2016-2017学年北师大版八年级上册期中考试数学试题及答案

合集下载

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试题一、单选题1.如图,在Rt△ABC中,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=20,则S2=()A.14BC.26D2.以下列数据为边能构成直角三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.3cm,4cm,5cm D.5cm,6cm,7cm30,π-,0.070070007…(相邻两个7之间0的个数逐次加1)中,无理数有()A.2个B.3个C.4个D.5个4.如图,五角星盖住的点的坐标可能为()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)5.下列说法:①127的立方根是13±;②17的平方根;③-27大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④6.如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(﹣1,2)表示,那么(1,﹣2)所表示的位置是()A .点AB .点BC .点CD .点D7.下列计算中,正确的是()A B =C 3=D3=-8.下列四个选项中,不符合直线y =x ﹣2的性质的选项是()A .经过第一、三、四象限B .y 随x 的增大而增大C .函数图象必经过点(1,3)D .与y 轴交于点(0,﹣2)9.已知一次函数的图象与直线1y x =-+平行,且过点(﹣6,2),那么一次函数解析式为()A .6y x =-B .4y x =--C .10y x =-+D .4y x=10.如图所示,1OP =,过点P 作1PP O P ⊥且11PP =,得1OP ;再过点P ,作121PP O P ⊥,且121PP =,得2OP =;又过点2P 作232PP OP ⊥且231PP =,得32OP =⋯依此法继续作下去,得2021OP =()AB C D二、填空题11_____.12.比较大小:“>”、“<”或“=”).13.若点()1,2P m m +-在x 轴上,则点P 的坐标为__________.14.如图,有一个圆柱体,它的高为20,底面周长为30,如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A 相对的上底面B 点,则蚂蚁爬的最短路线长约为_________.15110010000100,...,=== 1.0404 1.02=,102x =,则x =____________.16.校园内有两棵树,相距8m ,一棵树高为13m ,另一棵树高7m ,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________m.17.如图所示,在等腰直角∆ABC 中,点D 为AC 的中点,DE ⊥DF ,DE 交AB 于E ,DF 交BC 于F ,若AE=23EF=4,则FC 的长是____________.三、解答题18.计算:(1)138322(2)101(33|(1)272π--+--19.(111882(2)22--(2)解方程:()212x -=20.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1;B 1;C 1;(3)求△A1B1C1的面积.21的小数部分我们不可能全部写出来,而12﹣1的小数部分.请解答下列问题:(1的整数部分是,小数部分是;(2)如果5a,5b,求a(a+b+1)的值.22.如图所示,在平面直角坐标系中,△ABC的两个顶点的坐标分别为A(m,4)、B(n,0),且AO=CO,AC经过原点O,BH⊥AC于点H.(1)若mC的坐标.(2)若n是216的立方根,求AC·BH的值.23.阅读下列材料,然后回答问题.,这样的式子,其实我们还可以将其进一步化简.3=5==1=类似以上这种化简的步骤叫做分母有理化.(1==(2(324.如图,在平面直角坐标系中,过点B(6,0)的直线AB 与y 轴相交于点C(0,6),与直线OA 相交于点A 且点A 的纵坐标为2,动点P 沿路线O A C →→运动.(1)求直线BC 的解析式;(2)在y 轴上找一点M ,使得△MAB 的周长最小,则点M 的坐标为______;(请直接写出结果)(3)当△OPC 的面积是△OAC 的面积的14时,求出这时P 的坐标.25.如图,在平面直角坐标系中,O 为坐标原点,点A (a ,b )在第一象限,点B (﹣b ﹣1,0),且实数a 、b b ﹣4)2=0(1)求点A ,B 的坐标;(2)若点P 以2个单位长度/秒的速度从O 点出发,沿x 轴的负半轴运动,设点P 运动时间为t 秒,三角形ABP 的面积为S ,求S 与t 的关系式;(3)在(2)的条件下,当t 为何值时,S △ABP :S △AOP =2:3参考答案1.A 【解析】【分析】根据题意可得:26BC =,220AB =,再由勾股定理得:214AC =,即可求解.【详解】解:∵S 1=6,S 3=20,∴26BC =,220AB =,在Rt △ABC 中,∠ACB =90°,由勾股定理得:22220614AC AB BC =-=-=,∴S 2=14.故选:A .【点睛】本题主要考查了勾股定理的应用,熟练掌握直角三角形的两直角边的平方和等于斜边的平方是解题的关键.2.C【分析】根据构成三角形的条件和勾股定理的逆定理进行分析判断即可.【详解】解:A、因为1cm+2cm=3cm,所以不能构成三角形,不符合题意;B、因为22+=+=,2416234913=,13≠16,所以不能构成直角三角形,不符合题意;C、因为22+=,可以构成直角三角形,符合题意;3453425+=,25=25,所以222D、因为22=,61≠49,所以不能构成直角三角形,不符合题意.+=+=,274956253661故选:C【点睛】本题考查构成三角形的条件以及用勾股定理逆定里判定是否是直角三角形,牢记相关内容是解题关键.3.B【解析】【分析】根据无理数、有理数的定义即可求解(无理数为无限不循环小数,整数和分数统称有理数).【详解】2=,0为整数,属于有理数;∴无理数有3个,故选:B.【点睛】此题主要考查了无理数的定义,解答此题的关键是熟知无理数的定义.无理数为无限不循环小数.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.4.D【解析】【分析】根据第四象限内点的横坐标为正、纵坐标为负数的特征,可得答案.A、(3,2)在第一象限,故本选项不合题意;B、(﹣3,2)在第二象限,故本选项不合题意;C、(﹣3,﹣2)在第三象限,故本选项不合题意;D、(3,﹣2)在第四象限,故本选项符合题意;故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.A【解析】【分析】根据平方根和立方根的性质判断即可;【详解】127的立方根是13,故①错误;是17的平方根,故②正确;-27的立方根是3-,故③错误;综上所述:①③正确;故选A.【点睛】本题主要考查了平方根和立方根的性质,准确分析判断是解题的关键.6.B【解析】【分析】根据题意,以O点为圆心,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系,即可求得(1,﹣2)所表示的位置【详解】如图,以O点为圆心,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系,则(1,﹣2)所表示的位置为点B,故选B【点睛】本题考查了用有序实数对表示位置,数形结合是解题的关键.7.C【解析】【分析】根据二次根式运算法则逐个进行计算判断.【详解】A.B.=,故错误,不符合题意;C.3=,故正确,符合题意;D.3,故错误,不符合题意,故选:C.【点睛】本题考查了二次根式,属于基础题,熟知二次根式运算法则是解题的关键.8.C【解析】【分析】A、由k=1>0,b=-2<0,利用一次函数图象与系数的关系可得出直线y=x-2经过第一、三、四象限,选项A不符合题意;B、由k=1>0,利用一次函数的性质可得出y随x的增大而增大,选项B不符合题意;C、代入x=1求出y值,进而可得出函数图象必经过点(1,-1),选项C符合题意;D、代入x=0求出y值,进而可得出函数图象与y轴交于点(0,-2),选项D不符合题意.此题得解.【详解】解:A、∵k=1>0,b=﹣2<0,∴直线y=x﹣2经过第一、三、四象限,选项A不符合题意;B、∵k=1>0,∴y随x的增大而增大,选项B不符合题意;C、∵当x=1时,y=x﹣2=﹣1,∴函数图象必经过点(1,﹣1),选项C符合题意;D、∵当x=0时,y=x﹣2=﹣2,∴函数图象与y轴交于点(0,﹣2),选项D不符合题意.故选:C.【点睛】此题考查一次函数的性质、一次函数图象与系数的关系以及一次函数图象上点的坐标特征,逐一分析四个选项的正误是解题的关键.9.B【解析】【分析】由函数的图象与直线y=-x+1平行,可得斜率,将点(-6,2)代入,求出b的值,即可得出一次函数的图象解析式.【详解】设所求一次函数的解析式为y=kx+b,∵函数的图象与直线y=-x+1平行,∴k=-1,又∵过点(-6,2),有2=-1×(-6)+b,解得b=-4,∴一次函数的解析式为y=-x-4,故选:B.【点睛】此题考查两条直线相交或平行问题,解题关键是根据一次函数的图象与直线y=-x+1平行,得出斜率,求出b的值.【解析】【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【详解】解:由勾股定理得:1OP===,2OP=,32OP===,L,依此类推可得:nOP==,∴2021OP==,故选:B.【点睛】本题考查了勾股定理,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.11【解析】【分析】根据相反数的定义进行求解即可;【详解】解:(-=;.【点睛】本题主要考查相反数的定义,掌握相反数的定义是解题的关键.12.<【分析】先把根号外的因式移入根号内,再比较大小即可.【详解】∵,∴故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.13.()3,0【解析】【分析】根据x轴上点的纵坐标等于0,可得m值,根据有理数的加法,可得点P的坐标.【详解】解:因为点P(m+1,m-2)在x轴上,所以m-2=0,解得m=2,当m=2时,点P的坐标为(3,0),故答案为(3,0).【点睛】本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为0,y轴上的横坐标为0.14.25【解析】【分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理即可求解.【详解】解:将圆柱体侧面沿A点所在直线展开,点A,B的最短距离为线段AB的长,由上图可知:30152AC ==,20BC =,∴AB 为最短路径22201525=+=.则蚂蚁爬的最短路线长约为25.故答案为:25.【点睛】本题主要考查了平面展开图的最短路径问题,本题的关键是要明确,要求两点间的最短线段,就要把这两点放到一个平面内,即把圆柱的侧面展开再计算.15.10404【解析】【分析】根据已知运算规律计算即可;【详解】1.0404 1.02=102x =,100 1.02 1.040410404x =⨯=,∴10404x =;故答案是:10404.【点睛】本题主要考查了二次根式计算和数字规律,准确计算是解题的关键.16.10【解析】【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】解:两棵树高度相差为AE=13-7=6m ,之间的距离为BD=CE=8m ,即直角三角形的两直角边,故斜边长10=m ,即小鸟至少要飞10m.【点睛】本题主要是将小鸟的飞行路线转化为求直角三角形的斜边,利用勾股定理解答即可.17.2【解析】【分析】连接BD ,根据的等腰直角三角形的性质证明△BED ≌△CFD 得BE=CF ,由等腰三角形的性质得BF=AE ,再运用勾股定理可得BE 的长,从而可得结论.【详解】解:连接BD∵D 是AC 中点,∴∠ABD=∠CBD=45°,BD=AD=CD ,BD ⊥AC∵∠EDB+∠FDB=90°,∠FDB+∠CDF=90°,∴∠EDB=∠CDF ,在△BED 和△CFD 中,EBD C BD CD EDB CDF ∠∠⎧⎪⎨⎪∠∠⎩===,∴△BED ≌△CFD (ASA ),∴BE=CF ;∵ABC ∆是等腰直角三角形,∴AB=CB∵BE=CF∴BF AE ==在Rt △BEF 中,222BE BF EF +=∴2BE ==(负值舍去)故答案为:2【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了勾股定理的运用,本题中连接BD 是解题的关键.18.(1);(2)-.【解析】【分析】(1)先进行二次根式的化简,再进行二次根式的加减即可求解;(2)根据负整数指数幂,绝对值,0指数幂,二次根式化简等知识进行整理,再进行二次根式加减即可求解.【详解】解:(1)=-=(2)101(3|(1)2π--+--231=-+--=-【点睛】本题考查了二次根式的混合运算,负整数指数幂,0指数幂,绝对值等知识,熟知相关知识并正确进行化简是解题关键.19.(1)2;(2)1211x x ==【解析】【分析】(1)运用二次根式的化简法则计算即可;(2)采用直接开平方法求解即可.【详解】(1-21=+-332=-+2=;(2)∵()212x -=∴x 1-=1211x x ==.20.(1)见解析;(2)(3,2);(4,-3);(1,-1);(3)6.5【解析】(1)根据关于y 轴对称点的性质得出各对应点位置进而得出答案;(2)利用(1)中作画图形,进而得出各点坐标;(3)利用△ABC 所在长方形面积减去△ABC 周围三角形面积进而求出即可;【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)A 1(3,2);B 1(4,-3);C 1(1,-1);故答案为:(3,2);(4,-3);(1,-1);(3)△A 1B 1C 1的面积为:3×5-12×2×3-12×1×5-12×2×3=6.5.21.(1)55;(2)3【解析】(15和6两个整数之间,即可求解;(2)先分别根据题意求出a 、b 的值,再代入a(a +b+1)即可求解.【详解】解:(1∴56,55;故答案为:55;(2)∵23,∴7<58,∴5a =572,∵23,∴﹣32,∴2<53,∴5b =2,∴a(a +3【点睛】本题考查了无理数大小的估算,二次根式的混合运算等知识,正确估算出无理数的大小,并能正确进行二次根式的混合运算是解题关键.22.(1)(-3,-4);(2)48【解析】【分析】(1)根据算术平方根的定义可得m=3,则A(3,4),由AO=CO ,AC 经过原点,可得A 、C 两点关于原点对称,根据关于原点对称的点的坐标特征进行求解即可;(2)根据立方根的定义可得n=6,则OB=6,由ABC ABO BOC S S S =+△△△112422A C OB y OB y =⋅+⋅-=,1=2ABC S AC BH ⋅△进行求解即可.【详解】(1)∵m ,∴m=3,∴A(3,4),∵AO=CO ,AC 经过原点,∴A 、C 两点关于原点对称,∴点C 的坐标是(-3,-4);(2)∵n 是216的立方根,∴n=6,∴A (m ,4),B(6,0),C (-m ,-4),∴OB=6,∵ABC ABO BOC S S S =+△△△112422A C OB y OB y =⋅+⋅-=,∵1=2ABC S AC BH ⋅△,∴48AC BH ⋅=.【点睛】本题主要考查了坐标与图形,关于原点对称的点的坐标特征,立方根和算术平方根的定义,解题的关键在于能够熟练掌握关于原点对称的两点的坐标特征.23.(1)2,3;(2)1;(3)2【解析】【分析】(1)仿照例题的解法依次化简即可;(2)按照第三种方法化简即可;(3)分子,分母同时乘以2【详解】(1==,2==故答案为:2(2==1;(32=()2222-2=2【点睛】本题考查了二次根式的分母有理化,熟练掌握平方差公式进行分母有理化是解题的关键.24.(1)BC解析式为6y x=-+;(2)M(0,65);(3)点P的坐标为(1,12)或(1,5).【解析】【分析】(1)设直线BC的解析式是y=kx+b,把B、C的坐标代入,求出k、b即可;(2)先确定出点M的位置,进而求出直线AB'的解析式即可得出结论;(3)分为两种情况:①当P在OA上,此时OP:AO=1:4,根据A点的坐标求出即可;②当P在AC上,此时CP:AC=1:4,求出P即可.【详解】(1)设直线BC的解析式是y=kx+b,根据题意得:606bk b⎧⎨+⎩==解得16 kb-⎧⎨⎩==则直线BC的解析式是:y=-x+6;(2)如图,作点B(6,0)关于y轴的对称点B',∴B'(-6,0),连接AB'交y轴于M,此时MA+MB最小,得到△MAB的周长最小设直线AB'的解析式为y=mx+n,∵A(4,2),∴42 60 m nm n+⎧⎨-+⎩==,∴1565 mn⎧⎪⎪⎨⎪⎪⎩==,∴直线AB'的解析式为y=16 55x+,令x=0,∴y=6 5,∴M(0,6 5),(3)设OA的解析式是y=ax,则4a=2,解得:a=12,则直线的解析式是:y=12 x,①当P在OA上时,∵当△OPC的面积是△OAC的面积的14时,∴P的横坐标是14×4=1,在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时,∵△OPC的面积是△OAC的面积的1 4,∴CP:AP=1:5,∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5),∴P的坐标是:P1(1,12)或P2(1,5).【点睛】此题考查一次函数的交点问题,用待定系数法求一次函数的解析式等知识点,能求出符合的所有情况是解题的关键.25.(1)A(3,4),B(﹣5,0);(2)S=4t﹣10或S=10﹣4t;(3)t=32或152【解析】【分析】(1)根据非负数的性质,得到关于a,b的方程组,求得a,b的值,即可得到点A、点B 的坐标;(2)过点A作AH⊥x轴于点H,AH=4,分两种情况:①点P在线段OB上(0≤t<5 2),②点P在线段OB的延长线上(t>52),由三角形面积公式可得出答案;(3)分两种情况,由三角形面积关系可得出方程,则可得出答案.【详解】解:(1)∵a,b(b﹣4)2=00≥,(b﹣4)2≥0.∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴A(3,4),B(﹣5,0);(2)过点A作AH⊥x轴于点H,AH=4,分两种情况:①点P在线段OB上(0≤t<5 2),如图1,BP=5﹣2t,S=12BP AH⋅=()15242t-⋅=10﹣4t.②点P在线段OB的延长线上(t>5 2),如图2,BP=2t﹣5,S=12BP AH⋅=()12542t-⋅=4t﹣10.(3)由题意可得112422AOPS OP AH t=⋅⋅=⨯⨯,分两种情况:①点P在线段OB上(0≤t<5 2),∵S△ABP:S△AOP=2:3,∴(10﹣4t):4t=2:3,解得t=3 2.②点P在线段OB的延长线上(t>5 2),∵S△ABP:S△AOP=2:3,∴(2t﹣5):2t=2:3,解得t=15 2.3 2或152时,S△ABP:S△AOP=2:3.综合以上可得,t=。

