是否为负数,若为负数则进行特殊处理;若为正数则继续。
步骤三:对x进行反正弦函数的计算,得到反正弦函数的值。
步骤四:对反正弦函数的值进行平方根函数的计算,得到反正弦平方根转换的结果。
具体的R代码如下:asin_sqrt <- function(x) {if (x < -1 x > 1) {print("Error: x must be in [-1, 1].")return(NULL)}if (x < 0) {print("Warning: x is negative, taking imaginary square root.")x <- abs(x)result <- sqrt(asin(x))result <- paste0(result, "i")} else {result <- sqrt(asin(x))}return(result)}测试函数x <- c(-0.5, 0.5, -2)for (i in x) {print(asin_sqrt(i))}在上述代码中,我们定义了一个名为asin_sqrt的自定义函数。
inconel625的技术要求 -回复
inconel625的技术要求-回复R语言中的反正弦平方根转换是一种用来处理数据的统计方法,通常用于处理数据的归一化和去偏操作。
在本文中,我们将一步一步地回答关于R 语言中的反正弦平方根转换的问题。
1. 什么是反正弦平方根转换?反正弦平方根转换是一种将数据进行归一化和去偏处理的统计方法。
它的主要思想是通过反正弦函数和平方根函数来转换数据。
这种转换可以让原始数据更符合正态分布的要求,从而可以更好地适用于一些基于正态分布的统计方法。
2. 如何在R语言中进行反正弦平方根转换?在R语言中,可以使用函数`asinh()`和`sqrt()`来执行反正弦平方根转换。
下面是一个简单的示例:R# 创建一个向量包含原始数据data <- c(3, 5, 7, 9, 11)# 使用asinh()和sqrt()函数进行反正弦平方根转换transformed_data <- asinh(sqrt(data))# 输出转换后的数据print(transformed_data)在这个示例中,我们首先创建了一个包含原始数据的向量`data`,然后使用`asinh()`和`sqrt()`函数对原始数据进行了转换,最后将转换后的数据保存在`transformed_data`向量中并打印输出。
3. 反正弦平方根转换的优点是什么?反正弦平方根转换具有以下优点:- 归一化:反正弦平方根转换可以将数据转换为一个范围在负无穷到正无穷之间的值,使数据更加集中在中间范围内,从而可以消除不同尺度下的影响。
- 去偏:通过反正弦平方根转换,可以减小数据的偏斜程度,使其更接近于正态分布,从而可以更好地应用于一些假设正态分布的统计方法,如t 检验和方差分析等。
- 可解释性:经过反正弦平方根转换后的数据,可以更容易理解和解释。
4. 反正弦平方根转换的注意事项是什么?在使用反正弦平方根转换时,需要注意以下事项:- 数据的范围:转换后的数据将处于负无穷到正无穷之间的范围,因此需要确保数据不包含负值或零值,否则转换将会失败。
WorldWarIITimeline
1933 Hitler comes to power in Germany. 1936 Hitler and Mussolini sign pact.November 9, 1938 Reichskristallnacht, Crystal Night Jewish homes, businesses, and synagogues are looted and burned by Nazis. Many Jews are killed, and thousands are taken to concentration camps.September 3, 1939 France and Great Britain declare war on Germany.September 10, 1939 Canada declares war on Germany.October 1939 Poland surrenders to Germany.December 1939 First Canadian troops arrive in Britain.April 1940 Germany invades Denmark and Norway.May 10, 1940 Germany invades Holland, Belgium, and Luxembourg. Winston Churchill becomes Prime Minister of Great Britain.May 12, 1940 Germany invades France.May 14, 1940 Dutch army surrenders to Germany.May 20, 1940 German Army reaches the English Channel.May 28, 1940 Belgium surrenders to Germany.June 10, 1940 Italy declares war on Britain and France.June 22, 1940 France surrenders to Germany.Canada expands war effort.July 10, 1940 to October 31, 1940 Battle of Britain begins: Canada participates in air fights over the English Channel.November 1940 Troops and equipment from Canada start moving in carriers across the Atlantic.Battle of the Atlantic is underway.September 1940 Italy invades Egypt and Greece.June 1941 Germany invades Russia. Russia (Soviet Union) joins Allied powers. September 27, 1941 Japan joins the Axis powers.October 1941 Canada agrees to send two divisions of the Canadian army to Hong Kong todefend the British colony against Japan.November 1941 First Canadian Army is established in England under General McNaughton. December 1941 Soviets stop the German advance into Russia.December 7, 1941 Japan bombs Pearl Harbor in the U.S.December 1941 Japan declares war on U.S. and Britain; Japan invades Philippines, Thailand,Hong Kong.December 25, 1941 Hong Kong surrenders to Japan; Canadian soldiers are taken prisoner. Canadadeclares war on Japan.December 1941 Japanese Canadians in B.C. are fingerprinted and given identity cards.1942 – 1944 Hitler carries out massive gas chamber killings and forced labour of Jews inconcentration camps throughout Europe.1942 Canada votes on conscription: English Canada supports it, while Québec doesnot. King decides to enforce conscription for home