北师大版八年级上册数学期中考试试卷附答案

北师大版八年级上册数学期中考试试卷附答案

北师大版八年级上册数学期中考试试题一、单选题1.下列运算中错误的有()个①164=②393=③233-=-④2(3)3-=⑤±233=A .4B .3C .2D .12.在△ABC 中,AC=3,BC=4,则AB 的长是()A .5B .7C .5或7D .大于1且小于73.在0(2)-,38,0,934,0.010010001……,2π,-0.333…,5 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A .2个B .3个C .4个D .5个4.在平面直角坐标系中,点P (﹣1,x 2+2)一定在()A .第一象限B .第二象限C .第三象限D .第四象限5.满足3x 7的整数x 是()A .-2,-1,0,1,2,3B .-1,0,1,2C .-2,-1,0,1,2D .-1,0,1,2,36.下列语句:①-1是1的平方根.②带根号的数都是无理数.③-1的立方根是-1.38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()A .2个B .3个C .4个D .5个7.若a 、b 为实数,且满足|a -2|2b -=0,则b -a 的值为()A .2B .0C .-2D .以上都不对8.在平面内,确定一个点的位置一般需要的数据个数是()A .1B .2C .3D .49.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A′,使梯子的底端A′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B′,那么BB′()A .小于1mB .大于1mC .等于1mD .小于或等于1m10.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm ,则h 的取值范围是()A .h≤17cmB .h≥8cmC .15cm≤h≤16cmD .7cm≤h≤16cm二、填空题11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12.2(5)-的算术平方根是__________________,-8的立方根是_________,13.直角三角形两直角边长分别为3和4,则它斜边上的高为____________________.14.已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____.15.在直角三角形ABC 中,斜边2AB =,则222AB AC BC ++=________.16.若一个正数的两个平方根分别为231a a +-与,则=a _____,这个正数是_________.17.如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短路程为________cm.(π取3)18===,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题19.计算(13(2)(3)2+(4)02(1++-20.已知21b +的平方根为±3,3a+2b-1的算术平方根为4,求a+2b 的平方根.21.如图所示的一块地,∠ADC =90°,AD =8m ,CD =6m ,AB =26m ,BC =24m ,求这块地的面积S .22.在如图所示的正方形网络中,每个小正方形的边长为1,格点三角形(顶点是网络的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)点B 关于x 轴的对称点B 2的坐标是;(4)△ABC 的面积为.23.如图,在长方形ABCD 中,AB =6,BC =8,将长方形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处.(1)求EF 的长;(2)求四边形ABCE 的面积.24.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(),0a ,点C 的坐标为()0,b ,且a ,b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动.(1)点B 的坐标为___________;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.25.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?参考答案1.B【解析】【分析】根据平方根、立方根及算术平方根的定义,即可求解.【详解】=,正确;43≠,错误;=-该等式无意义,错误;33=,正确;=±,错误.⑤3故选:B.【点睛】此题主要考查了立方根、算术平方根、平方根的定义,解题注意平方根和算术平方根的区别:一个非负数的平方根有两个,算术平方根有一个,是非负数.2.D【解析】【分析】三角形中,两边之和永远大于第三边,两边之差永远小于第三边;【详解】题中三角形的两边为3与4,所以第三边的范围应该大于1而小于7【点睛】本题主要考查了三角形三边的关系,由三角形三边性质我们不难得出最后结果3.C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0(=1,2π 2.010101…(相邻两个1之间有1个0)共4个.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B【解析】【详解】解:210,20,x -+ 符合第二象限点的特征故选B5.B【解析】【分析】二次根式的估算,需要准确地找出整数部分【详解】1的整数部分为2,所以整数x 应该满足23x -<<,故答案为B 选项【点睛】本题主要考查了二次根式中的估算思想,重点在于准确找出相应的整数或小数部分.6.B【解析】【分析】根据平方根的意义求出a≥0),即可判断①,根据无理数的意义即可判断②;根据立(a≥0),即可判断⑤;根据实数和数轴上的点能建立一一对应关系,即可判断⑦.解:1的平方根是±1,①正确;=2-1的立方根是-1,③正确;,2(-2)2=4,4,⑤正确;-125的立方根是-5,⑥错误;实数和数轴上的点一一对应,⑦错误;∴正确的有3个.故选:B.7.C【解析】【详解】由题意得:a-2=0,20b-=,所以a=2,b=0.∴b-a的值为0-2=-2.故选C.8.B【解析】【分析】在一个平面内,要有两个有序数据才能表示清楚一个点的位置.【详解】解:因为在一个平面内,一对有序实数确定一个点的位置,即2个数据,所以选B.故选B.【点睛】本题考查如何在平面内表示一个点的位置的知识.9.A【解析】【分析】由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,得出AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB由题意可知AB=A′B′,又OA′=3,根据勾股定理得:OB′∴BB′=<1.故选:A.10.D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【详解】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题考查了勾股定理的应用,解题的关键是注意此题要求的是筷子露在杯外的取值范围,主要是根据勾股定理求出筷子在杯内的最大长度.【分析】利用勾股定理求得AC即可求解.【详解】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴4=∴AC+BC=3+4=7米.故答案是:7.【点睛】本题考查勾股定理的应用,理解题意是解答的关键.12.5±3-2【解析】【分析】根据算术平方根、平方根、立方根的定义即可求解.【详解】解:2(5)-=25∴2(5)-算术平方根是5,±3-8的立方根是-2故答案为:5;±3;-2.【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.13.12 5【解析】【分析】设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案,设斜边为c ,斜边上的高为h ,∵直角三角形两直角边长分别为3和4,∴,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:125.【点睛】本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,解题的关键是熟练掌握面积法.14.1【解析】【详解】解:∵M (a ,﹣3)和N (4,b )关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=,故答案为:1.15.8【解析】【分析】直接由勾股定理求解即可.【详解】解:∵在直角三角形ABC 中,2AB =,∴222AC BC AB +==4,∴222AB AC BC ++=4+4=8,故答案为:8.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答的关键.16.14-##-0.254916【解析】【分析】根据平方根的性质,可得2310a a ++-=,从而得到14a =-,即可求解.【详解】解:∵一个正数的两个平方根分别为231a a +-与,∴2310a a ++-=,解得:14a =-,∴这个正数为()2214922416a ⎛⎫+=-+= ⎪⎝⎭.故答案为:14-;491617.15【解析】【分析】本题应先把圆柱展开即得其平面展开图,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理求得AB 的长.【详解】解:如图所示,圆柱展开图为长方形,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πrcm ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理得=15cm .故蚂蚁经过的最短距离为15cm .(π取3)【点睛】本题考查了平面展开图-最短路径问题,解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.18(1)n n =+≥【解析】【分析】=(2=+(3=+则将此规律用含自然数n(n≥1)(1)n n =+≥【详解】解:=(2=+(3=+……,发现的规律用含自然数n(n≥1)(1)n n =+≥.(1)n n =+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.(1)1;(2;(3)0;(4)3+【解析】【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可.【详解】解:(133=623 2+-=4-3=1;(2)=(3)2+=5-7+2=0;(4)02(1=41(12)⨯-=423+-+=3+【点睛】本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键.20..【解析】【分析】直接利用平方根以及算术平方根的定义得出a,b的值,进而得出答案.【详解】∵2b+1的平方根为±3,∴2b+1=9,解得:b=4,∵3a+2b−1的算术平方根为4,∴3a+2b−1=16,则3a+8−1=16,解得:a=3,则a+2b=11,故a+2b 的平方根是:.【点睛】此题考查平方根,算术平方根,解题关键在于掌握其性质定义.21.这块地的面积为296m .【解析】【分析】如图所示,连接AC ,利用勾股定理求出AC ,运用勾股定理逆定理可证ACB △为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【详解】解:如图所示,连接AC ,在Rt ADC 中,10(m)AC ===,22222102467624AC BC BC +=+===,ACB ∴ 为直角三角形,∴这块地的面积21124106896(m )22ACB ADC S S S =-=⨯⨯-⨯⨯= ,答:这块地的面积为296m .【点睛】本题考查了勾股定理和逆定理的应用,解题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.22.(1)见解析;(2)见解析;(3)(﹣2,﹣1);(4)4【解析】【分析】(1)根据A 、C 两点坐标确定平面直角坐标系即可;(2)画出A 、B 、C 的对应点A 1、B 1、C 1即可;(3)根据点B 2的位置,写出坐标即可解决问题;(4)利用分割法求出面积即可.【详解】(1)平面直角坐标系如图所示:(2)△A 1B 1C 1如图所示;(3)点B 关于x 轴的对称点B 2的坐标是(﹣2,﹣1);(4)S △ABC=3×412-⨯2×412-⨯1×212-⨯3×2=4.【点睛】本题考查了作图﹣轴对称变换,解答本题的关键是熟练掌握轴对称的性质,学会用分割法求三角形面积,属于中考常考题型.23.(1)EF=3;(2)梯形ABCE 的面积为39.【解析】【详解】试题分析:(1)根据折叠的性质,折叠前后边相等,即CF CD DE EF ==,,得:AE AD EF =-,在Rt ACD △中,根据勾股定理,可将AC 的长求出,知CF 的长,可求出AF 的长,在Rt AEF 中,根据222AE EF AF =+,可将EF 的长求出;(2)根据S 梯形=()2AE BC AB +⨯,将各边的长代入进行求解即可.试题解析:(1)设EF=x ,∵四边形ABCD 是矩形,∴CD=AB=6,AD=BC=8,依题意知:△CDE ≌△CFE ,∴DE=EF=x ,CF=CD=6.∵在Rt ACD △中,226810AC =+=,∴AF=AC−CF=4,AE=AD−DE=8−x.在Rt AEF 中,有222AE EF AF =+,即222(8)4x x -=+解得x=3,即:EF=3.(2)由(1)知:AE=8−3=5,梯形ABCE 的面积()()5863922AE BC AB S +⨯+⨯===.24.(1)(4,6);(2)(2,6);(3)2.5秒或5.5秒.【解析】【分析】(1|6|0b -=,可以求得a 、b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.【详解】解:(1)a 、b |6|0b -=,40a ∴-=,60b -=,解得4a =,6b =,∴点B 的坐标是(4,6),故答案是:(4,6);(2) 点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,248∴⨯=,4= OA ,6OC =,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:862-=,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:52 2.5÷=秒,第二种情况,当点P 在BA 上时.点P 移动的时间是:(641)2 5.5++÷=秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.【点睛】本题考查坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.0.8【解析】【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.【点睛】本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键.。

北师大版八年级上册数学期中考试试卷附答案

北师大版八年级上册数学期中考试试卷附答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,无理数是()A.0 B C.﹣2 D.272.下列运算正确的是()3 C±3 D.1A 3 B3.已知ABC的三边长a,b,c满足(a﹣b)(c2﹣a2﹣b2)=0,则ABC的形状是()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形4.已知图形A在y轴的右侧,如果将图形A上的所有点的横坐标都乘﹣1,纵坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称5.如图,等腰直角△OAB的斜边OA在x轴上,且OA=2,则点B坐标为()A.(1,1) B.C.D.(1)6.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.对于一次函数y=﹣2x+4,下列结论中正确的是()A.函数值随自变量的增大而增大B.点(4﹣a,a)在该函数的图像上C.函数的图象与直线y=﹣x﹣2平行D.函数图象与坐标轴围成三角形的周长为8x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤59.以下列长度的线段为边,不能组成直角三角形的是()A.1,1B C.2,3,4 D.8,15,17 10.如图所示的图象分别给出了x与y的对应关系,其中表示y是x的函数的是()A.B.C.D.二、填空题11.若a b<,且a,b是两个连续的整数,则a b+的值是______.12.若y+4,则x2+y2的算术平方根是__________.13.在一次函数y=﹣2x+5图象上有A(x1,y1)和(x2,y2)两点,且x1>x2,则y1________ y2(填“>,<或=”)14.小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.15.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知轿车比货车每小时多行驶10千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.根据图象提供的信息,下列说法正确的是__________.△甲乙两地的距离为450千米△点A的实际意义是两车出发2小时相距150千米△x=3时,两车相遇△货车的速度为90千米/小时16.已知长方形ABCD,AB=6,BC=10,M为线段AD上一点且AM=8,点P从B出发以每秒2个单位的速度沿线段BC﹣CD的方向运动,至点D停止,设运动时间为t秒,当AMP为等腰三角形时,t的值为__________.三、解答题17.计算:(1(2|2|.18.如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)画出ABC关于y轴的对称的A 1B1C1.(2)A 1B1C的面积为;(3)y轴上存在一点P使得ABP的周长最小,点P的坐标为,周长最小值为.191(1(2(320.已知等腰三角形ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm.(1)求证:CD△AB;(2)求该三角形的腰的长度.21.学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即每套100元.经洽谈协商:A公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费;B公司的优惠条件是:服装按单价打八折,公司承担运费.如果设参加演出的学生有x人.(1)写出:△学校购买A公司服装所付的总费用y1(元)与参演学生人数x之间的函数关系式;△学校购买B公司服装所付的总费用y2(元)与参演学生人数x之间的函数关系式.(2)若参演学生人数为150人,选择哪个公司比较合算,请说明理由.22.如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴,y轴的正半轴上,连接AC,OA=4,OCOA=12.(1)根据题意,写出点A的坐标,点C的坐标;(2)求AC所在直线的表达式;(3)将纸片OABC折叠,使点A与点C重合(折痕为EF),折叠后纸片重叠部分(即△CEF)的面积为;(4)请直接写出EF所在直线的函数表达式.23.如图1,在正方形ABCD中,点E,F分别在正方形ABCD的边BC,CD上,△EAF =45°,连接EF.(1)思路梳理:将ABE绕点A逆时针旋转至ADG,如图1,使AB与AD重合,易证△GAF=△EAF=45°,可证AFG△AFE,故EF,BE,DF之间的数量关系为;(2)类比引申:如图2,在图1的条件下,若点E,F由原来的位置分别变到正方形ABCD 的边CB,DC的延长线上,△EAF=45°,连接EF,猜想EF,BE,DF之间的数量关系为,并给出证明;(3)联想拓展:如图3,等腰Rt ABC,△BAC=90°,△MAN=45°,把△MAN绕点A旋转,在整个旋转过程中AM、AN分别与直线BC交于点D、E,若BD=2,EC=4,则BE的长为.24.根据题意,解答问题:(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D 的坐标.25.【模型建立】(1)如图1,等腰Rt ABC中,△ACB=90°,CB=CA,直线ED经过点C,过点A作AD△ED 于点D,过点B作BE△ED于点E,求证:BEC△CDA.【模型应用】(2)如图2,已知直线l1:y=32x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l1则直线l2的函数表达式为.(3)如图3,将图1四边形放到平面直角坐标系中,点E与O重合,边ED放到x轴上,若OB=2,OC=1,在x轴上存在点M使的以O、A、B、M为顶点的四边形面积为4,请直接写出点M的坐标.(4)如图4,平面直角坐标系内有一点B(3,﹣4),过点B作BA△x轴于点A,BC△y轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.若CPD 是等腰直角三角形.请直接写出点D的坐标.参考答案1.B2.A3.A4.B5.A6.A7.D8.B9.C10.D11.5【分析】a和b的值,即可求解.【详解】解:△23<,△a=2,b=3,△a+b=5.故答案为:512.5【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式求值,再根据算术平方根的定义解答.【详解】解:根据题意得,3-x≥0且x-3≥0,解得x≤3且x≥3,所以,x=3,y=4,所以,x2+y2=32+42=25,△25的算术平方根是5,△x2+y2的算术平方根是5.故答案为:5.13.<【解析】先根据一次函数的性质判断出函数的增减性,进而可得出结论.【详解】解:△一次函数y=-2x+5中,k=-2<0,△y 随x 的增大而减小.△x 1>x 2,△y 1<y 2.故答案为:<.14.90.50.8 6.3x y x y +=⎧⎨+=⎩【分析】由题意可得等量关系△0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;△0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x 枚,0.8元的邮票y 枚,由题意得90.50.8 6.3x y x y +=⎧⎨+=⎩, 故答案为:90.50.8 6.3x y x y +=⎧⎨+=⎩. 15.△△△【分析】根据函数图象中的数据和题意,可以直接判断△△△,再根据轿车比货车每小时多行驶10千米和两车3小时相遇,即可计算出货车的速度,从而可以判断△.【详解】解:由图象可得,甲乙两地的距离为450千米,故△正确;点A 的实际意义是两车出发2小时相距150千米,故△正确;x=3时,两车相遇,故△正确;货车的速度为:(450÷3-10)÷2=70(千米/小时),故△错误;故答案为:△△△.16.42【详解】 解:四边形ABCD 是矩形, 6AB CD ∴==,10BC AD ==,90BAD B C D ∠=∠=∠=∠=︒, 当AMP ∆为等腰三角形时,分三种情况: △当PA PM =时,点P 在AM 的垂直平分线上, 取AM 的中点N ,过点N 作NP AM ⊥交BC 于P ,如图1所示:则四边形ABPN 是矩形,142BP AN AM ∴===,422t ∴=÷=;△当8AM AP ==时,如图2所示:在Rt ABP ∆中,由勾股定理得:BP ===,2t ∴=÷=△当8MA MP ==时,过点M 作MH BC ⊥于H ,如图3所示:则四边形ABHM 为矩形,6MH AB ∴==,8BH AM ==,90MHP ∠=︒,在Rt MHP ∆中,由勾股定理得:HP ===,8BP BH HP ∴=-=-,(824t ∴=-÷=-综上所述,t 的值为:42故答案为:42【点睛】本题考查了矩形的判定与性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.17.(1(2)10【解析】【分析】(1(2)化简|2|,再合并同类项即可. 【详解】解:(1=(2|2|+=())9322+-+-=9322-+=10【点睛】本题考查实数的运算,二次根式的混合运算,掌握运算法则是正确计算的前提.18.(1)见解析;(2)7;(3)7(0,)3【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可;(2)根据三角形的面积公式求解即可;(3)利用待定系数法求出AB 1所在直线解析式,从而得出点P 坐标,再利用勾股定理可得三角形ABP 周长最小值.【详解】解:(1)如图所示,△111A B C 即为所求.(2)如图所示,连接1A C ,△11A B C 的面积为17272⨯⨯=,故答案为:7;(3)如图所示,连接1AB ,与y 轴的交点即为所求点P ,设1AB 所在直线解析式为y kx b =+,则321k b k b +=⎧⎨-+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩, 2733y x ∴=+, 当0x =时,73y =, 7(0,)3P ∴;12AB ==,AB ==∴故答案为:7(0,)3【点睛】本题主要考查作图—轴对称变换,解题的关键掌握轴对称变换的定义和性质,并据此得出变换后的对称点.19.(1(23)9【解析】【分析】(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解;(2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点,然后计算即可.【详解】解:(1)原式(2)原式(3)由(2)可知:原式﹣=﹣=9.【点睛】本题考查了二次根式的混合运算以及分母有理化,观察式子找到规律是解题的关键.20.(1)见解析;(2)253cm【分析】(1)根据勾股定理的逆定理求出△BDC=90°,求出△ADC=90°即可;(2)在Rt△ADC中,由勾股定理得出a2=(a-6)2+82,求出a即可.【详解】解:证明:(1)设AB=AC=a cm,△BC=10cm,CD=8cm,BD=6cm,△BD2+CD2=BC2,△△BDC=90°,即△ADC=90°,△CD△AB;(2)△△ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a-6)2+82,解得:a=253,即AB=253cm.21.(1)△y1=70x+1200;△y2=80x;(2)若参演学生人数为150人,选择A公司比较合算,理由见解析【分析】(1)△根据A 公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费,可以写出学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式;△根据B 公司的优惠条件是:服装按单价打八折,公司承担运费,可以写出学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式;(2)先判断哪家公司比较合算,然后将x=150代入(1)中的两个函数解析式,求出相应的函数值,再比较大小即可说明理由.【详解】解:(1)△由题意可得,学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式是y 1=100x×0.7+1200=70x+1200,故答案为:y 1=70x+1200;△由题意可得,学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式是y 2=100x×0.8=80x ,故答案为:y 2=80x ;(2)若参演学生人数为150人,选择A 公司比较合算,理由:当x=150时,y 1=70×150+1200=11700,y 2=80×150=12000,△11700<12000,△若参演学生人数为150人,选择A 公司比较合算.22.(1)(4,0),(0,2);(2)122y x =-+;(3)52;(4)23y x =- 【分析】(1)由4OA =,12OC OA =.得2OC =,即可得出点A 、C 的坐标; (2)利用待定系数法求函数解析式;(3)由折叠的性质和平行线的性质得CE CF =,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理列方程可得CE 的长,从而求出面积;(4)设AC 与EF 的交点为G ,可知点G 为AC 的中点,再用待定系数法求函数解析式即可.【详解】解:(1)4=OA ,12OCOA =.2OC ∴=,(4,0)A ∴,(0,2)C ;故答案为:(4,0),(0,2);(2)设直线AC 的函数解析式为:y kx b =+,∴240b k b =⎧⎨+=⎩, ∴122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为:122y x =-+;(3)由折叠知:AE CE =,AEF CEF ∠=∠,//BC OA ,AEF CFE ∴∠=∠,CEF CFE ∴∠=∠,CE CF ∴=,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理得:222(4)2x x -+=, 解得52x =,52CE ∴=,115522222CEF S CF OC ∆∴=⨯⨯=⨯⨯=, 故答案为:52;(4)设AC 与EF 的交点为G ,52AE CE ==, 32OE ∴=, 3(,0)2E ∴, 由折叠知,EF 垂直平分AC ,∴点G 为AC 的中点,∴点(2,1)G ,设直线EF 的函数解析式为:y mx n =+, ∴30221m n m n ⎧+=⎪⎨⎪+=⎩,∴23m n =⎧⎨=-⎩, ∴直线EF 的函数解析式为23y x =-,故答案为:23y x =-.23.(1)BE+FD=EF ;(2)DF=EF+BE ;(3)2+【分析】(1)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFG△△AFE ,根据全等三角形的性质得出EF=FG ,即可得出答案;(2)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFE△△AFG ,根据全等三角形的性质得出EF=FG ,即可得出答案;(3)把△ACE 旋转到ABF 的位置,连接DF ,证明△AFE△△AFG (SAS ),则EF=FG ,△C=△ABF=45°,△BDF 是直角三角形,根据勾股定理即可作出判断.【详解】解:(1)如图1所示:△AB=AD ,△把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,△△ADC=△B=90°,△△FDG=180°,点F 、D 、G 共线,△△DAG=△BAE ,AE=AG ,△△FAG=△FAD+△GAD=△FAD+△BAE=90°-45°=45°=△EAF ,即△EAF=△FAG . 在△EAF 和△GAF 中,AF AFEAF GAF AE AG=⎧⎪∠=∠⎨⎪=⎩,△△AFG△△AFE (SAS ).△EF=FG .△EF=DF+DG=DF+BE ,即EF=BE+DF .故答案为:BE+FD=EF ;(2)DF=EF+BE .证明:如图2所示.△AB=AD ,△把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,△△ADC=△ABE=90°,△点C 、D 、G 在一条直线上.△EB=DG ,AE=AG ,△EAB=△GAD .又△△BAG+△GAD=90°,△△EAG=△BAD=90°.△△EAF=45°,△△FAG=△EAG -△EAF=90°-45°=45°.△△EAF=△GAF .在△EAF 和△GAF 中,EA GAEAF GAF EF FG=⎧⎪∠=∠⎨⎪=⎩,△△EAF△△GAF (SAS ).△EF=FG .△FD=FG+DG ,△DF=EF+BE ,故答案为:DF=EF+BE ;(3)把△ACE 旋转到ABF 的位置,连接DF ,则△FAB=△CAE .△△BAC=90°,△DAE=45°,△△BAD+△CAE=45°,又△△FAB=△CAE ,△△FAD=△DAE=45°,则在△ADF 和△ADE 中,AD AD FAD DAE AF AE =⎧⎪∠=∠⎨⎪=⎩,△△ADF△△ADE (SAS ).△DF=DE ,△C=△ABF=45°.△△BDF=90°.△△BDF 是直角三角形.△BD 2+BF 2=DF 2.△BD 2+CE 2=DE 2.=△BE=BD+DE=2+故答案为:2+24.(1)(2)(3)点D 的坐标为(2,0).【分析】(1)由一次函数解析式求得点A 、B 的坐标,则易求直角△AOB 的两直角边OB 、OA 的长度,所以在该直角三角形中利用勾股定理即可求线段AB 的长度;(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C ,构造直角△MNC ,则在该直角三角形中利用勾股定理来求求点M 与点N 间的距离;(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .在直角△DGN 和直角△MDH 中,利用勾股定理得到关于m 的方程12+(m+2)=42+(3-m )2通过解方程即可求得m 的值,则易求点D 的坐标.【详解】(1)令x=0,得y=4,即A (0,4).令y=0,得x=-2,即B (-2,0).在Rt△AOB 中,根据勾股定理有:AB(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C .根据题意:MC=4-(-1)=5,NC=3-(-2)=5.则在Rt△MCN 中,根据勾股定理有:MN(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .则GD=|m -(-2)|,GN=1,DN 2=GN 2+GD 2=12+(m+2)2MH=4,DH=|3-m|,DM 2=MH 2+DH 2=42+(3-m )2△DM=DN ,△DM 2=DN 2即12+(m+2)=42+(3-m )2整理得:10m=20得m=2,△点D 的坐标为(2,0).25.(1)见解析;(2)510y x =--;(3)(2,0)或(1,0)-;(4)1119(,)33-或(4,7)-或813(,)33- 【分析】(1)根据同角的余角相等可证BCE =∠∠CAD ,从而利用AAS 可证BEC CDA ∆≅∆; (2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可得OAB HBF ∆≅∆,则(3,5)F -,利用待定系数法即可求得函数解析式;(3)由(1)得BOC CDA ∆≅∆,得(3,1)A ,分两种情况,可求出OM 的值,即可得出点M 的坐标;(4)分点P 为直角顶点或点C 为直角顶点时或点D 为直角顶点三种情况,分别画出图形,利用(1)中K 型全等可得点D 的坐标,即可解决问题.【详解】解:证明:(1)AD ED ⊥,BE ED ⊥,90BEC ADC ∴∠=∠=︒,90ACD DAC ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,BCE CAD ∴∠=∠,在BEC ∆和CDA ∆中,BEC ADCBCE DAC BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEC CDA AAS ∴∆≅∆;(2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可证()OAB HBF AAS ∆≅∆,OA BH ∴=,OB FH =, 直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,(2,0)A ∴-,(0,3)B ,2OA ∴=,3OB =,5OH ∴=,3FH =,(3,5)F ∴-,设2l 的函数解析式为y kx b =+,将点A ,F 的坐标代入得5k =-,10b =-,∴直线2l 的函数解析式为510y x =--,故答案为:510y x =--;(3)由(1)得BOC CDA ∆≅∆,1OC AD ∴==,2CD OB ==,(3,1)A ∴,12332AOB S ∆=⨯⨯=,1OAM S ∆∴=,2OM ∴=,(2,0)M ∴;当M 点在x 轴的负半轴上时,如下图,12332AOB S ∆=⨯⨯=,1OBM S ∆∴=,1OM ∴=,(1,0)M ∴-;故答案为:(2,0)或(1,0)-;(4)△若点P 为直角顶点时,如图,设点P 的坐标为(3,)m ,则PB 的长为4m +,90CPD ∠=︒,CP PD =,180CPM CDP PDH ∠+∠+∠=︒,90CPM PDH ∴∠+∠=︒,又90CPM DPM ∠+∠=︒,PCM PDH ∴∠=∠,在MCP ∆与HPD ∆中,PCM PDHCMP PHM PC PD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△()MCP HPD AAS ∆≅∆,CM PH ∴=,PM PD =,∴点D 的坐标为(7,3)m m +-+,又点D 在直线21y x =-+上,2(7)13m m ∴-++=-+, 解得:103m =-,即点D 的坐标为1119(,)33-;△若点C 为直角顶点时,如图,设点P 的坐标为(3,)n ,则PB 的长为4n +,CA CD =,同理可证明()PCM CDH AAS ∆≅∆,PM CH ∴=,MC HD =,∴点D 的坐标为(4,7)n +-, 又点D 在直线21y x =-+上,2(4)17n ∴-++=-,解得:0n =,∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为(4,7)-;△若点D 为直角顶点时,如图,设点P 的坐标为(3,)k ,则PB 的长为(4)k +,CD PD =,同理可证明()CDM PDQ AAS ∆≅∆,MD PQ ∴=,MC DQ =,77(,)22k k D +-∴-, 又点D 在直线21y x =-+上,772122k k +-∴-⨯+=-, 解得:53k =-, ∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为813(,)33-,综上所述,点D 的坐标为1119(,)33-或(4,7)-或813(,)33-, 故答案为:1119(,)33-或(4,7)-或813(,)33-. 【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,一次函数图象上点的坐标的特征,作辅助线构造模型,运用分类思想是解题的关键.。

北师大版八年级上学期期中考试数学试题(含答案) (9)

北师大版八年级上学期期中考试数学试题(含答案) (9)

江西省抚州市临川一中八年级(上)期中数学试卷一.选择题(每小题3分,共18分)1.下列四个选项中,不是y关于x的函数的是()A.|y|=x﹣1 B.y= C.y=2x﹣7 D.y=x22.已知实数x,y满足|x﹣5|+=0,则代数式(x+y)2013的值为()A.1 B.﹣1 C.0 D.93.下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,24.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.105.如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()A.B.C.D.6.一位自行车爱好者利用周末进行了一次骑车旅行,如图是这次旅行过程中自行车到出发地的距离y(千米)与骑行时间t(分钟)之间的函数图象,观察图象,下列判断中正确的是()①这次旅行的总路程为16千米;②这次旅行中用于骑车的总时间为60分钟;③到达目的地之后休息了15分钟;④返回途中如果不休息,可以提前10分钟到达出发点.A.①②③ B.①②④ C.②③④ D.①③④二.填空题(每题3分,共24分)7.9的算术平方根是.8.y=中实数x的取值范围是.9.已知点A(a,﹣3)与B(,b)关于x轴对称,则a+b=.10.若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限.11.有理数m,n在数轴上的位置如图所示,那么化简|m﹣n|﹣的结果是.12.如图,y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是.13.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.14.图(1)是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由白布缝制的穿旗杆用的旗裤,阴影部分CDEF为矩形旗面.如图(2),将穿好彩旗的旗杆垂直插在操场上,旗杆顶端到地面的高度为220cm.在无风的天气里,彩旗自然下垂,则彩旗下垂时最低处离地面的高度h=cm.三、解答题(共78分)15.(6分)计算:(1)3+2﹣6(2)(π﹣3)0+|﹣2|﹣÷+(﹣1)﹣1.16.(7分)先化简,再求值:(+)2﹣(﹣)(+),其中a=3,b=4.17.(7分)已知a=(﹣2)﹣1,b=,c=(2012﹣π)0,d=|2﹣|.(1)请化简这四个数;(2)根据化简结果,求出这四个数中“有理数的和m”与“无理数的和n”,并比较m、n的大小.18.(6分)已知点M(3a﹣8,a﹣1),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点M在第二、四象限的角平分线上;(3)点M在第二象限,且a为整数;(4)点N坐标为(1,6),并且直线MN∥y轴.19.(8分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.20.(7分)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?21.(7分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.22.(8分)“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)23.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,请找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a﹣6=(m﹣n)2且a、m、n均为正整数,求a的值.24.(12分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴的正半轴交于点A,与x 轴交于点B(2,0),△ABO的面积为2,动点P从点O出发,以每秒1个单位长度的速度在射线OB上运动,动点Q从B出发,沿x轴的正半轴与点P同时以相同的速度运动,过点P作PM⊥x轴交直线AB于点M.①求直线AB的解析式;②当点P在线段OB上运动时,设△MPQ的面积为S,点P运动的时间为t秒,求S与t的函数关系式(直接写出自变量t的取值范围)③过点Q作QN⊥x轴交直线AB于点N,在运动过程中(点P不与点B重合),是否存在某一时刻t秒,使△MNQ是以NQ为腰的等腰三角形?若存在,求出时间t值.2016-2017学年江西省抚州市临川一中八年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题3分,共18分)1.下列四个选项中,不是y关于x的函数的是()A.|y|=x﹣1 B.y= C.y=2x﹣7 D.y=x2【考点】函数的概念.【分析】直接利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出答案.【解答】解:A、|y|=x﹣1,当x每取一个值,y有两个值与其对应用,故此选项不是y关于x的函数,符合题意;B、y=,当x每取一个值,y有唯一个值与其对应用,故此选项是y关于x的函数,不符合题意;C、y=2x﹣7,当x每取一个值,y有唯一个值与其对应用,故此选项是y关于x的函数,不符合题意;D、y=x2,当x每取一个值,y有唯一个值与其对应用,故此选项是y关于x的函数,不符合题意;故选:A.【点评】此题主要考查了函数的定义,正确把握y与x的关系是解题关键.2.已知实数x,y满足|x﹣5|+=0,则代数式(x+y)2013的值为()A.1 B.﹣1 C.0 D.9【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【专题】计算题.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣5=0,y+4=0,解得x=5,y=﹣4,所以,(x+y)2013=(5﹣4)2013=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.(下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,2【考点】勾股定理的逆定理.【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.【解答】解:A、52+42≠62,不能作为直角三角形的三边长,故本选项不符合题意.B、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意.C、12+12=()2,能作为直角三角形的三边长,故本选项符合题意.D、12+22≠22,不能作为直角三角形的三边长,故本选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.4.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.5.如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b>0,y2=bx+k中,b>0,k<0,符合;B、由图可得,y1=kx+b中,k>0,b>0,y2=bx+k中,b<0,k>0,不符合;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,不符合;D、由图可得,y1=kx+b中,k>0,b>0,y2=bx+k中,b<0,k<0,不符合;故选A.【点评】此题考查一次函数的图象问题,解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.6.(2016•安庆二模)一位自行车爱好者利用周末进行了一次骑车旅行,如图是这次旅行过程中自行车到出发地的距离y(千米)与骑行时间t(分钟)之间的函数图象,观察图象,下列判断中正确的是()①这次旅行的总路程为16千米;②这次旅行中用于骑车的总时间为60分钟;③到达目的地之后休息了15分钟;④返回途中如果不休息,可以提前10分钟到达出发点.A.①②③ B.①②④ C.②③④ D.①③④【考点】一次函数的图象.【专题】应用题.【分析】根据图象得出信息解答即可.【解答】解:①这次旅行的总路程为16千米,正确;②这次旅行中用于骑车的总时间为25+10+10=45分钟,错误;③到达目的地之后休息了15分钟,正确;④返回途中如果不休息,可以提前10分钟到达出发点,正确;故选D.【点评】此题考查从图象中获取信息,仔细观察领悟图意,获取信息,用这些信息解决实际问题即可.二.填空题(每题3分,共24分)7.(2016•广东)9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.8.(2016春•句容市期末)y=中实数x的取值范围是x≥﹣1,且x≠2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣2≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣2≠0,解得:x≥﹣1,且x≠2,故答案为:x≥﹣1,且x≠2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.9.(2010秋•海州区校级期末)已知点A(a,﹣3)与B(,b)关于x轴对称,则a+b=.【考点】坐标与图形变化-对称.【专题】计算题.【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值.【解答】解:依题意,得a=,b=3,∴a+b=+3=.故本题答案为:.【点评】本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数.10.(2016•眉山)若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第二、四象限.【考点】正比例函数的定义.【分析】根据正比例函数定义可得:|m|=1,且m﹣1≠0,计算出m的值,然后可得解析式,再根据正比例函数的性质可得答案.【解答】解:由题意得:|m|=1,且m﹣1≠0,解得:m=﹣1,函数解析式为y=﹣2x,∵k=﹣2<0,∴该函数的图象经过第二、四象限.故答案为:二、四.【点评】此题主要考查了正比例函数的定义和性质,关键是掌握形如y=kx(k是常数,k≠0)的函数叫做正比例函数;正比例函数y=kx(k是常数,k≠0),当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.11.有理数m,n在数轴上的位置如图所示,那么化简|m﹣n|﹣的结果是0.【考点】二次根式的性质与化简;实数与数轴.【分析】根据数轴可以判断m、n的大小,从而可以化简|m﹣n|﹣即可.【解答】解:由数轴可得,n<0<m,∴m﹣n>0,n﹣m<0,∴|m﹣n|﹣=m﹣n﹣(m﹣n)=m﹣n﹣m+n=0,故答案为:0.【点评】此题是二次根式的化简,主要考查实数与数轴,解题的关键是明确数轴的特点,由数轴可以得到m、n的大小.12.(2016春•官渡区期末)如图,y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是x >2.【考点】一次函数的性质.【分析】首先根据图象可知,该一次函数y=kx+b的图象经过点(2,0)、(0,﹣3).因此可确定该一次函数的解析式为y=x﹣3.由于y>0,根据一次函数的单调性,那么x的取值范围即可确定.【解答】解:由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,﹣3).∴可列出方程组,解得,∴该一次函数的解析式为y=x﹣3,∴当y>0时,x的取值范围是:x>2.故答案为:x>2【点评】本题主要考查了一次函数的图象性质,要掌握一次函数的单调性以及x、y交点坐标的特殊性才能灵活解题.13.(2016•黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【考点】点的坐标.【专题】新定义.【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.14.(2009春•淮南期中)图(1)是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD 是由白布缝制的穿旗杆用的旗裤,阴影部分CDEF为矩形旗面.如图(2),将穿好彩旗的旗杆垂直插在操场上,旗杆顶端到地面的高度为220cm.在无风的天气里,彩旗自然下垂,则彩旗下垂时最低处离地面的高度h=70cm.【考点】勾股定理的应用.【分析】如图,连接DF,在直角三角形DCF中,根据勾股定理可以求出DF长度,也就求出了彩旗下垂时最长的长度,然后利用已知条件就可以求出彩旗下垂时最低处离地面的高度.【解答】解:如图,连接DF,在直角三角形DCF中,DF==150cm,∴彩旗下垂时最低处离地面的高度h=220﹣150=70cm.故填空答案:70.【点评】此题首先正确理解题意,知道题目要求的结果可以用哪些线段去表示,然后利用勾股定理求出即可解决问题.三、解答题(共78分)15.(6分)计算:(1)3+2﹣6(2)(π﹣3)0+|﹣2|﹣÷+(﹣1)﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)原式合并同类二次根式即可得到结果;(2)原式利用零指数幂、负整数指数幂法则,二次根式除法,以及绝对值的代数意义化简即可得到结果.【解答】解:(1)原式=﹣;(2)原式=1+2﹣2﹣1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(7分)先化简,再求值:(+)2﹣(﹣)(+),其中a=3,b=4.【考点】二次根式的化简求值.【分析】根据完全平方公式和平方差公式进行化简,再把a,b的值代入进行计算即可.【解答】解:原式=a+b+2﹣(a﹣b)=a+b+2﹣a+b=2b+2,当a=3,b=4时,原式=8+4.【点评】本题考查了二次根式的混合运算,熟练掌握完全平方公式和平方差公式是解题的关键.17.(7分)(2012秋•昌平区期末)已知a=(﹣2)﹣1,b=,c=(2012﹣π)0,d=|2﹣|.(1)请化简这四个数;(2)根据化简结果,求出这四个数中“有理数的和m”与“无理数的和n”,并比较m、n的大小.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)利用负指数公式化简a与c,利用平方根的定义化简b,利用绝对值的代数意义化简d;(2)求出这四个数中“有理数的和m”与“无理数的和n”,利用作差法比较大小即可.【解答】解:(1)a=﹣,b=﹣+,c=1,d=﹣2;(2)m=a+c=,n=b+d=﹣,∵m﹣n=﹣(﹣)==<0,∴m<n.【点评】此题考查了实数的运算,零指数、负指数幂运算,利用了作差法比较两式的大小,熟练掌握此方法是解本题的关键.18.(6分)已知点M(3a﹣8,a﹣1),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点M在第二、四象限的角平分线上;(3)点M在第二象限,且a为整数;(4)点N坐标为(1,6),并且直线MN∥y轴.【考点】坐标与图形性质.【分析】(1)根据x轴上点的纵坐标为0列式计算即可得解;(2)根据第二四象限平分线上点的横坐标与纵坐标互为相反数列式计算即可得解;(3)根据第二象限点的横坐标是负数,纵坐标是正数列式求出a的取值范围,然后确定出a的值即可;(4)根据平行于y轴的直线上点的横坐标相同列式求出a的值,然后解答即可.【解答】解:(1)∵点M在x轴上,∴a﹣1=0,∴a=1,3a﹣8=3﹣8=﹣5,a﹣1=0,∴点M的坐标是(﹣5,0);(2)∵点M在第二、四象限的角平分线上,∴3a﹣8+a﹣1=0,解得a=,∴a﹣1=﹣1=,∴点M的坐标为(﹣,);(3)∵点M在第二象限,∴,解不等式①得,a<,解不等式②得,a>1,所以,不等式组的解集是1<a<,∵a为整数,∴a=2,∴3a﹣8=6﹣8=﹣2,a﹣1=2﹣1=1,∴点M(﹣2,1);(4)∵直线MN∥y轴,∴3a﹣8=1,解得a=3,∴a﹣1=3﹣1=2,点M(1,2).【点评】本题考查了坐标与图形性质,主要利用了x轴上的点的坐标特征,二四象限平分线上点的坐标特征,第二象限内点的坐标特征,平行于y轴的直线的上点的坐标特征,需熟记.19.(8分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.【考点】勾股定理.【专题】作图题.【分析】面积是3的直角三角形,边长要想是整数的话,应分别是1,6;或2,3,本题可使用2,3.面积是5的四边形,应考虑规则图形中的正方形,那么正方形的边长就为,应是直角边长为1,2的直角三角形的斜边长.【解答】解:(1)只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:=3;(2)画面积为5的四边形,我们可画边长的平方为5的正方形即可.如图1和图2.【点评】本题需注意各个图形的顶点应位于格点处.20.(7分)(2007•陇南)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.21.(7分)(2013•苍南县校级三模)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.【考点】一次函数图象上点的坐标特征.【专题】新定义.【分析】(1)根据和谐点的定义,利用矩形的面积和周长公式进行证明即可;(2)利用和谐点的定义列出关于a的方程(a+3)×2=3a,由此可以求得a=6.然后把点P的坐标代入直线方程,通过方程来求b的值.【解答】解:(1)∵1×2≠2(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)由题意得,(a+3)×2=3a,∴a=6,∴P(6,3),∵点P在直线y=﹣x+b上,∴代入得3=﹣6+b,解得,b=9.综上所述,a、b的值分别是6,9.【点评】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.22.(8分)(2004•泰州)“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图可知:10﹣14小时的时间段内小明全家在旅游景点游玩,因此时间应该是4小时;(2)可根据14小时和15小时两个时间点的数值,用待定系数法求出函数的关系式;(3)可根据8小时和10小时两个时间段的数值求出函数关系式,那么这个函数关系式应该是s=90x﹣720,那么出发时的15升油,可行驶的路程是15÷=135千米,代入函数式中可得出x=9.5,因此9:30以前必须加一次油,如果刚出发就加满油,那么可行驶的路程=35÷=315千米>180千米,因此如果刚出发就加满油,到景点之前就不用再加油了.也可以多次加油,但要注意的是不要超出油箱的容量.【解答】解:(1)由图象可知,小明全家在旅游景点游玩了4小时;(2)设s=kt+b,由(14,180)及(15,120)得,解得∴s=﹣60t+1020(14≤t≤17)令s=0,得t=17.答:返程途中s与时间t的函数关系是s=﹣60t+1020,小明全家当天17:00到家;(3)答案不唯一,大致的方案为:①9:30前必须加一次油;②若8:30前将油箱加满,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量至少为25升.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.23.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn;(2)利用所探索的结论,请找一组正整数a、b、m、n填空:13+ 4=(1+ 2)2;(3)若a﹣6=(m﹣n)2且a、m、n均为正整数,求a的值.【考点】二次根式的混合运算.【分析】(1)根据上面的例子,将(m+n)2,按完全平方展开,可得出答案;(2)由(1)可写出一组答案,不唯一;(3)将(m﹣n)2展开得出m2﹣2mn+5n2,由题意得mn=3,m2+5n2=a,再由a、m、n均为正整数,可得出m=3,n=1,a=14.【解答】解:(1)∵a+b=(m+n)2,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn;(2)由(1)可得a=13,b=4,m=1,n=2;(3)∵a﹣6=(m﹣n)2,∴a﹣6=m2﹣2mn+5n2,∴mn=3,m2+5n2=a,∵a、m、n均为正整数,∴m=3,n=1,a=14或m=1,n=3,a=46;故答案为:m2+3n2,2mn,13,4,1,2.【点评】本题考查了二次根式的混合运算,注意分析所给的材料,再进行解答.24.(12分)(2016春•宜春期末)如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴的正半轴交于点A,与x轴交于点B(2,0),△ABO的面积为2,动点P从点O出发,以每秒1个单位长度的速度在射线OB上运动,动点Q从B出发,沿x轴的正半轴与点P同时以相同的速度运动,过点P作PM⊥x轴交直线AB于点M.①求直线AB的解析式;②当点P在线段OB上运动时,设△MPQ的面积为S,点P运动的时间为t秒,求S与t的函数关系式(直接写出自变量t的取值范围)③过点Q作QN⊥x轴交直线AB于点N,在运动过程中(点P不与点B重合),是否存在某一时刻t秒,使△MNQ是以NQ为腰的等腰三角形?若存在,求出时间t值.【考点】一次函数综合题.【分析】①根据三角形的面积求出OA,再写出点A的坐标,然后利用待定系数法求一次函数解析式解答;②根据等腰直角三角形的性质表示出PM,再求出PQ的长,然后利用直角三角形的面积公式列式整理即可得解;③表示出PM、QN,再利用勾股定理列式表示出QM2,再求出MN,然后分MN=QN,QN=QM2种情况列出方程求解即可.【解答】解:①∵点B(2,0),∴OB=2,=OB•OA=×2•OA=2,∴S△ABO解得OA=2,∴点A(0,2),设直线AB的解析式为y=kx+b,则,解得:,∴直线AB的解析式为y=﹣x+2;②如图1,∵OA=OB=2,∴△ABO是等腰直角三角形,∵点P、Q的速度都是每秒1个单位长度,∴PM=PB=OB﹣OP=2﹣t,PQ=OB=2,∴△MPQ的面积为S=PQ•PM=×2×(2﹣t)=2﹣t,∵点P在线段OB上运动,∴0≤t<2,∴S与t的函数关系式为S=2﹣t(0≤t<2);③如图1,t秒时,PM=PB=|2﹣t|,QN=BQ=t,所以,QM2=PM2+PQ2=(2﹣t)2+4,MN=(QN﹣PM)=(t﹣t﹣2)=2,①若MN=QN,则t=2,②若QN=QM,则(2﹣t)2+4=t2∴4t﹣8=0解得t=2当t=2时,点P与B重合,不符合题意舍去综上所述,t=2时,△MNQ是以NQ为腰的等腰三角形.【点评】此题主要考查了一次函数综合题型,主要利用了三角形的面积,待定系数法求一次函数解析式,等腰直角三角形的判定与性质,等腰三角形的性质,难点在于③分情况讨论,用t表示出△MNQ的三边是解题的关键.。