defence only, but not foroverseas duty.February 1942 Japanese Canadians on the west coast are evacuated to camps.August 19, 1942 Canadian troops play an important role in the Dieppe raid in France. Many Allied lives are lost, and there are many prisoners of war.June 1943 German U-boats withdraw from Atlantic. Battle of Atlantic won by Allies. July 1943 Canadian troops participate in the invasion of Sicily. Mussolini is overthrown;Germans continue to fight Allies in Italy.December 1943 Canadians involved in the Battle of Ortona in Italy.March 1944 General Crerar becomes commander of Canadian Army.June 6, 1944 D-Day: Allied landings on the coast of France begin at Normandy. Allies gain a foothold in Europe.August 1944 Allied landings in Southern France continue to clear the Channel Coast.Canadians help liberate Falaise in northern France. On August 25, Paris isliberated.November 22, 1994 Conscription is enacted in Canada for overseas service.October – November 1944 Battle of the Scheldt in Holland. Canadian troops participate in the Allied advance into Germany along the Rhine.Spring 1945 Holland is liberated from the Germans, with large Canadian participation. May 8, 1945 V-E Day: Victory in Europe for the AlliesNow Allied forces focus on defeating Japan, with the U.S. in the forefront ofthis attack.June 1945 Canada joins the United Nations. Charter of the United Nations is signed inSan Francisco.July 1945 Canadian troops enter Germany as part of the occupying force. Germany isdivided into four areas under the Allies.August 6, 1945 and August 9, 1945 United States drops the first atomic bomb on Hiroshima; then, a second atomic bomb is dropped on Nagasaki.August 14, 1945 Japan surrenders.September 2, 1945 World War II is officially over. Formal surrender ceremonies take placeonboard Battleship Missouri in Tokyo Bay.Centennial College, John and Molly Pollock Holocaust Collection, Holocaust:<http://www.centennialcollege.ca/holocaust_pollock/selected_materials/the_holocaust/ theholocaust.htm#top>。
Victron MultiPlus-II(或Quattro-II)系列逆变器与Color Contr
Connect the communication cableA custom ethernet cable is needed for the communication between Pytes E-BOX battery and Color Control GX.Figure 2.1.3.1 Pin assignment of Victron MultiPlus-II (or Quattro-II) series inverter.Figure 2.1.3.2 Victron ethernet cableFigure 2.1.3.3 Victron DIP Switch SettingConnect the VE.Bus ends of the inverter and Color Control GX by standard ethernet cable. Plug in the battery end into the CAN of the Pytes E-BOX battery and plug in the inverter end into the VE.CAN of the Color Control GX as shown in the Figure 2.1.3.4.Victron Inverter/Charger GuideFigure 2.1.3.4 Communication cable connectionIf you bought any other products of Victron Energy, please refer to the Figure 2.1.3.5 below or Manual to connect it.Figure 2.1.3.5 Victron Devices ConnectionProgram the inverterPress the switch on the inverter to enter settings mode.As shown in Figure 2.1.3.7, press “up” or “down” button to select between settings menu.Press “left” or “right” button to “return” or “enter”.Figure 2.1.3.6 Victron Inverter Switch Figure 2.1.3.7 Victron Color Control As shown in the Figure 2.1.3.8, follow below steps to set the boud rate.➢Press Settings and down to the Services at the bottom line.➢Select the VE.CAN port line.➢Select the CAN-bus BMS (500 Kbit/s).Figure 2.1.3.8 CAN-Port SettingCheck device connection information shown in the Figure 2.1.3.8.Figure 2.1.3.9 Device connection informationCheck out the battery parameters.➢Check the battery basic parameters: SOC, Voltage and Current on the PYTES line as shown in Figure 2.1.3.10(1).➢Go into PYTES, check more battery details, as shown in Figure 2.1.3.10(2) & (3).Please refer to the Victron Energy Inverter for more settings.。