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,无理数是()B.πC.﹣13D.52.已知点A的坐标为(﹣4,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.分别以下列四组线段为三边,能构成直角三角形的是()A.0.3,0.4,0.5B.1,1,2C.1,2,3D.9,16,254.若y=mx|m﹣1|是正比例函数,则m的值是()A.0B.1C.2D.0或﹣2的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)7.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm 8.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A.B.C.D.9.点P(3,﹣4)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m二、填空题的立方根是________.11.2712.如果一个数的平方根是2x+1和x﹣7,那么这个数是___.13.已知点A(﹣2,y1),B(3,y2)在一次函数y=2x﹣3的图象上,则y1___y2(填“>”,“<”或“=”).14.长方形ABCD在平面直角坐标系中的位置如图所示,若AD=5,点B的坐标为(﹣3,3),则点C的坐标为___.15.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,CD⊥AB于点D,则CD的长为___.16.如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是___.17.如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.18.若实数x,y满足5x-5x-+8,则2x﹣y=___.三、解答题19.计算:38﹣(π﹣3.14)0218182﹣1)(3)5-7)5+75220.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8,求CD的长.21.在弹性限度内,弹簧的长度与所挂物体质量满足一次函数关系,某数学兴趣小组通过实验发现弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下表:x/kg0123⋯y/cm14.51515.516⋯(1)根据上表数据求出y与x之间的关系式;(2)求当所挂物体的质量为6千克时弹簧的长度.22.如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.(1)画出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.23.甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为1y元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.24.如图,在Rt△ABC中,∠B=90°,AB=9,BC=12,D为BC上一点,连接AD,将△ABC沿AD折叠,使点B恰好落在边AC上的点B'处,求DB'的长度.25.如图,直线y=kx+4与x轴相交于点A,与y轴相交于点B,且(1)求点A的坐标;(2)求k的值;(3)C为OB的中点,过点C作直线AB的垂线,垂足为D,交x轴正半轴于点P,试求点P的坐标及直线CP的函数表达式.26.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案1.B【解析】【分析】根据无理数的概念“无限不循环的小数”结合算术平方根可进行排除选项.【详解】,313、5;故选B.【点睛】本题主要考查无理数及算术平方根,熟练掌握无理数的概念是解题的关键.2.C【解析】【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:∵点A的坐标为(﹣4,﹣3),∴点A在第三象限;故选C.【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题3.A 【解析】【分析】根据勾股定理的逆定理:若a、b、c 为三角形的三边长,满足222+=a b c ,那么这个三角形就是直角三角形,由此进行求解即可.【详解】解:A、∵2220.30.40.5+=,∴能构成直角三角形,故此选项符合题意;B、∵2221122+=≠,∴不能构成直角三角形,故此选项不符合题意;C、∵2221253+=≠,∴不能构成直角三角形,故此选项不符合题意;D、∵22291633725+=≠,∴不能构成直角三角形,故此选项不符合题意;故选A.【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.4.C 【解析】【分析】根据正比例函数的概念:形如y=kx,其中k≠0的函数,可知11,0m m -=≠,进而求解即可.【详解】解:由题意得:11,0m m -=≠,∴2m =;【点睛】本题主要考查正比例函数的概念,熟练掌握正比例函数的概念是解题的关键.5.B【解析】【分析】利用4<5<91的范围.【详解】∵4<5<9,故选:B.【点睛】本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个连续的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小.6.D【解析】【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:∴点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.7.A【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求.【详解】解:如图所示:∵圆柱的高等于12cm,底面上圆的周长等于18cm,∴AC=9cm,BC=12cm,∴2215cmAB AC BC=+=,∴蚂蚁沿圆柱侧面爬行的最短路程是15cm;故选A.本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键.8.D【解析】【分析】根据正比例函数y=kx中,y的值随着x值的增大而减小,可得k<0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:∵正比例函数y=kx中,y的值随着x值的增大而减小,∴k<0,∴一次函数y=kx+k与y轴的交点在y轴的负半轴,∴一次函数y=kx+k的图像经过第二、三、四象限,故选D.【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k<0.9.D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:∵3>0,﹣4<0,∴点P(3,﹣4)所在的象限是第四象限.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C..【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.11.-3【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.25或225【解析】【分析】根据一个正数的两个平方根互为相反数或相等,可知2x+1+x-7=0或2x+1=x-7,求解x,进而问题可求解.【详解】解:由题意得:2x+1+x-7=0或2x+1=x-7,解得:x=2或x=-8,∴这个正数为()222125⨯+=或(-15)²=225,故答案为25或225.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.13.<【解析】【分析】根据题意易得k=2>0,则有y 随x 的增大而增大,再由点A(﹣2,y 1),B(3,y 2)在一次函数y=2x﹣3的图象上可进行求解.【详解】解:由题意得:k=2>0,∴y 随x 的增大而增大,∵点A(﹣2,y 1),B(3,y 2)在一次函数y=2x﹣3的图象上,∴12y y <;故答案为<.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.14.(2,3)【解析】【分析】由题意易证BC∥AD,则有点B 与点C 的纵坐标相等,然后根据两点距离公式可进行求解.【详解】解:在长方形ABCD 中,BC∥AD,∴点B 与点C 的纵坐标相等,设点(),3C x ,∵AD=5,∴BC=5,∴352x =-+=,∴C(2,3);故答案为(2,3).15.4.8【分析】先利用勾股定理求出AC 的长,再由三角形面积公式11=22ABC S AC BC AB CD ⋅=⋅△得到AC BC CD AB⋅=,由此即可得到答案.【详解】解:∵在△ABC 中,∠ACB=90°,AB=10,BC=6,∴8AC ==,∵CD⊥AB,∴11=22ABC S AC BC AB CD ⋅=⋅△,∴ 4.8AC BC CD AB⋅==,故答案为:4.8.16.45°【分析】如图,连接EF,由题意易得△AHE≌△EGF,则有∠AEH=∠EFG,AE=EF,然后可得∠AEH+∠FEG=90°,则有△AEF 是等腰直角三角形,进而问题可求解.【详解】解:如图,连接EF,∵AH=EG=2,∠AHE=∠EGF=90°,EH=FG=1,∴△AHE≌△EGF,∴∠AEH=∠EFG,AE=EF,∵∠EFG+∠FEG=90°,∴∠AEH+∠FEG=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴∠EAF=45°;故答案为45°.【点睛】本题主要考查全等三角形的性质与判定及等腰直角三角形的性质与判定,熟练掌握全等三角形的性质与判定及等腰直角三角形的性质与判定是解题的关键.17.(22018,0)【分析】根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.【详解】根据题意得:A1和B1的横坐标为1,把x=1代入y=x得:y=1B1的纵坐标为1,即A 1B 1=1,∵△B 1A 1A 2为等腰直角三角形,∴A 1A 2=1,A 2和B 2的横坐标为1+1=2,同理:A 3和B 3的横坐标为2+2=4=22,A 4和B 4的横坐标为4+4=8=23,…依此类推,A 2019的横坐标为22018,纵坐标为0,即点A 2019的坐标为(22018,0),故答案为:(22018,0).【点睛】此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.18.2【分析】根据根式有意义的条件可知5x =,然后可知y=8,进而代入求解即可.【详解】解:∵实数x,y 满足50,50x x -≥-≥,∴50x -=,解得:5x=,∴y=8,∴22582x y -=⨯-=,故答案为2.19.(1)3(2)2;(3)1-【分析】(1)根据零次幂、立方根及绝对值可直接进行求解;(2)先对二次根式进行化简,然后再进行二次根式的加减运算;(3)利用乘法公式进行二次根式的混合运算即可.【详解】解:(1)原式=2123-+=-(2)原式=22=;(3)原式=207591--+=.【点睛】本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键.20.CD =【解析】【分析】由题意可知222AB BD AD =+,则有90ADB ADC ∠=∠=︒,然后根据勾股定理可求解.【详解】解:∵AB=5,BD=3,AD=4,∴22225,9,16AB BD AD ===,∴222AB BD AD =+,∴90ADB ADC ∠=∠=︒,在Rt△ADC 中,AC=8,∴DC ==.【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理是解题的关键.21.(1)()0.514.50y x x =+≥;(2)当所挂物体的质量为6千克时弹簧的长度为17.5cm【解析】【分析】(1)设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,然后根据表格中的数据把(0,14.5),(1,15)代入求解即可;(2)令6x =,求出此时y 的值即为弹簧的长度.【详解】解:设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,由题意得:14.515b k b =⎧⎨+=⎩,∴0.514.5k b =⎧⎨=⎩,∴一次函数关系式为()0.514.50y x x =+≥;(2)当当所挂物体的质量为6千克时,即6x =,∴0.5614.517.5y =⨯+=,∴当所挂物体的质量为6千克时弹簧的长度为17.5cm.【点睛】本题主要考查了一次函数的应用,解题的关键在于能够熟练掌握求一次函数解析式.22.(1)图见详解,()()()1112,3,3,2,1,1A B C ------;(2)图见详解,()0,1P【解析】【分析】(1)分别作出点A、B、C 关于x 轴的对称点,然后顺次连接即可,最后根据图象得到点的坐标即可;(2)作点A 关于y 轴的对称点D,然后连接DB 1,交y 轴于点P,此时点P 即为所求,进而求出直线DB 1的函数解析式即可求解点P 的坐标.【详解】解:(1)如图所示,由图象可知()()()1112,3,3,2,1,1A B C ------;(2)作点A 关于y 轴的对称点D,然后连接DB 1,交y 轴于点P,由轴对称的性质可知AP PD =,则有PA+PB 1的最小值即为1DB 的长,∴设直线DB 1的函数解析式为y kx b =+,把点()()12,3,3,2D B --代入得:2332k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=⎩,∴直线DB 1的函数解析式为1y x =+,令x=0时,则有y=1,∴()0,1P .【点睛】本题主要考查坐标与图形、轴对称的性质及最短路径问题,熟练掌握坐标与图形、轴对称的性质及最短路径问题是解题的关键.23.(1)()124006001y x x =+>,()222501y x x =>;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析【解析】【分析】(1)根据两家商场的优惠方案分别求出对应的关系式即可;(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.【详解】解:(1)由题意得:()()()1300030001120%24006001y x x x =+--=+>,()()23000125%22501y x x x =⨯-=>;(2)当5x =时,12400560012600y =⨯+=,22250511250y =⨯=,∴12y y >,∴当所买商品为5件时,选择乙商场更优惠.【点睛】本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.92【解析】【分析】由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,先利用勾股定理求出15AC ==,即可得到6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,则()222126x x -=+,解方程即可.【详解】解:由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,∴=180=90CB D AB D ''-o o∠∠∵∠B=90°,AB=9,BC=12,∴15AC ==,∴6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,∴()222126x x -=+,解得92x =,∴92DB '=.【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质与勾股定理.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+【解析】【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB≌△COP,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y=kx+4可得:y=4,∴()0,4B ,∴OB=4,在Rt△AOB2OA ==,∴()2,0A -;(2)由(1)可把点()2,0A -代入直线y=kx+4得:240k -+=,解得:2k =;(3)∵点C 为OB 的中点,OB=4,∴2OC =,∴OC OA =,∵90AOB COP ∠=∠=︒,DP AB ⊥,∴90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∴ABO CPO ∠=∠,又∵∠AOB=∠COP=90°,∴△AOB≌△COP(AAS),∴OP=OB=4,∴()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∴240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩,∴直线CP 的解析式为122y x =-+.【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【解析】【分析】(1)根据图象可直接求出A、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】解:(1)由图象可知:A、B 两地的相距20km;乙骑车的速度为(30-20)÷2=5km/h;故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,∴甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,∴乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y x y x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,∴甲追上乙用了4小时的时间.。

2020-2021学年度(北师大版)八年级数学下册期中考试试卷及答案

2020-2021学年度(北师大版)八年级数学下册期中考试试卷及答案

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)2.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF3.下列四个判断:其中正确的有()①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;<1;③若a>b,则ba④若a>0,则b−a<b,A. 1个B. 2个C. 3个D. 3个4.下列式子中,是不等式的有()①2x=7;②3x+4y;③−3<2;④2a−3≥0;⑤x>1;⑥a−b>1.A. 5个B. 4个C. 3个D. 1个5.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是()A. ①②③B. ①②④C. ①③④D. ①②③④6.在△ABC中,已知a,b,c分别是∠A,∠B,∠C的对边,则下列条件中,不能判定△ABC是等腰三角形的是()A. a=3,b=3,c=4B. a∶b∶c=2∶3∶4C. ∠B=50°,∠C=80°D. ∠A∶∠B∶∠C=1∶1∶27.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)8.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个9.若关于x的不等式组{2−x2>2x−43,−3x>−2x−a的解集是x<2,则a的取值范围是()A. a≥2B. a<−2C. a>2D. a≤210.不等式4x+1>x+7的解集在数轴上表示正确的是()A. B.C. D.11.如图,点P是∠AOB的平分线上一点,PC⊥OA于点C,PD⊥OB于点D,连接CD交OP于点E,下列结论不一定正确的是()A. PC=PDB. OC=ODC. OP垂直平分CDD. OE=CD12.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A. ④B. ②③C. ①②③D. ①②③④13.如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:①AP的最小值是1,最大值是4;②当AP=2时,△APO是等腰三角形;③当AP=1时,△APO是等腰三角形;④当AP=√3时,△APO是直角三角形;⑤当AP=√5时,△APO是直角三角形.其中正确的是()A. ①④⑤B. ②③⑤C. ②④⑤D. ③④⑤14.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为()A. 11B. 12C. 13D. 1415.如图,已知P(3,2),B(−2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q 移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A. (0,12)B. (0,23)C. (0,43)D. (0,45)卷Ⅱ二、填空题(本大题共5小题,共25.0分) 16. 如图,将△ABC 绕点C 顺时针旋转至△DEC ,使点D 落在BC 的延长线上,已知∠A =27°,∠B =40°,则∠ACE =________°.17. 由不等式a >b 得到am <bm ,则m 应满足的条件是 . 18. 在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是 .19. 若关于x 的不等式(a +1)x >a +1的解集为x >1,则a 的取值范围是 .20. 图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是 .三、解答题(本大题共7小题,共80.0分) 21. (8分)(1)计算:(−3)2−√4+(12)0;(2)解不等式组:{x −2<32x +1>7.22. (8分)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点距离相等. (1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =40°,求∠CAD 的度数.23.(12分)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?24.(10分)如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.25.(12分)王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65700第二次37710第三次78693(1)王老师是第_____________次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?26.(14分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE//OA交OB于点E.判断△CED的形状,并说明理由.27.(16分)如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2√2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.答案1.C2.D3.B4.B5.D6.B7.D8.B9.A10.A11.D12.D13.C14.D15.A16.4617.m<018.50°19.a>−120.方块521.(1)解:原式=9−2+1=8.(2)解:{x−2<3 ①2x+1>7 ②,由①得,x<5;由②得,x>3.∴不等式组的解为3<x<5.22.解:(1)如图,点D为所作;(2)△ABC中,∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD=BD,∴∠B=∠BAD=40°,∴∠CAD=∠BAC−∠BAD=10°.23.解:(1)S通道=b(2a+3b)+b(4a+3b)−b2 =2ab+3b2+4ab+3b2−b2=(6ab+5b2)(平方米).答:通道的面积共有(6ab+5b2)平方米;=(4a+3b)(2a+3b)−(6ab+5b2)(2)S草坪=8a2+6ab+12ab+9b2−(2ab+3b2+4ab+3b2−b2)=8a2+18ab+9b2−6ab−5b2=(8a2+12ab+4b2)(平方米).答:剩余草坪的面积是(8a2+12ab+4b2)平方米;=(4a+3b)(2a+3b)−[2b(2a+3b)+b(4a+3b)−2b2] (3)S草坪=8a2+18ab+9b2−(4ab+6b2+4ab+3b2−2b2)=8a2+18ab+9b2−8ab−7b2=8a2+10ab+2b2, ∵a=2b,∴32b2+20b2+2b2=54b2=216,∴b2=4,∴b=2(米).答:通道的宽度是2米.24.解:(1)作AD⊥BC于D,在Rt△ADC中,AC=2,∠ACB=30∘,AC=1,∴AD=12∴DC=√AC2−AD2=√22−12=√3,∵AB=AC,∠ADC=90∘,∴BC=2DC=2√3.(2)∵A′B=BC=2√3,∠ACB=30∘,∴∠2=∠ACB=30∘,∴∠1+∠3=180∘−30∘−30∘=120∘,∵AB=AC,∠ACB=30∘,∴∠1=∠ACB=30∘,∴∠3=90∘.在Rt△ABA′中,∠2=30∘,AB=2,∴AA′=4.即平移的距离是4.25.解:(1)三(2)足球的标价为50元,篮球的标价为80元.(3)最多可以购买38个篮球.26.解:△CED是等边三角形,理由如下:∵OC平分∠AOB,∠AOB=60°,∴∠AOC=∠COE=30°.∵CE//OA,∴∠AOB=∠CED=60°.∵CD⊥OC,∴∠OCD=90°.∴∠EDC=60°.∴△CED是等边三角形.27.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴DE=√(2√2)2+(2√2)2=4,∴AD=√42−12=√15.∴AB=AD+BD=√15+1;(3)如图,过C作CG⊥AB于G,则AG=12AB,∵∠ACB=90°,AC=BC,∴CG=12AB,即CGAB=12,∵点F为AD的中点,∴FA=12AD,∴FG=AG−AF=12AB−12AD=12(AB−AD)=12BD,由(1)可得:BD=AE,∴FG=12AE,即FGAE=12,∴CGAB =FGAE,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

【北师大版】数学八年级上册《期中考试题》有答案

【北师大版】数学八年级上册《期中考试题》有答案

2021-2022学年第一学期期中测试北师大版数学八年级试题学校________ 班级________ 姓名________ 成绩________考试时间90分钟 满分100分一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的) 1.(2020·山东二模)有下列说法: ①任何实数都可以用分数表示; ②实数与数轴上的点一一对应;③在 1 和 3 之间的无理数有且只有√2,√3 ,√5,√7 这 4 个; ④π2 是分数,它是有理数. 正确的个数是( ) A .1B .2C .3D .42.(2020·化成最简二次根式为( )A .B .127C D 3.(2020·广西上思·期中)若直角三角形的面积是6,一条直角边长是3,则斜边的长是( ) A .5B .6C .8D .104.(2019·四川阿坝·初二期末)如图,已知两正方形的面积分别是25和169,则字母B 所代表的正方形的面积是( )A .12B .13C .144D .1945.(2020·武威第八中学期中)在平面直角坐标系中,点C 在x 轴上方且在y 轴左侧,距离x 轴为3个单位长度,则点C 的坐标可能为( ) A .()3,2-B .()3,4-C .()5,3D .()3,3-6.(2020·甘肃省庆阳市第五中学初二期末)如图,数轴上点A 所表示的实数是( ).A B C . D .27.(2020·陕西咸阳·天王学校初二开学考试)已知:如图1,点G 是B C 的中点,点H 在A F 上,动点P 以每秒2C m 的速度沿图1的边线运动,运动路径为:G→C →D →E→F→H,相应的△A B P 的面积y (C m 2)关于运动时间t (s )的函数图象如图2,若A B =6C m,则下列四个结论中正确的个数有( )①图1中的B C 长是8C m, ②图2中的M 点表示第4秒时y 的值为24C m 2, ③图1中的C D 长是4C m, ④图2中的N 点表示第12秒时y 的值为18C m 2. A .1个B .2个C .3个D .4个8.(2020·广东汕尾·初二期末)标准魔方的表面积为2210cm ,则标准魔方的边长大约为( ) A .在13cm 和14cm 之间 B .在5cm 和6cm 之间 C .在6cm 和7cm 之间 D .在14cm 和15cm 之间9.(2020·山东中区·期中)若a =b =则A 2016B 2017的值等于( )A B C .1D .1-10.(2019·深圳大学师范学院附属中学初二期中)已知点()11A x y ,,()22B x y ,,()33C x y ,,()21D -,四点在直线4y kx =+的图象上,且132x x x >>,则123y y y ,,的大小关系为( ) A .123y y y >>B .132y y y <<C .213y y y >>D .321y y y <<11.(2020·山东中区·初二期中)在平面直角坐标系内,点P (3m -,5m -)在第四象限,则m 的取值范围是( ) A .53m -<<B .35m -<<C .35m <<D .53m -<<-12.(2020·河南开封·期末)如图,在边长为4的等边ABC △中,点P 为BC 边上任意一点,PE AB ⊥于点E ,PF AC ⊥于点F ,则PE PF +的长度和为( )A .4B .8C .D .13.(2020·山东中区·期中)如图, 点A 的坐标为(1,2)-,点B 的坐标为(2,1),有一点C 在x 轴上移动, 则点C 到A 、B 两点的距离之和的最小值为( )A .B .4C .3D .14.(2020·临沂商城实验学校期末).如图,直线1:1l y x =+与直线211:22l y x =+相交于点()1,0P -,直线1l 与y 轴交于点A ,一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,达到直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动,照此规律运动,动点C 依次经过点11223320202020,,,,,?··,B ,B A B A B A A ,则当动点C 到达2020A 处时,运动的总路径的长为( )A .201922-B .202021-C .202022-D .202122-二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上) 15.(2020·武威第八中学期中)算术平方根和立方根都等于本身的数有_________.16.(2020·陕西商州·期末)已知点P 在第四象限,且到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为_____.17.(2020·克东县乾丰镇中学初二期中)如图是一个三级台阶,它的每一级的长、宽和高分别为20 D m,3 D m,2 D m,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________D m.18.(2020·湖南岳阳·初二期末)一个装有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:L)与时间(单价:min )之间的关系如图所示。

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案,每小题3分)1.9的平方根是( )A .3B .3±C .3-D .92.下列各数中,是无理数的是( )A .3.1415BC .227D 3.下列计算正确的是( )A 3±B .010(﹣)=CD 2 4.以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .1,2,3 5.如图,正方形A 、B 、C 的边长分别为直角三角形的三边长,若正方形A ,B 的边长分别为3和5,则正方形C 的面积为( )A .16B .12C .15D .186.点P(3,﹣2)关于x 轴的对称点P′的坐标是( )A .(﹣3,2)B .(3,﹣2)C .(﹣3,﹣2)D .(3,2) 7.平面直角坐标系y 轴上有一点P (m-1,m+3),则P 点坐标是( )A .(-4,0)B .(0,-4)C .(4,0)D .(0,4) 8.直线31y x 向下平移2个单位,所得直线的解析式是( )A .33y x =+B .32y x =-C .32y x =+D .31y x =-9( ).A .3B .4C .5D .610.一次函数y =kx -k(k <0)的图象大致是( )A .B .C .D . 11.如图,架在消防车上的云梯AB 长为10m ,∠ADB=90°,AD=2BD ,云梯底部离地面的距离BC为2m,则云梯的顶端离地面的距离AE为( )A.B.C.D.7m12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h 时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个二、填空题-的立方根是________.13.2714______.15.在平面直角坐标系中,点(3-,2)到x轴的距离是________.16.在△ABC中,三边长分别为8、15、17,那么△ABC的面积为__.三、解答题17.计算:1)(1)(2)218.如图所示,在直角坐标系中,△ABC的三个顶点的坐标分别为A(1,5),B(1,−2),C(4,0).(1)请在图中画出△ABC关于y轴对称的△A′B′C′,并写出三个顶点A′、B′、C′的坐标. (2)求△ABC的面积.19.如图,△ABC中,AB=AC,BC=4cm,作AD⊥BC,垂足为D,若AD=4cm,求AB 的长.20.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.y x分别于x,y轴交于A,B两点,过点B的直线交x轴正半轴于点C,21.直线AB:3且OB:OC=3:1.(1)直接写出点A、B、C的坐标;(2)在线段OB上存在点P,使点P到B,C的距离相等,求出点P的坐标;(3)在x轴上方存在点D,使得以点A,B,D为顶点的三角形与△ABC全等,求出点D 的坐标.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.23.在平面直角坐标系xOy中,已知A(-1,5),B(4,2),C(-1,0)三点.(1)点A的对称点A′的坐标为(1,-5),点B关于x轴的对称点B′的坐标为________,点C关于y轴的对称点C′的坐标为________;(2)求(1)中的△A′B′C′的面积.24.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.25.阅读下列材料,然后回答问题.,这样的式子,其实我们还可以将其进一步化简.===1=(三)以上这种化简的步骤叫做分母有理化还可以用以下方法化简.1====.(四)(1(2参考答案1.B【分析】根据(±3)2=9,即可得出答案. 【详解】解:∵2(39)±=,∴9的平方根为:3±故选B .【点睛】本题考查了平方根的知识,掌握平方根的定义是关键,注意一个正数的平方根有两个且互为相反数.2.D【分析】2是有理数.【详解】2=是无理数,故选D .【点睛】本题考查无理数的定义;能够准确辨识无理数是解题的关键.3.D【分析】根据算术平方根的概念、0次幂运算法则、二次根式加法法则、立方根的概念逐一进行求解即可.【详解】A. 3,故A 选项错误;B. 011(﹣)=,故B 选项错误;C. C 选项错误;D. 2,正确,故选D.【点睛】本题考查了算术平方根、立方根、0指数幂、二次根式的加法运算,熟练掌握各运算的运算法则是解题的关键.4.C【分析】根据两小边的平方和是否等于最长边的平方进行判断是否是直角三角形.【详解】A选项:22+32=13≠42,不能构成直角三角形,故本选项不符合题意;B选项:32+42=25=62,不能构成直角三角形,故本选项正确;C选项:52+122=169=132,能构成直角三角形,故本选项符合题意;D、122+132=313≠142,不能构成直角三角形,故本选项不符合题意;故选:C.【点睛】考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.5.A【分析】先根据勾股定理求出DE,再根据正方形的面积公式求出即可.【详解】如图所示:∵正方形A、B的边长分别为3和5,∴DF=5,EF=3,∴,∴正方形C的面积为42=16.故选:A.【点睛】考查了勾股定理,解题关键是利用直角三角形之间的三边关系求得正方形C的边长为4.6.D【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点P(3,﹣2)关于x轴的对称点P′的坐标是(3,2).故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.D【分析】由y轴上的点的横坐标为0,可得关于m的方程,求出m的值即可求得答案.【详解】由P(m-1,m+3)在直角坐标系的y轴上,得m-1=0,解得m=1,m+3=4,P点坐标为(0,4),故选D.【点睛】本题考查了坐标轴上的点的坐标特征,熟记y轴上点的横坐标为0是解本题的关键.8.D【分析】直接利用一次函数平移规律进而得出答案.【详解】解:直线31y x 向下平移2个单位,所得直线的解析式是:31231y x x =+-=-. 故选D .【点睛】考核知识点:一次函数图象的平移.理解平移性质是关键.9.A【分析】由于91016<<<10与9的距离小于16与10的距离,可得答案.【详解】由于91016<<<10与9的距离小于16与10的距离,可得答案. 解:∵2239,416==,∴34<,10与9的距离小于16与10的距离,∴最接近的是3.故选A .【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 10.A【详解】试题分析:首先根据k 的取值范围,进而确定﹣k >0,然后再确定图象所在象限即可.解:∵k <0,∴﹣k >0,∴一次函数y=kx ﹣k 的图象经过第一、二、四象限,故选A .考点:一次函数的图象.11.B【分析】先根据勾股定理列式求出BD ,则AD 可求,AE 也可求.【详解】解:由勾股定理得:AD 2+BD 2=AB 2,4BD 2+BD 2=100,故答案为B【点睛】本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键. 12.C【解析】【分析】根据函数图象可以判断题目中的各个小题是否正确,从而可以解答本题.【详解】由图象可得,甲队挖掘30m 时,用的时间为:30÷(60÷6)=3h ,故①正确,挖掘6h 时甲队比乙队多挖了:60−50=10m ,故②正确,前两个小时乙队挖得快,在2小时到6小时之间,甲队挖的快,故③错误, 设06x ≤≤时,甲对应的函数解析式为y =kx ,则60=6k ,得k =10,即06x ≤≤时,甲对应的函数解析式为y =10x ,当26x ≤≤时,乙对应的函数解析式为y =ax +b ,230650a b a b +=⎧⎨+=⎩ ,得520a b =⎧⎨=⎩,即26x ≤≤时,乙对应的函数解析式为y =5x +20,则10520y xy x =⎧⎨=+⎩ ,得440x y =⎧⎨=⎩,即开挖后甲、乙两队所挖河渠长度相等时,x =4,故④正确,由上可得,一定正确的是①②④,故选C.【点睛】考查一次函数的应用,待定系数法求一次函数解析式,一次函数的交点等.看懂图象是解题的关键.13.-3.【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.14.2【分析】根据二次根式的性质化简即可.【详解】=-=,22故答案为:2.【点睛】此题考查了二次根式的性质,a2a=是解答此题的关键.15.2【分析】根据点到x轴的距离等于纵坐标的长度.【详解】点P(-3,2)到x轴的距离为2.故答案是:2.【点睛】考查了点到坐标轴的距离,解题关键是熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度.16.60【分析】首先根据数量关系利用勾股定理逆定理确定三角形是直角三角形,再求面积即可.【详解】∵22281517+=,∴△ABC是直角三角形,∴△ABC的面积是:181560 2⨯⨯=,故答案为60.【点睛】考查勾股定理的逆定理以及三角形的面积公式,掌握勾股定理的逆定理是解题的关键.17.【解析】【分析】本题考查了解二元一次方程组,利用消元的思想是解题关键.【详解】(1)原式(2)原式=5﹣=6﹣=6﹣【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(1)画图见解析;(2)面积为10.5.【分析】(1)根据关于y轴对称的点的坐标特点画出△A′B′C′,再写出△A′B′C′各点的坐标;(2)根据三角形的面积公式计算.【详解】(1)如图所示,△A′B′C′即为所求,A′(-1,5),B′(-1,-2),C′(-4,0);×7×3=10.5.(2)S△ABC=12【点睛】考查了作图-轴对称变换,解题关键是熟记关于y轴对称点的性质(纵坐标不变,横坐标互为相反数).19.【分析】根据等腰三角形的性质和勾股定理即可得到结论.【详解】解:∵AB=AC,BC=4cm,AD⊥BC,BC=2,∴BD=12∵AD=4cm,∴在直角三角形ABD中AB.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.20.36平方米【分析】连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.【详解】连接AC,如图,∵AB⊥BC,∴∠ABC=90°.∵AB=3米,BC=4米,∴AC=5米.∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).【点睛】本题考查了勾股定理和勾股定理的逆定理.21.(1)A(3 ,0)、B(0,3)、C(1,0);(2)P(0,43);(3)(-4,3)或(-3,4)【分析】(1)分别令y=0,x=0求得点A、B的坐标,OB的长度,结合OB:OC=3:1可求出点C的坐标;(2)设OP=x,则PB=PC=3-x,在Rt△POC中,利用勾股定理可得出关于x的一元一次方程,解方程即可;(3)画出图形,分△BAD≌△ABC和△ABD≌△ABC两种情况考虑:①当△BAD≌△ABC 时,由OA=OB可得出∠BAC=45°,由全等三角形的性质可得出∠ABD=∠BAC=45°、BD=AC=4,利用内错角相等两直线平行可得出BD∥AC,结合BD的长度即可得出点D的坐标;②当△ABD≌△ABC时,有∠BAD=∠BAC=45°、AD=AC=4,由∠DAC=∠BAD+∠BAC可得出∠DAC=90°,结合BD的长度可得出点D的坐标;【详解】(1)当y=0时,则x+3=0,x=-3,即点A(-3,0);当x=0时,则y=3,即点B(0,3);所以OB=3,又∵OB:OC=3:1,∴OC=1,又∵过点B的直线交x轴正半轴于点C,∴点C(1,0),(2)如图所示:设OP=x,则PB=PC=3-x.在Rt△POC中,∠POC=90°,∴OP2+OC2=PC2,即x2+12=(3-x)2,解得x=4 3 ,∴点P(0,43),(3)如图所示:分△BAD≌△ABC和△ABD≌△ABC两种情况考虑①当△BAD≌△ABC时,∵OA=OB=3,∴∠BAC=45°.∵△BAD≌△ABC,∴∠ABD=∠BAC=45°,BD=AC=4,∴BD∥AC,∴点D的坐标为(-4,3);②当△ABD≌△ABC时,∠BAD=∠BAC=45°,AD=AC=4,∴∠DAC=90°,∴点D的坐标为(-3,4).综上所述,点D的坐标为(-4,3)或(-3,4).【点睛】考查了一次函数的图象等知识,解题的关键是分△BAD≌△ABC和△ABD≌△ABC两种情况分别求出点D的坐标;设OP=x再利用勾股定理得到关于x的一元一次方程.22.(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.【详解】b-=可以求得,a b的值,根据长方形的性质,可以求得点B试题分析:(1)60.的坐标;(2)根据题意点P从原点出发,以每秒2个单位长度的速度沿着O C B A O的线路移动,可以得到当点P移动4秒时,点P的位置和点P的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.b-=试题解析:(1)∵a、b60.∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.23.(1)(4,-2),(1,0);(2)7.5.【详解】分析:(1)、关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等;(2)、根据三角形的面积计算法则得出三角形的面积.详解:(1)(4,-2)(1,0)(2)如图,因为A′(1,-5),B′(4,-2),C′(1,0),过点B′作x轴的平行线交A′C′于点D,则B′D⊥A′C′,所以A′C′=|-5-0|=5,B′D=|4-1|=3,所以S△A′B′C′=A′C′·B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.点睛:本题主要考查的是关于y轴对称的点坐标的特点,属于基础题型.理解对称的性质是解决这个问题的关键.24.12米【分析】设旗杆的高度为x米,则绳长为(x+1)米,根据勾股定理即可得出关于x的一元一次方程,解之即可得出结论.【详解】设旗杆的高度为x米,则绳长为(x+1)米,根据题意得:(x+1)2=x2+52,即2x-24=0,解得:x=12.答:旗杆的高度是12米.【点睛】此题考查勾股定理的应用,解一元一次方程,根据勾股定理列出关于x的一元一次方程是解题的关键.25.(1(2)1.【解析】【分析】(1 方法二:把分子2写成5-3,然后利用平方差公式分解,即可化简; (2)根据上面的例子即可进行化简.【详解】(1======(2=312-=,=1.【点睛】本题主要考查了二次根式的化简求值,正确读题,理解已知条件是解题的关键.。