原子的范德华半径
van der Waals Radii r w (nm) of the ElementsH He Li Be B C N O F Ne Pauling[ 0.11 0.14 0.1720.15 0.14 0.135 0.154 Bondi[2] 0.12 0.14 0.182 0.2130.170.1550.152 0.147 0.154 Bokii[3] 0.117 0.122 0.1790.1570.138 0.135 0.16 Allinger 0.162 0.153 0.255 0.2230.2150.2040.1930.182 0.171 0.16 Zefirov[ 0.116 0.22 0.190.180.1710.15 0.129 0.14 Batsanov 0.12 0.14 0.22 0.190.180.170.16 0.155 0.15 0.15 Our work 0.108 -0.134 0.175 0.2050.1470.1490.1410.14 0.139 -0.168Na Mg Al Si P S Cl Ar K Ca Pauling[1] 0.190.1850.18 0.192Bondi[2] 0.227 0.173 0.251 0.210.180.180.1750.188 0.275Bokii[3] 0.190.180.18 0.192Allinger 0.27 0.243 0.236 0.2290.2220.2150.2070.199 0.309 0.281 Zefirov[ 0.23 0.2 0.2 0.1840.19 0.27 0.24 Batsanov 0.24 0.22 0.21 0.210.1950.180.18 0.19 0.28 0.24 Our work 0.184 0.205 0.211 0.2070.1920.1820.183-0.193 0.205 0.221Sc Ti V Cr Mn Fe Co Ni Cu Zn Pauling[1]Bondi[2]Bokii[3]Allinger 0.261 0.239 0.229 0.2250.2240.2230.2230.222 0.226 0.229 Zefirov[ 0.22 0.19 0.19 Batsanov 0.23 0.215 0.205 0.2050.2050.2050.2 0.2 0.2 0.21 Our work 0.216 0.187 0.179 0.1890.1970.1940.1920.184 0.186 0.21Ga Ge As Se Br Kr Rb Sr Y Zr Pauling[1] 0.2 0.2 0.195Bondi[2]Bokii[3] 0.2 0.2 0.1950.198Allinger 0.246 0.244 0.236 0.2290.2220.2150.3250.3 0.271 0.254 Zefirov[ 0.21 0.1970.28 0.26 0.23 Batsanov 0.21 0.21 0.205 0.190.190.2 0.29 0.255 0.24 0.23 Our work 0.208 0.215 0.206 0.1930.198-0.2120.2160.224 0.219 0.186Nb Mo Tc Ru Rh Pd Ag Cd In Sn Pauling[1]Bondi[2] 0.1630.1720.162 0.255 0.227 Bokii[3]Allinger 0.243 0.239 0.236 0.2340.2340.2370.2430.25 0.264 0.259 Zefirov[5] 0.2 0.21 0.22Batsanov 0.215 0.21 0.205 0.2050.2 0.2050.21 0.22 0.22 0.225 Our work 0.207 0.209 0.209 0.2070.1950.2020.2030.23 0.236 0.233Sb Te I Xe Cs Ba La Ce Pr Nd Pauling[ 0.22 0.22 0.215 0.218Bondi[2] 0.19 0.206 0.198 0.216Bokii[3] 0.22 0.22 0.215 0.218Allinger 0.252 0.244 0.236 0.2280.3440.3070.2780.274 0.273 0.273 Zefirov[5] 0.214 0.290.260.23Batsanov 0.22 0.21 0.21 0.220.3 0.270.25Our work 0.225 0.223 0.223 0.2210.2220.2510.24 0.235 0.239 0.229Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Pauling[1]Bondi[2]Bokii[3]Allinger 0.272 0.271 0.294 0.2710.270.2690.2670.267 0.267 0.279 Zefirov[5]Batsanov[6]Our work -0.236 0.229 0.233 0.2370.2210.2290.2160.235 0.227 0.242Lu Hf Ta W Re Os Ir Pt Au Hg Pauling[1]Bondi[2] 0.175 0.166 0.17 Bokii[3]Allinger 0.265 0.253 0.243 0.2390.2370.2350.2360.239 0.243 0.253 Zefirov[5] 0.2 0.2 Batsanov[6] 0.225 0.22 0.210.2050.2 0.2 0.205 0.21 0.205 Our work 0.221 0.212 0.217 0.210.2170.2160.2020.209 0.217 0.209Tl Pb Bi Po At Rn Fr Ra Ac Th Pauling[1]Bondi[2] 0.196 0.202 0.187Bokii[3] 0.169Allinger 0.259 0.274 0.266 0.2590.2510.2430.3640.327 0.308 0.274 Zefirov[ 0.22Batsanov 0.22 0.23 0.23 0.24 Our work 0.235 0.232 0.243 -0.229-0.236-0.243-0.256-0.243 0.26 0.237Pa U Np Pu Am Cm Bk Cf Es Fm Pauling[1]Bondi[2]Bokii[3]Allinger 0.264 0.252 0.252 0.252Zefirov[5]Batsanov[6] 0.23Our work 0.243 0.24 0.221 -0.256-0.256-0.256-0.256-0.256 -0.256 -0.256References1 Pauling, L. The nature of the chemical bond.3rd Ed. NY: Cornell Univ,Press, 1960;Pauling, L. Pauling, P. Chemistry. San Francisco: W. H. Freeman Company, 19752 Bondi, A. J. Phys. Chem., 1964, 68: 4413 Bokii, G. B. Kristallokhimiya ( Crystal Chemistry ). Moscow: Nauka, 19714 Allinger, N. L. Zhou, X.; Bergsma, J. J. Mol. Struct., Theochem., 1994,312: 695 Zefirov, Yu V. Russ. J. Inorg. Chem., 2000, 45: 15526 Batsanov, S. S. Russ. J. Inorg. Chem., 1991, 36: 1694; Inorg. Mater.,2001, 37: 8717 胡盛志,周朝晖,蔡启瑞. 物理化学学报,2003,19:1073。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