北师大版八年级上册数学期中考试试题附答案

北师大版八年级上册数学期中考试试题附答案

北师大版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列计算正确的是()A4=-B 5112=C 1=D =2.以下列各组数中的三个数据为边长构建三角形,能组成直角三角形的一组是()A .7,14,15B .12,16,20C .4,6,8D3.下列计算不正确的是()AB 4=C D 2÷=4.下列各数:0.101001…(相邻两个1之间的0的个数逐次加1),227,2π,)A .1个B .2个C .3个D .4个5.在平面直角坐标系中,点A (﹣1,2)关于y 轴的对称点在()A .第一象限B .第二象限C .第三象限D .第四象限6.如果点P (3,y 1),Q (2,y 2)在一次函数y=2x ﹣1的图象上,则y 1,y 2的大小关系是A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定7.已知A 在第三象限,到x 轴的距离为3,到y 轴的距离为4,则点A 的坐标为()A .(3,4)B .(﹣3,4)C .(﹣4,﹣3)D .(﹣3,﹣4)8.如图,在3×3的正方形网格中由四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A .A 点B .B 点C .C 点D .D 点9.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对10.一次函数y =kx -k(k <0)的图象大致是()A .B .C .D .11.已知点M (3,2),N (1,﹣1),点P 在y 轴上,且PM+PN 最短,则最短距离为()A .3B .4C .5D12.一次函数y=﹣25x+2的图象与x 轴,y 轴分别交于A 、B 两点,以AB 为腰,作等腰Rt △ABC ,则直线BC 的解析式为()A .y=35x+2B .y=﹣37x+2C .y=﹣35x+2D .y=37x+2二、填空题13=______.14.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).15.如图,一扇卷闸门用一块宽18cm ,长80cm 的长方形木板撑住,用这块木板最多可将这扇卷闸门撑起_____cm 高.16.如图,在Rt △AOB 中,∠AOB 为直角,A (﹣3,a )、B (3,b ),a+b ﹣12=0,则△AOB 的面积为_____.三、解答题17.计算:(1)12×16(2)45+55(3)(22﹣3)(﹣3﹣22)(4)(2﹣10)2+4018.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=______.19.一根新生的芦苇高出水面1尺,一阵风吹过,芦苇被吹倒一边,顶端齐至水面,芦苇移动的水平距离为5尺,求水池的深度和芦苇的长度各是多少?20.如图,表示小王骑自行车和小李骑摩托车者沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:(1)哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?(2)求出两个人在途中行驶的速度是多少?(3)分别求出表示自行车和摩托车行驶过程的函数关系式.21.如图,一个零件的形状如图所示,按规定这个零件中∠A 与∠DBC 都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.22.如图,四边形ABCD 中,4AB BC ==,6CD =,2DA =,且90B = ∠.(1)求AC 的长;(2)求DAB ∠的度数.23.已知一次函数y=kx+b 的图象经过点(﹣2,﹣4),且与正比例函数12y x =的图象相交于点(4,a ),求:(1)a 的值;(2)k 、b 的值;(3)画出这两个函数图象,并求出它们与y 轴相交得到的三角形的面积.24.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(34)A -,,(41)B -,,(12)C -,.(1)在图中作出ABC ∆关于x 轴的对称图形111A B C ∆;(2)请直接写出点C 关于y 轴的对称点C '的坐标:;(3)ABC ∆的面积=;(4)在y 轴上找一点P ,使得PAC ∆周长最小,并求出PAC ∆周长的最小值.25.如图,在平面直角坐标系中,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,OA=12,OC=9,连接AC .(1)填空:点A 的坐标:;点B 的坐标:;(2)若CD 平分∠ACO ,交x 轴于D ,求点D 的坐标;(3)在(2)的条件下,经过点D 的直线交直线BC 于E ,当△CDE 为以CD 为底的等腰三角形时,求点E的坐标.参考答案1.D【分析】正确运四则运算法则即可得出答案.【详解】A、应为4,错误;B、应为1312,错误;C D正确,所以答案选择D项.【点睛】本题考查了四则运算,仔细审题是解决本题的关键.2.B【分析】计算三角形有两边的平方和是否等于第三边的平方,再根据勾股定理的逆定理判定即可解答.【详解】选项A,72+142≠152,根据勾股定理的逆定理可知不能构成直角三角形;选项B,122+162=202,根据勾股定理的逆定理可知能构成直角三角形;选项C,42+62≠82,根据勾股定理的逆定理可知不能构成直角三角形;选项D ,222+≠,根据勾股定理的逆定理知不能构成直角三角形.故选B.【点睛】本题考查了勾股定理的逆定理,验证两条较小边的平方和与最大边的平方之间的关系是解决问题的关键.3.B 【分析】根据二次根式的加减法对A 、C 进行判断;根据二次根式的除法法则对D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式=所以A 选项正确;B 、原式4=,所以B 选项正确;C 、原式==C 选项错误;D 、原式2=,所以D 选项正确.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.4.C 【分析】结合有理数的定义,根据无理数的定义逐一进行分析即可得.【详解】0.101001…(相邻两个1之间的0的个数逐次加1)是无理数,227是有理数,2π是无理数,是有理数,所以无理数有:0.101001…(相邻两个1之间的0的个数逐次加1),2π共3个,故选C .【点睛】本题考查了无理数的定义,能熟记无理数的定义的内容是解此题的关键,注意:无理数是指无限不循环小数.解此类问题时通常结合有理数的定义进行判断.5.A【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:点A(﹣1,2)关于y轴的对称点是(1,2),在第一象限,故选:A.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.6.A【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P(3,y1)、Q(2,y2)在一次函数y=2x﹣1的图象上,∴y1=2×3﹣1=5,y2=2×2﹣1=3,∵5>3,∴y1>y2.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.C【分析】根据第三象限内点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【详解】解:∵点A位于第三象限,且点A到x轴的距离为3,点A到y轴的距离为4,∴点A的横坐标是﹣4,纵坐标是﹣3,∴点A的坐标为(﹣4,﹣3).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.8.B【详解】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.9.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C 10.A【详解】试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选A.考点:一次函数的图象.11.C【分析】由题意可得:点M(3,2)关于y轴的对称点为M'(﹣3,2),当点M',点N,点P三点共线时,PM+PN最短.根据两点距离公式可求最短距离M'N的长度.【详解】解:∵点M(3,2)关于y轴的对称点为M'(﹣3,2)∴PM+PN=PM'+PN∴当点M',点N,点P三点共线时,PM+PN最短.∴PM+PN最短距离为为=5故选C.【点睛】本题考查了最短路线问题,坐标与图形性质,熟练运用轴对称的性质解决最短路线问题是本题的关键.12.D【分析】先根据一次函数的解析式求出A、B两点的坐标,再作CE⊥x轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,得出C点坐标,用待定系数法即可求出直线BC的解析式;【详解】解:∵一次函数y=﹣25x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).如图,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,90BAO ACE BOA AEC AB AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABO ≌△CAE (AAS ),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C 的坐标是(7,5).设直线BC 的解析式是y=kx+b ,根据题意得:275b k b =⎧⎨+=⎩,解得3k 72b ⎧=⎪⎨⎪=⎩,∴直线BC 的解析式是y=37x+2.故选D .【点睛】本题考查的是一次函数问题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质、等腰直角三角形的性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.13.3【详解】分析:根据算术平方根的概念求解即可.详解:因为32=9故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14.大于【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小.【详解】∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.15.82【详解】试题解析:设长方形的长为a,宽为b,对角线的长度为c,∵a=80cm,b=18cm,∴===c cm82.故最多可将这扇卷闸门撑起82cm.故答案为82.16.18【解析】【分析】=S梯形ACDB﹣S△AOC﹣S△BOD 作AC⊥x轴于C,BD⊥x轴于D,根据三角形面积公式,利用S△AOB=32(a+b),然后根据a+b﹣12=0可计算出△AOB的面积.可得到S△AOB【详解】解:作AC⊥x轴于C,BD⊥x轴于D,∵A(﹣3,a)、B(3,b),∴AC=a,OC=3,OD=3,BD=b,=S梯形ACDB﹣S△AOC﹣S△BOD∴S△AOB=12(a+b)×6﹣12×3×a﹣12×3×b=3(a+b)﹣32(a+b)=32(a+b),而a+b=12,=32×12=18.∴S△AOB故答案为18.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.也考查了坐标与图形性质.17.(1)22;(2)4;(3)-5;(4)14﹣210.【解析】【分析】(1)直接利用二次根式的乘法运算法则计算得出答案;(2)首先化简二次根式进而计算得出答案;(3)直接利用平方差公式计算,得出答案;(4)直接利用完全平方公式计算,进而得出答案.【详解】解:(1×16=8=22;(25=4;(3)(22﹣3)(﹣3﹣22)=3﹣8=﹣5;(4)(2﹣10)2+40=4+10﹣410+210=14﹣210.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(1)图形见解析.(2)A 1(0,-4),B 1(-2,-2),C 1(3,0);(3)7【解析】试题分析:(1)根据网格结构找出点、、A B C 关于x 轴的对称点111A B C 、、的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用三角形所在矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.题解析:(1)如图即为所求.(2)()()()1110,42,230A B C ---,,,.(3)111111542234522026520137.222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=---=-= 故答案为(0,−4);(−2,−2);(3,0);7.19.水池深度为12尺,芦苇长度为13尺.【分析】仔细分析题意得出:此题中水深、芦苇长及芦苇移动的水平距离构成一直角三角形,解此直角三角形即可.【详解】解:若高水池深度为x 尺,则芦苇长为(x+1)尺,根据勾股定理得x 2+52=(x+1)2,解得:x=12尺,即水池深度为12尺,则芦苇长度为13尺.【点睛】本题考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(1)见解析;(2)小王:10千米/小时;小李40千米/小时;(3)小王:y=8x;小李:y=40x﹣120.【解析】【分析】(1)根据函数图象容易得出结果;(2)根据速度=路程÷时间,即可得出结果;(3)设小王骑自行车行驶过程中函数关系式为:y=kx,把点(8,80)代入得出方程,解方程即可;设小李骑摩托车行驶过程中函数关系式为:y=ax+b,把点(3,0),(5,80)代入得出方程组,解方程组即可.【详解】解:(1)根据图象得:小王出发早,早3小时,小李早到达目的地,早3(即8﹣5)小时;(2)小王行驶的速度为80÷8=10(千米/小时);小李行驶的速度为80÷2=40(千米/小时);(3)设小王骑自行车行驶过程中函数关系式为:y=kx,把点(8,80)代入得:8k=80,解得:k=10,∴小王骑自行车行驶过程中函数关系式为y=8x;设小李骑摩托车行驶过程中函数关系式为:y=ax+b,把点(3,0),(5,80)代入得:3+=05+=0,解得:a=40b=-120,∴小李骑摩托车行驶过程中函数关系式为y=40x﹣120.【点睛】本题考查了用一次函数解决实际问题,渗透了函数与方程的思想;此类题是近年中考中的热点问题,根据函数图象获取信息是解决问题的关键.21.(1)这个零件符合要求;(2)S四边形=114.【分析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求.【详解】解:∵AD=12,AB=9,DC=17,BC=8,BD=15,∴AB2+AD2=BD2,BD2+BC2=DC2.∴△ABD、△BDC是直角三角形.∴∠A=90°,∠DBC=90°.故这个零件符合要求.S四边形=11292⨯⨯+18152⨯⨯=114.【点睛】本题考查了勾股定理的逆定理,关键是根据勾股定理的逆定理判断△ABD、△BDC的形状.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.22.(1)(2)135°【分析】(1)根据勾股定理即可求得AC的长;(2)根据勾股定理的逆定理可以求得∠CAD=90°,根据等腰三角形的性质可以求得∠BAC=45°,从而求解.【详解】解:(1)∵AB=BC=4,且∠B=90°,∴(2)∵CD=6,DA=2,AC=∴CD2=DA2+AC2,∴∠CAD=90°.∵AB=BC,且∠B=90°,∴∠BAC=45°.∴∠DAB=90°+45°=135°【点睛】此题综合考查了勾股定理及其逆定理.能够根据勾股定理由直角三角形的已知两边求得第三边;能够根据三角形的三边判断三角形是否是直角三角形.23.(1)k=1,b=-2(2)2(3)4【详解】解:(1)将点(4,a)代入正比例函数12 y x∴a=×4=2(2)将点(4,2)、(-2,-4)分别代入y=kx+b得由题意可得:解方程组得:k=1,b=-2(3)直线y=x-2交y轴于点(0,-2),S==424.(1)作图见解析;(2)(1,2);(3)4;(4)【解析】【分析】①关于x轴对称,对应点X值不变,Y值变成相反数.②关于Y轴对称,对应点Y值不变,X值变成相反数.③△ABC面积=外接矩形的面积-三个小三角形的面积④作点A关于Y轴对称的点E,连接CE交Y轴与点P,则三角形PAC周长最短是=AC+CE【详解】①如图所示②关于Y 轴对称,对应点Y 值不变,X 值变成相反数.C 为(-1,2),对称点为(1,2).③△ABC 面积=3·3-1·3·12-2·2·12-1·3·12=4.④作点A 关于Y 轴对称的点E ,连接CE 交Y 轴与点P ,则三角形PAC 周长最短是=AC+CE【点睛】本题主要考察轴对称的知识和综合运用,熟悉相关知识并知道求周长最小三角形时利用对称和两边之和大于第三边是解题关键.25.(1)(12,0),(12,9);(2)D (92,0);(3)E (454,9).【分析】(1)根据矩形的性质即可解决问题;(2)如图1中,作DM ⊥AC 于M .由Rt △CDO ≌Rt △CDM (HL ),推出CM=OC=9,由,推出AM=6,设OD=DM=m ,在Rt △ADM 中,根据AD 2=DM 2+AM 2,构建方程即可解决问题;(3)如图2中,作线段CD 的中垂线EF ,垂足为F ,交BC 于E ,则EC=ED ,△ECD 是以CD 为底的等腰三角形.想办法求出直线EF 的解析式即可解决问题;【详解】解:(1)∵四边形OABC 是矩形,∴AB=OC=9,BC=OA=12,∴A (12,0),B (12,9),故答案为(12,0),(12,9);(2)如图1中,作DM ⊥AC 于M .∵DC平分∠ACO,DO⊥CO,DM⊥AC,∴DO=DM,∠COD=∠CMD=90°,∵CD=CD,∴Rt△CDO≌△Rt△CDM(HL),∴CM=OC=9,∵229+12,∴AM=6,设OD=DM=m,在Rt△ADM中,∵AD2=DM2+AM2,∴x2+62=(12﹣x)2,解得x=9 2,∴D(92,0).(3)如图2中,作线段CD的中垂线EF,垂足为F,交BC于E,则EC=ED,△ECD是以CD为底的等腰三角形.∵C(0,9),D(92,0),∴直线CD的解析式为y=﹣2x+9,∴F(94,92),∴直线EF的解析式为y=12x+278,当y=9时,x=45 4,∴E(454,9).【点睛】本题是四边形综合题,考查了矩形的性质、全等三角形的判定和性质、角平分线的性质、等腰三角形的判定和性质、勾股定理、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数解决交点问题,属于中考压轴题.。

北师大版 八年级数学上册期中考试试卷及答案

北师大版 八年级数学上册期中考试试卷及答案

北师大版八年级数学上册期中考试试卷及答案一、选择题(每小题2分,共30分)1. 以下哪个数是有理数?A. √2B. -πC. 0.8D. e答案:C2. 解方程3x - 5 = 10的解是A. 5/3B. 5/2C. 15/3D. 0答案:A3. 已知正方形边长为x,其面积是多少?A. x^2B. 2xC. x/2D. 4x答案:A4. 三角形的内角和为A. 60°B. 90°C. 180°D. 360°答案:C5. 将一个圆的直径减小一半,其面积变为原来的多少?A. 1/2B. 1/4C. 1/8D. 1/16答案:D二、填空题(每小题3分,共30分)1. 一对兔子每个月都能生一对兔子,从第二个月开始生育,那么第6个月会有___对兔子。

答案:52. √(9x^2)的值是___。

答案:3x3. 在三角形ABC中,AB=BC,且∠ABC=75°,则∠CBA的度数为___。

答案:105°4. soh cah toa中的to a代表的是___。

答案:tan5. 一个长方形的长是3x-5,宽是2x+1,面积是___。

答案:6x^2 - 7x - 5三、解答题(共40分)1. 简化表达式:3(2x - 5) + 4(3x + 2)。

答案:18x - 72. 用因式分解法解方程:2x^2 + 7x = 15。

答案:x = 1,x = -7/23. 计算正方形的对角线长,若边长为6cm。

答案:对角线长约为 8.49 cm4. 解方程2m + 7 = 5m - 3。

答案:m = 5四、应用题(共20分)某商品原价120元,现在打7折出售,打折后的价格为多少元?答案:84元五、附加题(共20分)已知x = -2,计算y的值,其中y = 2x + 5。

答案:y = 1六、解答题(共60分)1. 计算:√2 + √8 + √32。

答案:6√22. 三个角的度数分别为40°、50°和x°,这三个角互不相等,求x的值。

八年级数学上册北师大版第一学期期中考试试卷-(15308)

八年级数学上册北师大版第一学期期中考试试卷-(15308)

北师大八年级数学上册期中测试题一、精心选一选1、如果一个正方形的面积是32,则它的对角线长为()A .552B .251C .1051D .542.算术平方根比原数大的数是()A .正实数 B.负实数 C .大于0而小于1的数 D.不存在3.下列三角形中,不一定是直角三角形的是()A .三角形中有一边的中线等于这边的一半;B .三角形的三内角度数之比为1:2:3C .三角形中有一内角是300,且有一边是另一边的一半D .三角形的三边长分别为22n m,2mn 和22n m(m ﹥n ﹥0)。

4.将方程121yx中含的系数化为整数,下列结果正确的是()A .442y xB .442y x C.442y x D.442y x 5.a 为有理数,则a 是一个()A .有理数B .完全平方数C .完全平方数的相反数D .负的实数6.若把直角三角形的三边都增加同样的长度,则新三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.如果21y x 是二元一次方程组21aybxby ax 的解,那么a,b 的值是()A .1ba B .1ba C .10ba D.10ba 8.下列说法中,正确的是()A .无理数包括正无理数,0和负无理数。

B .无理数是用根号形式表示的数。

C .无理数是开方开不尽的数。

D .无理数是无限不循环小数。

9.化简b a 3(a <0,b >0)等于()A .aba B .abaC .aba D .aba 10.如果二元一次方程组ayxa y x 3的解是二元一次方程0753y x 的一个解,那么a 的值是( )A .3B .5C .7D .911、下面四组数中不能构成直角三角形的一组数是()A 、1,2,5 B、3,5,4 C、5,12,13 D、1,3,7。

12、边长为1的正方形的对角线长是()A 、整数 B 、分数 C 、有理数 D 、无理数13.如果3251ba 与yx x ba141是同类项,则x ,y 的值是( )A .31yx B .22yx C .21yx D.32yx 14、如图2中,字母B 所代表的正方形的面积是( )。

八年级上册北师大版数学期中考试试卷

八年级上册北师大版数学期中考试试卷

八年级上册北师大版数学期中考试试卷北师大版八年级上册数学期中考试试卷说明:本试卷满分为150分,考试时间为120分钟。

一、选择题。

(每小题4分,共80分)1. 30%写成分数是________。

A.\(\frac{1}{10}\)B.\(\frac{3}{10}\)C. \(\frac{1}{5}\) D.\(\frac{3}{5}\)2. 下列分数中,等于\(\frac{3}{4}\)的是___。

A.\(\frac{2}{3}\) B.\(\frac{6}{8}\)C.\(\frac{15}{20}\) D.\(\frac{2}{5}\)3. 已知点A,B,C,D,AB=2,AD=3,则AD∶AB=______。

A.1∶2B.2∶3C. 2∶1D.3∶24. 下列计算中结果最大的是______。

A.8➖(-8)B.7×(-5)C.10÷(-2)D.15+(-5)5. 若a+b=3,a-b=1,则a的值为______。

A.1B.2C.2或4D.1或36. \(\frac{1}{3}+\frac{7}{30}\)的值为_______。

A. \(\frac{7}{10}\) B. \(\frac{6}{10}\)C. \(\frac{4}{10}\) D. \(\frac{3}{10}\)7. 转化为小数:\(\frac{4}{13}\) = ______。

A.0.325B.0.03125C.0.04D.0.4二、填空题。

(每小题4分,共40分)8. 十二分之六=______(化成最简分数)。

9. 将\(\frac{9}{12}\)化简为最简分数,分子为______。

10. 3.6×(-0.03)=______。

11. 某商品标价15元,从5月1日起打对折出售,则在5月1日买这个商品要付______元。

12. \(\frac{5}{8}+(-\frac{3}{8})\)=______。

北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷及答案

北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷及答案

北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷第Ⅰ卷一、选择题(每小题3分,共30分)1.9的平方根是( ).A .B. C .3 D .±32.用不等式表示:x 的2倍与4的差是负数( ).A .042>-xB .042<-xC .0)4(2<-xD .024<-x3.已知a b <,则下列不等式中不正确的是( ).A .44a b <B .44a b +<+C .44a b -<-D .44a b -<-4.下列四个数中,无理数是( ).A .0.14B .117C. D .5.要调查下面几个问题,你认为不应做抽样调查的是( ).A .调查某电视剧的收视率;B .调查“神舟七号”飞船重要零部件的产品质量;C .调查一批炮弹的杀伤力;D .调查一片森林的树木有多少棵.6.下列命题正确的是( ).A .同位角相等;B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c ;C .相等的角是对顶角;D .在同一平面内,如果a //b ,b //c ,则a //c .7.如图所示,下列推理不正确的是( ).A .若1C ∠=∠,则//AE CDB .若2BAE ∠=∠,则//AB DEC .若180B BAD ∠+∠=︒,则//AD BCD .若180C ADC ∠+∠=︒,则//AE CD8.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向。