A
C
A B
Training Documentation REV.:1 Date: August 2011
microwave seal snap fitting groove vacuum seal
C
Close module covers
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Never do this !!!
Training Documentation REV.:1 Date: August 2011
Check the condition of the antennas
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Check if any antenna is broken before installing the quarz tubes (move the atenna`s in and check them)
Training Documentation REV.:1 Date: August 2011
Cleaning module seals
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Closed ammonia gas shower hole
Training Documentation REV.:1 Date: August 2011
partial closed silane gas shower
Deposition shield
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
Inserting the antenna
Check the end positions of the sensors
Training Documentation REV.:1 Date: August 2011
Load/ unload module
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
Clean the gas shower holes
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Load/ unload module
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Chamber seals
Block the gate
Training Documentation REV.:1 Date: August 2011
Clean the filter mesh at the PM
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Take the mesh out and clean it !
Training Documentation REV.:1 Date: August 2011
Training Documentation REV.:1 Date: August 2011
Remove quartz tubes
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Use a special wrench to open the bayonet mount
Training Documentation REV.:1 Date: August 2011
Sending out the antennas
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
Vacuum cleaning
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Explosion proof vacuum cleaner
Sealing stud
Training Documentation REV.:1 Date: August 2011
Gas connection process module
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
Prepare quartz tubes
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
80-100h maintenance
Hohenstein – Ernstthal, 08.2010
1 Preparation
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
• Prepare quartz tubes • Prepare needed tools / Check the tool box • Prepare PPE • Prepare explosion proofed vacuum cleaner • Remove all side covers (cassettes)
• • • • •
Visual check of the heaters Clean filterscreen with vacuum cleaner Thighten all screws off maintenance lid Clean all seals with IPA and wipes Close the module
1. Cleaning 2. Changing
3. Checking
Training Documentation REV.:1 Date: August 2011
Important maintenance steps
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
Others – Water filter
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others Filter unit O-ring Casing
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
2.1 Process Module
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload module 2.3 Others
Training Documentation REV.:1 Date: August 2011
1 Preparation 2 Maintenance 2.1 Process module 2.2 Load/ unload mod Maintenance !
Training Documentation REV.:1 Date: August 2011
• Open and cool down module • Clean all modules with the explosion proofed vacuum cleaner • Remove old and dirty quartz tubes • Clean the gas shower holes • Change the deposition shields on demand • Clean the tubes of position detectors • Check the tension and condition of the transport belts • Check all media values at the tool • Check the condition of the antennas • Install new quartz tubes • Clean module seals • Perform a software and microwave leak test • Make sure nobody is in danger zone