表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( ).A .景仁宫(4,2)B .养心殿(-2,3)C .保和殿(1,0)D .武英殿(-3.5,-4)9.如图,小明从家到学校分别有①、②、③三条路可走:①为折线段ABCDEFG ,②为折线段AIG ,③为折线段AJHG .三条路的长依次为a 、b 、c ,则( ).A .a >b >cB .a =b >cC .a >c >bD .a =b <c10.对某校七年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( ).A .2.25B .2.5C .2.95D .3二、填空题:(每小题2分,共20分)11.27-的立方根是 .12.12-的相反数是 .13.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .14.若a 、b 为实数,且满足|a -2|0,则b -a 的值为 .15.已知点(38,1)P a a --,若点P 在y 轴上,则点P 的坐标为 .16.如图,a //b ,AC 分别交直线a 、b 于点B 、C ,AC ⊥CD ,若∠1=25°,则∠2= 度.17.若关于x 的方程7x +6-2a =5x 的解是负数,则a 的取值范围是 .18.若不等式组3x x a>⎧⎨>⎩的解集是3x >,则a 的取值范围是 .b a(第13题图)19.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间1~2分钟表示大于或等于1分钟而小于2分钟,其余类似),这个时间段内顾客等待时间低于3分钟的有 人.20.在平面直角坐标系中,点A 的坐标为(3,3),点B 在坐标轴上,6=∆AOB S , 则B 点的坐标为 .第Ⅱ卷三、解答题(共50分)21.(本题4分) 计算:+-22.(本题共8分) 解不等式(组) . (1) 求不等式5(1)2163x x -+-<的正整数解. (2)326532x x x x -≤+⎧⎪⎨+>⎪⎩. 23.(本题4分)作图题.(1)作线段BE ∥AD 交DC 于E ;(2)连接AC ,作直线BF ∥AC 交DC 的延长线于F ;(3)作线段AG ⊥DC 于G .24.(本题6分)如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2, ∠C =∠D ,求证:DF//AC .证明:∵∠1=∠2(已知),∠1=∠3 ,∠2=∠4( ),∴∠3=∠4(等量代换).∴________//________( ).∴∠C =∠ABD ( ).∵∠C =∠D ( ),∴∠D =________( ).∴AC//DF ( ).25.(本题6分)某商场去年前五个月销售额共计600万元.下表表示该商场去年前五个月的月销售额(统计信息不全).图①表示该商场服装部...各月销售额占.商场..当月销售额的百分比情况统计图. 商场月销售额统计表图① 图②(1)商场5月份的销售额是 万元;(2)服装部5月份的销售额是 万元;小明同学观察图①后认为,服装部5月份的销售额比服装部4月份的销售额减少了,你同意他的看法吗?请说明理由;单位:万元 服装部各月销售额占商场 当月销售额的百分比统计图 50%40% 30% 20% 1月 2月 3月 4月 月份 5月份服装部各卖区销售额 占5月份服装部销售额的百分比统计图答: .(3)在该商场服装部,下设A 、B 、C 、D 、E 五个卖区,图②表示在5月份,服装部各卖区销售额......占5月份服装部销售额的百分比情况统计图.则 卖区的销售额最高,销售额最高的卖区占5月份商场销售额的百分比是 .26.(本题5分)已知:ABC ∆的三个顶点坐标A (-2, 0),B (5,0),C (4,3),在平面直角坐标系中画出ABC ∆,并求ABC ∆的面积.27.(本题5分)列不等式解应用题:在一次奥运知识竞赛中,共有25道选择题,每道题的四个选项中,有且只有一个答案正确,选对得4分,不选或错选扣2分,如果得分不低于60分才能得奖,那么要得奖至少应答对多少道题?28.(本小题6分)已知:如图,EF ⊥BC ,AB // DG ,∠1=∠2. 求证:AD ⊥BC .29.(本小题6分)在平面直角坐标系中,△ABC 的三个顶点位置如图所示,点A '的坐标是(-2,2),现将△ABC 平移,使点A 移动到点A ',且点B ',C '分别是B ,C 的对应点.(1)请画出平移后的A B C '''∆(不写画法).并直接写出点B ',C '的坐标:B '( ),C '( ).(2)若三角形内部有一点P (a ,b ),则P 的对应点P '的坐标是P '( ).(3)如果坐标平面内有一点D ,使得以A B C D ,,,为顶点的四边形为平行四边形,请直接写出点D 的坐标.答: .四.附加题(本大题共20分,第30小题6分,第31、32小题各7分)30.如图,在平面直角坐标系中,一动点 从原点 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点 ,,,,则点9A 的坐标为 ,点 2018A 的坐标为 ,点 43n A +( 是自然数)的坐标为 .31. 作图题(不写作法)(1) 如图 1,一个牧童从 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线是一条河,,是两个村庄,欲在上的某处修建一个水泵站,向,两地供水,要使所需管道的长度最短,在图中标出点.(保留作图过程)(3)如图3,在一条河的两岸有,两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段表示.试问:桥建在何处,才能使到的路程最短呢?请在图中画出桥的位置.(保留作图过程)32. 某工厂有甲种原料千克,乙种原料千克,现计划用这两种原料生产A,B 两种型号的产品共件.已知每件 A 型号产品需要甲种原料千克,乙种原料千克;每件 B 型号产品需要甲种原料千克,乙种原料千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若件 A 型号产品获利元,件B 型号产品获利元,(1)中哪种方案获利最大?最大利润是多少?。

北师大版八年级上册数学期中考试试卷有答案

北师大版八年级上册数学期中考试试卷有答案

北师大版八年级上册数学期中考试试题一、单选题1.下列数是无理数的是( )A.227- B .π C .0 D 2.已知点A(﹣2,y 1),B(3,y 2)在函数y =﹣3x+2的图象上,则y 1与y 2的大小关系是() A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .无法确定 3.下列几组数中,不能作为直角三角形三边长的是( )A .5,12,13B .9,40,41C .3,4,5D .2,3,4 4.在平面直角坐标系中,下列各点属于第四象限的是( )A .(1,2)B .(3,8)-C .(3,5)--D .(6,7)- 5.在同一坐标系中,函数y kx =与y x k =-的图象大致是( )A .B .C .D . 6.如图,长方体的高为9m ,底面是边长为6m 的正方形,一只蚂蚁从如图的顶点A 开始,爬向顶点B.那么它爬行的最短路程为( )A .10mB .12mC .15mD .20m7.已知:如图,在△ABC ,△ADE 中,△BAC =△DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:△BD =CE ;△BD△CE ;△CD 2+CE 2=2CA 2;△BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A .1B .2C .3D .48.下列说法:△实数和数轴上的点是一一对应的;△-1-有意义,则x≥1;±8,其中正确的有( )A .1个B .2个C .3个D .4个9.点M (﹣4,3)关于x 轴对称的点的坐标为( )A .(3,﹣4)B .(4,﹣3)C .(﹣4,﹣3)D .(4,3) 10.已知正比例函数y kx =,且y 随x 的增大而减少,则直线2y x k =+的图像是( ) A . B . C . D .二、填空题11.﹣125的立方根是 .12.若直线y =2x 是直线m 向左平移3个单位再向下平移1个单位后得到的,则直线m 的表达式为____.13a 的小数部分是b ,则ab =___.14.如图,在平面直角坐标系中,直线y =x+2和直线y =ax+b (a≠0)相交于点P .根据图象可知,方程x+2=ax+b 的解是x =___.15.如图,一次函数483y x =-+的图像与x 轴、y 轴分别交于A 、B 两点,P 是x 轴正半轴上的一个动点,连接BP ,将△OBP 沿BP 翻折,点O 恰好落在AB 上,则点P 的坐标为______.16.点P (2,4)与点Q (-3,4)之间的距离是____.17.如图,在平面直角坐标系中,A(0,6),B(﹣4,0),C(2,0),点D,E分别在射线CA上,并且DE=AC,P为线段AB上一点,当△DPE为以ED为斜边的等腰直角三角形时,Р点坐标为____.三、解答题18.计算:(1(2)3).19.如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5).请回答下列问题:(1)△ABC关于x轴的对称图形为△A1B1C1,则A1点坐标为.(2)△ABC的面积=,点C到AB的距离为.(3)P为x轴上一点,PA+PB最小值=.20.我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫可爱三角形.(1)△根据“可爱三角形”的定义,请判断:等边三角形一定是可爱三角形,是否正确.并填空 (填“正确”或“不正确”);△若三角形的三边长分别是4、、,则该三角形 (是或不是)可爱三角形;(2)△,则周长为 ;△若Rt△ABC 是可爱三角形,且一条直角边长为,则斜边长为 .21.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为300AC km =,400BC km =,又500AB km =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB ∠的度数.(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即250CE CF km ==,则台风影响该海港持续的时间有多长?22.甲骑电动车,乙骑自行车从同一出发地点沿同一路线到棋盘山游玩,设乙行驶的时间x (h ),甲、乙两人距出发点的路程S 甲、S 乙关于x 的函数图象如图△所示,甲、乙两人之间的路程差y 关于x 的函数图象如图△所示.请你解决以下问题:(1)甲的速度是 km/h ,乙的速度是 km/h ;(2)甲出发 h 时,与乙相遇;(3)对比图△、图△可知:a = ;(4)乙出发 h 时,甲、乙两人之间的路程差为7.5km .23.如图,直线l1分别与x轴,y轴交于A,B两点,A,B的坐标分别为(2,0)、(0,3),过点B的直线l2:y=132x 交x轴于点C、D(n,6)是直线l1上的一点,连接CD.(1)求l1的解析式;(2)求C、D的坐标;(3)P为直线l1线上的动点,△DCP面积等于16时,直接写出Р点坐标为.24.如图,在平面直角坐标系中,直线y=﹣0.5x+2与x轴,y轴分别交于点A和点B,与直线y=x交于点C、P(m,0)为x轴上一动点(P不与原点重合),过P作x轴垂线与直线y=x和y=﹣0.5x+2分别交于点M和点N,过N作x轴的平行线交直线y=x于D.(1)求C点坐标;(2)求当MN=OB时,m的值;并直接写出此时四边形COPN的面积=;(3)直接写出当DN=2NP时,m的值=;(4)过D作y轴平行线交直线AB于点E,P点在运动过程中,MNDE的值=.25.如图所示,在直角坐标系xOy中,A(3,4),B(1,2),C(5,1).(1)作出△ABC关于y轴的对称图形△A1B1C1;(2)写出△A1B1C1的顶点坐标;(3)求出△ABC的面积.26.如图所示的一块地,已知AD=4米,CD=3米,△ADC=90°,AB=13米,BC=12米,则这块地的面积为多少?参考答案1.B2.A3.D4.D5.B6.C7.C8.B9.C10.D11.-5【解析】【分析】根据立方根的定义计算即可【详解】因为3(5)125-=-,所以-125的立方根是-5故答案为:-5【点睛】本题考查了求一个数的立方根,熟知立方根的定义是解决本题的关键12.25y x =-【解析】【分析】根据直线的平移规律求解即可.函数的平移规律:左加右减,上加下减.【详解】解:△直线y =2x 是直线m 向左平移3个单位再向下平移1个单位后得到的,△直线y =2x 向右平移3个单位再向上平移1个单位后可得到直线m ,△()23125y x x =-+=-,△直线m 的表达式为25y x =-.故答案为:25y x =-.【点睛】此题考查了函数的平移规律,解题的关键是熟练掌握函数的平移规律:左加右减,上加下减.132 ( 2-)【分析】的大小,a 的小数部分b ,再代入计算即可.【详解】解:<<12∴<,的整数部分1a =,<<23∴<<,的小数部分2b =,△12)2ab =⨯=.2.【点睛】此题主要考查了无理数的估算能力,能够正确的估算出无理数的大小是解答此类题的关键.14.5【解析】【分析】两直线的交点坐标横坐标为方程x+2=ax+b 的解.【详解】解:把y =7代入y =x+2得,7=x+2,解得x =5,△P 点的横坐标为5,△直线y =x+2和直线y =ax+b (a≠0)相交于点P ,△方程x+2=ax+b 的解是x =5.故答案为5.【点睛】本题考查了根据一次函数图像解二元一次方程组,数形结合是解题的关键.15.(83,0) 【解析】【分析】过P 作PC△AB 于C ,设OP=x ,由一次函数解析式求出点A 、B 坐标,进而求得OA 、OB 、AB ,由折叠性质得PC=OP=x ,BC=OB ,在Rt△APC 中,由勾股定理即可求解.【详解】解:过P 作PC△AB 于C ,设OP=x ,当x=0时,y=8,当y=0时,由4083x =-+得:x=6, △OA=6,OB=8,10,由折叠性质得:PC=OP=x ,BC=OB=8,△AP=6﹣x ,AC=AB ﹣BC=10﹣8=2,在Rt△APC 中,由勾股定理得:2222(6)x x +=-,解得:x=83, △点P 的坐标为(83,0),故答案为:(83,0). 16.5【分析】P 、Q 两点纵坐标相等,在平行于x 轴是直线上,其距离为两点横坐标差的绝对值.【详解】△P (2,4)、Q (-3,4)两点纵坐标相等,△PQ△x 轴,△点P (2,4)与点Q (-3,4)之间的距离PQ=|-3-2|=5,故答案为5.17.208,93⎛⎫- ⎪⎝⎭【解析】如图所示,过点P 作直线l△y 轴,分别过点D 作DG△直线l 于G ,EH△直线l 于H ,过点D 作DN△y 轴于N ,过点E 作EM△x 轴于M,设直线AB ,直线CD 的解析式分别为11y k x b =+,22y k x b =+,则可求得直线AB ,直线CD 的解析式分别为362y x =+,36y x =-+,然后证明△NDA△△MCE 得到DN=CM ,NA=EM ,△PDG△△EPH 得到DG=PH ,GP=EH ,设3,62P m m ⎛⎫+ ⎪⎝⎭,(),36E n n -+,则OH n =,36EM n =-+,EH n m =-2DN CM n ==-,36NA EM n ==-+,312ON n =-+,2DG m n =--+,33636322PH m n m n =++-=+,3331263622GP n m n m =-+--=--+由此即可得到33623232n m n m m n m n ⎧-=--+⎪⎪⎨⎪--+=+⎪⎩,解方程即可. 【详解】解:如图所示,过点P 作直线l△y 轴,分别过点D 作DG△直线l 于G ,EH△直线l 于H ,过点D 作DN△y 轴于N ,过点E 作EM△x 轴于M ,设直线AB ,直线CD 的解析式分别为11y k x b =+,22y k x b =+,△111046k b b =-+⎧⎨=⎩,222026k b b =+⎧⎨=⎩解得1126b ⎨⎪=⎩,26b ⎨=⎩,△直线AB ,直线CD 的解析式分别为362y x =+,36y x =-+, △DE=AC , △DA=CE ,△DN△y 轴,EM△x 轴△DN△CM ,△DNA=△CME=90° △△NDA=△MCE , △△NDA△△MCE (AAS ), △DN=CM ,NA=EM ,△△DPE 是以DE 为斜边的等腰直角三角形, △PD=PE ,△DPE=90°, △△DPG+△EPH=90°, △DG△GH ,EH△GH , △△DGP=△PHE=90°, △△PDG+△DPG=90°, △△PDG=△EPH , △△PDG△△EPH (AAS ), △DG=PH ,GP=EH ,△A (0,6),B (-4,0),C (2,0), △OA=6,OB=4,OC=2, 设3,62P m m ⎛⎫+ ⎪⎝⎭,(),36E n n -+,△OH n =,36EM n =-+,EH n m =- △2DN CM n ==-,36NA EM n ==-+,△312ON n =-+,2DG m n =--+,33636322PH m n m n =++-=+△3331263622GP n m n m =-+--=--+,△23232m n m n⎪⎪⎨⎪--+=+⎪⎩,解得209169mn⎧=-⎪⎪⎨⎪=⎪⎩,△208,93P⎛⎫-⎪⎝⎭,故答案为:208,93⎛⎫- ⎪⎝⎭.18.(1)40;(2)3【分析】(1)先化简二次根式,再按二次根式的乘法法则计算即可;(2)利用平方差公式计算即可;【详解】解:(1)原式=10,=30+10=40,(2)原式=223-,=12-9,=319.(1)作图见解析,(1,4)-;(2)72(3)【解析】(1)根据题意作△ABC 的顶点,,A B C 关于x 轴的点111,,A B C ,顺次连接111,,A B C 则△A 1B 1C 1即为所求,根据坐标系写出1A 的坐标即可;(2)根据△ABC 的面积等于长方形的面积减去三个三角形的面积即可求得,根据勾股定理求,A B 两点的距离,进而根据等面积法求得C 到AB 的距离;(3)连接1A B 交x 轴于点P ,连接PA ,根据11PA PB PA PB A B +=+≥,根据勾股定理以及1,A B 的坐标求解即可.【详解】(1)如图,根据题意作△ABC 的顶点,,A B C 关于x 轴的点111,,A B C ,顺次连接111,,A B C 则△A 1B 1C 1即为所求;点1A (1,4)- 故答案为:(1,4)-(2)1117331213232222ABCS =⨯-⨯⨯-⨯⨯-⨯⨯=△()()1,4,4,2A BAB ∴==∴点C 到AB72⨯=故答案为:72(3)连接1A B 交x 轴于点P ,连接PA ,根据11PA PB PA PB A B +=+≥,()()11,4,4,2A B -1A B ∴==故答案为: 【点睛】本题考查了轴对称的性质,轴对称作图,勾股定理,两点之间线段最短,掌握以上知识是解题的关键.20.(1)△正确;△是;(2)△4或【解析】 【分析】(1)△设等边三角形的边长为a ,根据定义即可判断;△根据定义将已知数据代入验证即可; (2)△根据定义分类讨论,根据最短边的平方与最长边的平方和等于第三边的平方的2倍,列出方程求解即可;△设斜边长为m ,根据新定义以及勾股定理列出方程解方程即可 【详解】(1)△设等边三角形的边长为a ()0a >,2222a a a∴等边三角形一定是可爱三角形,故答案为:正确;△((222416,24,20===((22242∴+=⨯∴该三角形是可爱三角形(2)△c ,根据题意可得: 2222c +=或2222c +=c ∴=∴周长为=d ,根据题意得: 2222d d +=或2222d d +=解得d =∴周长为=△Rt ABC 一条直角边长为m ,,Rt△ABC 是可爱三角形,((22222m m ⎡⎤+=-⎢⎥⎣⎦或((22222m m +-=⨯解得:4m =或m =故答案为:4或【点睛】本题考查了新定义,实数的运算,勾股定理,等腰三角形的性质,分类讨论是解题的关键. 21.(1)90︒;(2)海港C 受台风影响,证明见解析;(3)台风影响该海港持续的时间为7小时. 【解析】 【分析】(1)根据勾股定理的逆定理进行判断;(2)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(3)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间. 【详解】 (1)300AC km =,400BC km =,500AB km =,222AC BC AB ∴+=,ABC ∆∴是直角三角形,△△ACB=90°;(2)海港C 受台风影响, 过点C 作CD AB ⊥,ABC ∆是直角三角形,AC BC CD AB ∴⨯=⨯, 300400500CD ∴⨯=⨯,240()CD km ∴=,以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响.(3)当250EC km =,250FC km =时,正好影响C 港口,70()ED km =,140EF km ∴=,台风的速度为20千米/小时, 140207∴÷=(小时)答:台风影响该海港持续的时间为7小时. 【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.22.(1)25,10;(2)13;(3)10;(4)43或74.【解析】【分析】(1)根据图象即可得出;(2)根据甲乙距离差为0,即可求得(2)结合图象△△,a是甲到达终点,乙还为到达终点,此时 1.5x=,求得两者距离差即可;(3)分时间段列二元一次方程即可得出.【详解】(1)根据函数图象可知,甲用了1h行驶了25km,根据v=st,得v甲=25km1h=25km/h;乙用了2.5h行驶了25km,根据v=st,得v乙=25km2.5h=10 km/h .故答案分别为25,10.由图△当甲、乙两人之间的路程差为0时,甲、乙两人相遇S乙=S甲设甲出发t h,与乙相遇,()250.510t t=+⨯解得13 t=∴甲出发13h时,与乙相遇(3)当x=1.5时,根据图象可知,S甲=25将x=1.5代入S乙=10x中得S乙=10⨯1.5=15km甲乙之间路程差为:S甲-S乙=25-15=10km 故答案为10(4)由(3)可知:a=10,b=1.5,相遇的时间为x=150.536 +=由(1)可知:当甲到达目的地时,甲的行驶时间为1h,乙的行驶时间为1.5h,此时a=10,设图△中函数解析式为y=mx+n(m≠0),当56≤ x≤1.5时,函数y =mx +n(m≠0)的图象经过(56,0),(1.5,10)两点, △5061.510m n m n ⎧+=⎪⎨⎪+=⎩, 解得 1.512.5m n =⎧⎨=-⎩△y =15x -12.5 5 1.56x ⎛⎫≤≤ ⎪⎝⎭.当1.5≤x≤2.5时,函数y =mx +n(m≠0)的图象经过(56,0),(2.5,0)两点,△5062.50m n m n ⎧+=⎪⎨⎪+=⎩, 解得1025m n =-⎧⎨=⎩,△y =-10x +25(1.5≤x≤2.5).由题意得:15x -12.5=7.5或-10x +25=7.5,解得:x =43,或x =74.故乙出发43或74小时,甲、乙两人路程差为 7.5km .故答案为:43或7423.(1)332y x =-+;(2)(6,0)-,()2,6-;(3)2(,2)3或14(,10)3-【分析】(1)用待定系数法求解函数解析式即可;(2)将0y =代入直线2l 解析式,将6y =代入直线1l 解析式,分别求解即可; (3)设3(,3)2P x x -+,分情况讨论,求解△DCP 的面积,列方程求解即可.【详解】解:(1)设直线1l 解析式为y kx b =+ 将A ,B 的坐标代入解析式,可得 320b k b =⎧⎨+=⎩解得323k b ⎧=-⎪⎨⎪=⎩,即332y x =-+故直线1l 的解析式为332y x =-+(2)将0y =代入直线2l 解析式132y x =+,可得:1302x +=,解得6x =- 将6y =代入直线1l 解析式332y x =-+,可得3632x =-+,解得2x =-△(6,0)C -,(2,6)D - 故答案为(6,0)-,()2,6-(3)由题意可得,3(,3)2P x x -+,8AC =△124162ACD D S AC y =⨯=>△ △点P 在点A 的左侧当点P 在线段AD 上时,134(3)61222ACP P S AC y x x =⨯=⨯-+=-+△ 2461216CDP ACD ACP S S S x =-=+-=△△△,解得23x =,323223y =-⨯+=△2(,2)3P当点P 在点D 的左侧时,134(3)61222ACP P S AC y x x =⨯=⨯-+=-+△ 6122416CDP ACP ACD S S S x =-=-+-=△△△,解得143x =-,31431023y ⎛⎫=-⨯-+= ⎪⎝⎭△14(,10)3P -综上,2(,2)3或14(,10)3-故答案为2(,2)3或14(,10)3-24.(1)44(,)33;(2)83m =,209;(3)2.4或4-;(4)2【分析】(1)联立两直线解析式求解即可;(2)设(,0)P m ,求得点M N 、坐标,再求得线段MN ,求解即可; (3)设(,0)P m ,求得点D N 、坐标,根据题意列方程求解即可; (4)设(,0)P m ,求得线段MN 、DE ,求解即可. 【详解】解:(1)联立两直线解析式,可得0.52y x y x =⎧⎨=-+⎩解得4343x y ⎧=⎪⎪⎨⎪=⎪⎩,即点C 坐标为44(,)33 故答案为44(,)33(2)设(,0)P m ,则,()M m m ,(,0.52)N m m -+ 线段 1.52MN m =-由题意可得:(0,2)B ,(4,0)A ,则2OB = △1.522m -=,解得83m =或0m =(舍去) 四边形COPN 的面积11()22OPMCMN M C S S OP PM MN x x =-=⨯-⨯-△△188184324202()233233939=⨯⨯-⨯⨯-=-= 故答案为83m =,209(3)设(,0)P m ,则,()M m m ,(,0.52)N m m -+则D 的纵坐标为0.52m -+又△D 在y x =直线上,△D 的横坐标为0.52m -+即(0.52,0.52)D m m -+-+NP =0.52m -+, 1.52DN m =- 由题意可得:1.5220.52m m -=-+化简可得:2.56m =或0.52m =-解得 2.4m =或4m =-故答案为2.4或4-;(4)由(3)得(0.52,0.52)D m m -+-+,则E 的横坐标为0.52m -+则E 的纵坐标为10.5(0.52)214m m --++=+,即1(0.52,1)4E m m -++ 则13341(0.52)14443DE m m m m =+--+=-=-由(1)得341.5223MN m m =-=- △342323443m MN DE m -==-故答案为2此题考查了一次函数的性质,一次函数的交点问题,解题的关键是熟练掌握一次函数的性质,求得对应线段的长度.25.(1)如图,△A 1B 1C 1即为所求;见解析;(2)A 1(﹣3,4),B 1(﹣1,2),C 1(﹣5,1);(3)S △ABC =5.【解析】【分析】(1)根据轴对称图形的画法,以y 轴为对称轴作图即可;(2)根据平面直角坐标系中的任意一点(,)x y 关于y 轴的对称点为(,)x y -即可求解;(3)根据割补法将三角形补成一个长方形,减去多余三角形的面积即可.【详解】(1)如图,△A 1B 1C 1即为所求;(2)由图可知,A 1(﹣3,4),B 1(﹣1,2),C 1(﹣5,1);(3)11143412223122235222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=---=. 【点睛】本题主要考查了平面直角坐标系中轴对称图形的画法及对称点坐标的表示,同时还考查了特殊三角形面积的求法,熟练掌握平面直角坐标系对称点的表示及割补法求面积时解决本题的关键.26.24平方米【解析】【分析】利用割补法,将图形补齐,连接AC ,根据勾股定理判定ABC 是直角三角形,即可求出四【详解】解:如图,连接AC ,在ACD △中,△AD=4米,CD=3米,△ADC=90°, △AC=5米,又△22222251213AC BC AB +=+==, △ABC 是直角三角形, △这块地的面积=ABC S -ACD S =11512342422⨯⨯-⨯⨯=(平方米)。

北师大版八年级数学上册期中测试卷(含答案_可打印)

北师大版八年级数学上册期中测试卷(含答案_可打印)

八年级数学上册期中测试题一、填空题(每空2分,共48分)1.(1)在ABCD 中,∠A=44°,则∠B= ,∠C= 。

(2)若ABCD 的周长为40cm , AB:BC=2:3, 则CD= , AD= 。

2.已知一个Rt △的两边长分别为3和4,则第三边长的平方是 。

3.化简∶32 = ,83= 。

4.一条线段AB 的长是3cm ,将它沿水平方向平移4cm 后,得到线段CD ,则CD 的长是 。

5. 如下左图所示,图形①经过 变化成图形②,图形②经过 变化成图形③,图形③经过 变化成图形④。

(填平移、旋转或轴对称)6.如上右图所示,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短距离为________ cm 。

(π取3) 7.π-的绝对值是_______,2的相反数是_______,33的倒数是_______。

8. 5的平方根是_____,32的算术平方根是_____,-8的立方根是_____。

9.已知菱形的两条对角线长为6cm 和8cm ,则它的周长为_________ cm ,面积是 cm 2。

10.正方形的对角线长是18cm ,则正方形的边长是 。

11.若实数a 、b 满足,02)2(2=-+-a b a 则b+2a= 。

12.如下左图在平行四边形ABCD 中,如果AB=5,AD=9,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF=____________。

13.有一块边长为24米的正方形绿地,如上右图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的▇填上适当的数字为: 。

① ② ③ ④二、选择题(每小题3分,共24分)14.下列说法中,正确的有( )①无限小数都是无理数; ②无理数都是无理限小数; ③带根号的数都是无理数; ④-2是4的一个平方根。

【北师大版】初二数学第一学期一次函数的应用同步练习

【北师大版】初二数学第一学期一次函数的应用同步练习

【知识点考查题】一、容易题1.(2017届黑龙江哈尔滨松北区九年级上期末)甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时; ④乙车共行驶321小时,其中正确的个数为( )A .1个B .2个C .3个D .4个2.(2016-2017学年广西玉林市九年级上期末)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 23.(2016—2017学年江苏宿迁现代实验学校八年级上第二次月考)在同一坐标系中,正比例函数y=kx 与一次函数y=x -k 的图象为( )4.(2017届北京十三中九年级上期中)如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P 运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为( )A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O二、中等题5.(2016届重庆育才成功学校中考一诊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面6.(2016届天津河西区中考模拟数学)如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A. B. C. D.8.(2016届黑龙江哈尔滨香坊区中考模拟)随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:(1)“快车”行驶里程不超过5公里计费8元;(2)“顺风车”行驶里程超过2公里的部分,每公里计费1。

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试题一、单选题1.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为( ) A .(2,15) B .(2,5) C .(5,9) D .(9,5) 2.下列各线段的长,能构成直角三角形的是( )A .2,3,4B .5,12,13C .4,6,9D .5,11,13 3.下列运算中,正确的是( )A ±3B 2C .(﹣2)0 =0D .2﹣1 =﹣24.在2,13-,π,0,227,2.101010…(相邻两个1之间有1个0),3.14,0.1212212221…(相邻两个1之间2的个数逐次加1)这些数中无理数的个数是( )A .1B .2C .3D .45.在下列各组数中,互为相反数的是( )A .2与B .-2与12-C .D .26.下列根式中不是最简二次根式的是( )A B C D7.点A 关于y 轴的对称点1A 坐标是()2,1--,则点A 的坐标是( )A .()1,2--B .()2,1C .()2,1-D .()2,1- 8.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x≤5)的函数表达式为( ) A .y =﹣0.3x +6 B .y =﹣0.3x ﹣6 C .y =0.3x +6 D .y =0.3x ﹣6 9.下列运算正确的是( )A B .=﹣32C .=D 1100= 10.点A (﹣3,2)关于y 轴的对称点的坐标为( )A .(3,2)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,3)二、填空题11.2( 2.5)-的平方根是__________.12.比较大小:(用<、>或=来表示)13.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为_____.14.如图,在水塔O 的东北方向8m 处有一抽水站A ,在水塔的东南方向6m 处有一建筑物工地B ,在AB 间建一条直水管,则水管的长为______.15.如图,数轴上点B 表示的数为2,过点B 作BC OB ⊥于点B ,且1CB =,以原点O 为圆心,OC 为半径作弧,弧与数轴负半轴交于点A ,则点A 表示的实数是_______.16.若函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,则m =_____.1750b -=,则()2a b -的值是_____.18.已知AB∥x 轴,A (-2,4),AB = 5,则B 点横纵坐标之和为______.三、解答题19.计算:1183;-;(2)1023)2);(1+2-1)2 ;(5)(1-(6)20.已知一个正数的平方根是a+3和2a-15.(1)求a的值;(2)求这个正数.21.如图在平面直角坐标系中,∥ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C (﹣3,1)(1)在图中作∥A′B′C′使∥A′B′C′和∥ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.22.如图,圆柱外底面A点处有一只蚂蚁,想去壁外点P处吃蜂蜜,已知底面圆的直径AB为16πcm,圆柱高为12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.23.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.24.已知y=(k﹣1)x IkI+(k2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.25.如图,a,b,c是数轴上三个点A,B,C所对应的实数.a b b c--26.如图,在四边形ACBD中,AC=6,BC=8,AD=BD=DE是∥ABD的边AB上的高,且DE=4,求∥ABC的边AB上的高.参考答案1.C【解析】【分析】根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.【详解】∥(2,15)表示2排15号可知第一个数表示排,第二个数表示号∥5排9号可以表示为(5,9),故选:C .【点睛】本题是有序数对的考查,解题关键是弄清楚有序数对中的数字分别对应的是行还是列 2.B【解析】【分析】根据题意利用判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方进行分析即可.【详解】解: A 、22223134+=≠,故A 选项构成不是直角三角形;B 、22251216913+==,故B 选项构成是直角三角形;C 、22246529+=≠,故C 选项构成不是直角三角形;D 、22251114613+=≠,故D 选项构成不是直角三角形.故选:B .【点睛】本题考查勾股定理的逆定理的应用.注意掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B【解析】【分析】根据算术平方根、立方根、零指数幂和负整数指数幂的运算法则分析每个选项的计算正确与否即可求解.【详解】解:A3,原计算错误,不符合题意;B2,原计算正确,符合题意;C、(﹣2)0=1,原计算错误,不符合题意;D、2﹣1 =1,原计算错误,不符合题意,2故选:B.【点睛】本题考查算术平方根、立方根、零指数幂和负整数指数幂,熟练掌握运算法则是解答的关键.4.B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有π,0.1212212221…(相邻两个1之间的2的个数逐次加1),共2个.故选:B.【点睛】本题考查了对无理数的定义的应用,能正确理解无理数的定义是解此题的关键.5.C【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A、都是2,故A错误;B、互为倒数,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、都是2,故D错误.故选:C.【点睛】本题考查了实数的性质,利用只有符号不同的两个数互为相反数判断是解题关键. 6.C【解析】【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.故选C .7.D【解析】【分析】直角坐标系中,点关于y 轴对称的特点是,横坐标变为相反数,纵坐标不变,据此解题即可.【详解】根据题意,A 关于y 轴的对称点1A 坐标是()21--,, 则点A 的坐标是()21-,, 故选:D .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,难度较易,掌握相关知识是解题关键. 8.C【解析】【分析】用初始的水位高度加上升的高度得到水库的水位高度,从而得到y 与x 的关系式.【详解】解:∥初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,∥水库的水位高度y 米与时间x 小时(0≤x≤5)的函数关系式为y=0.3x+6,故选:C .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.9.D【解析】【分析】根据二次根式的有关运算以及立方根和平方根的定义,对选项逐个判断即可.【详解】解:A=,选项错误,不符合题意;B、33()22=--=,选项错误,不符合题意;C、=±D1100,选项正确,符合题意;故选:D【点睛】此题考查了二次根式的有关运算以及立方根和平方根的求解,解题的关键熟练掌握相关运算法则.10.A【解析】【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(-x,y),进而得出答案.【详解】解:点A(﹣3,2)关于y轴的对称点的坐标为(3,2),故选:A【点睛】此题主要考查了关于y轴对称点的性质,正确把握对称点横、纵坐标的关系是解题关键.11. 2.5±【解析】【分析】先计算出2( 2.5)-的值,再根据平方根的定义即可得出答案.【详解】2(2.5)52 6.=-,则6.25的平方根为 2.5±.故答案为: 2.5±.【点睛】本题主要考查的是平方根的定义,注意一个正数的平方根有两个,它们互为相反数;0的平方根还是0;负数没有平方根.12.>【解析】【分析】【详解】解:∥162025<<,∥45<,∥5>故答案为:>.【点睛】本题考查了无理数的大小比较,正确的估算是解题的关键.13.5【解析】【分析】设斜边长为x ,根据勾股定理即可求解.【详解】解:设斜边长为x ,根据题意可得,2916x =+,解得5x =(负值已舍),故答案为:5.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.14.10m【解析】【分析】由题意可得三角形AOB是直角三角形,且AB是斜边,所以由勾股定理即可算得AB的值.【详解】解:已知东北方向和东南方向刚好是一直角,∥∥AOB=90°,又∥OA=8m,OB=6m,∥AB=10(m).故答案为:10m.【点睛】本题考查勾股定理的应用,在判断三角形为直角三角形及三角形直角边和斜边的基础上利用勾股定理求解是解题关键.15.【解析】【分析】直接利用勾股定理得出CO的长,再利用数轴得出答案.【详解】解:BC OB⊥,∴∠=︒,90OBC∴∆是直角三角形,OBCBC=,OB=,12∴==OC∴点A表示的实数是:故答案为:【点睛】此题主要考查了实数与数轴,正确数形结合分析是解题关键.16.5【解析】【分析】直接利用正比例函数的定义进而得出答案.【详解】解:∥函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,∥50m -= ,20m -≠ ,解得:m =5.故答案为:5.【点睛】本题主要考查了正比例函数的定义,正确把握定义是解题关键.17.16【解析】【分析】根据算术平方根与绝对值的非负性可求出a 、b 的值,然后代入求解即可.【详解】解:50b -=,∥10,50a b -=-=,解得:1,5a b ==,∥()()221516a b -=-=;故答案为16.【点睛】本题主要考查算术平方根与绝对值的非负性,熟练掌握算术平方根与绝对值的非负性是解题的关键.18.-3或7【解析】【分析】由AB∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的左边或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∥AB∥x 轴,∥B 点的纵坐标和A 点的纵坐标相同,都是4,又∥A (-2,4),AB = 5,∥当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.19.(2)0(3)2+(4)13- (5)-15+23【解析】【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先计算负整数指数幂,零次幂,化简二次根式,再合并即可;(3)先计算二次根式的乘法,再合并同类二次根式即可;(4)先计算算术平方根,立方根,再合并即可;(5)先计算二次根式的乘法,再合并同类二次根式即可;(6)先计算二次根式的除法运算,再合并即可.(1)解:原式=13⨯ (2)原式=131110;22-+=-+=(3)原式=22+=+(4)原式=11 22;33 --=-(5)原式=112(31)11415---=--+=-+(6)原式=3 3.20.(1)4;(2)49【分析】(1)根据平方根的性质“正数有两个平方根,互为相反数”列出方程,解方程即可;(2)求出a+3和2a-15,即可求出这个正数.【详解】(1)依题意得:(a+3)+( 2a-15)=0解得:a=4;(2)当a=4时,a+3=7,2a-15=-7,∥这个正数为(±7)2=49.21.(1)见解析(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1)【分析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A′,B′,C′,顺次连接即可;(2)根据点的位置写出坐标即可.(1)解:∥A′B′C′如图,(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).【点睛】本题考查作图−轴对称变换,坐标与图形,解题的关键是掌握轴对称的性质.22.蚂蚁从A 点爬到P 点的最短距离为10cm【解析】【分析】把圆柱的侧面展开,连接AP ,利用勾股定理即可得出AP 的长,即蚂蚁从A 点爬到P 点的最短距离.【详解】∥圆柱底面直径AB =16πcm 、母线BC =12cm ,P 为BC 的中点, ∥圆柱底面圆的半径是8πcm ,BP =6cm , ∥如图:AB =12×2×8π=8(cm ),在Rt∥ABP 中,AP ==10(cm ),∥蚂蚁从A 点爬到P 点的最短距离为10cm .【点睛】本题考查的是勾股定理求最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.23.(1)(6,0)(2)(-12,-9)(3)(2,-2)【解析】【分析】(1)直接利用x 轴上点的坐标特点为纵坐标为零,进而得出答案;(2)利用点P 的纵坐标比横坐标大3,进而得出答案;(3)利用经过()2,4A -且平行于y 轴,则其横坐标为2,进而得出答案.(1)解:点()24,1P m m +-,点P 在x 轴上,10m ∴-=,解得:1m =,则246m +=,故()6,0P ;(2) 解:点P 的纵坐标比横坐标大3,()1243m m ∴--+=,解得:8m =-,故()12,9P --;(3) 解:点P 在过()2,4A -点且与y 轴平行的直线上,242m ∴+=,解得:1m =-,12m ∴-=-,故()2,2P - .【点睛】本题主要考查了坐标与图形的性质,正确分析各点坐标特点是解题关键.24.(1)k =﹣1;(2)y =﹣9;(3)x =32-.【解析】【分析】(1)直接利用一次函数的定义得出k 的值即可;(2)利用(1)中所求,再利用x=3时,求出y 的值即可;(3)利用(1)中所求,再利用y=0时,求出x 的值即可.【详解】解:(1)由题意可得:|k|=1,k ﹣1≠0,解得:k =﹣1;(2)当x=3时,y=﹣2x﹣3=﹣9;(3)当y=0时,0=﹣2x﹣3,解得:x=32 -.【点睛】本题考查一次函数的定义,正确把握一次函数的定义是解题关键.25.3b【解析】【分析】利用数轴可得出a-b>0,c>0,b-c<0,a+b<0,进而取绝对值开平方得出即可.【详解】由数轴可得:c>0,a﹣b>0,a+b<0,b﹣c<0,a b b c-+--=c﹣a+b+a+b+b﹣c=3b.【点睛】此题主要考查了数轴与实数,涉及算术平方根和立方根,得出各项符号并利用绝对值的性质化简是解题关键.26.∥ABC的边AB上的高为4.8.【解析】【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股定理的逆定理求出∥ABC是直角三角形,再求出面积,进一步得到∥ABC的边AB上的高即可.【详解】∥DE是AB边上的高,∥∥AED=∥BED=90°,在Rt∥ADE中,由勾股定理,得AE2==.同理:在Rt∥BDE中,由勾股定理得:BE=8,∥AB=2+8=10,在∥ABC中,由AB=10,AC=6,BC=8,得:AB2=AC2+BC2,∥∥ABC是直角三角形,设∥ABC的AB边上的高为h,则12×AB×h=12AC×BC,即:10h=6×8,∥h=4.8,∥∥ABC的边AB上的高为4.8.。

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,是无理数的是()A .B C .0.575757D .4π2.下面四组数中是勾股数的一组是()A .6,7,8B .5,8,18C .1.5,2,2.5D .21,28,353.下列根式中,是最简二次根式的是()A BC D 4.下列计算正确的是()A =B=C .(2=6D 55.若一次函数4y kx =-的图象经过点(2,4)-,则k 等于()A .–4B .4C .-2D .26.一次函数43y x =-的图象经过()A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限7.已知点A(a +2,5),B(-4,1-2a),若AB 平行于x 轴,则a 的值为()A .-6B .2C .3D .-28.对于一次函数y =﹣2x+4,下列结论错误的是()A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 29. ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定 ABC 为直角三角形的是()A .∠A+∠B=∠CB .∠A :∠B :∠C=1:2:3C .a 2=c 2﹣b 2D .a :b :c=3:4:610.一次函数y 1=ax +b 与一次函数y 2=bx -a 在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题11.比较大小:12___________1212=______,8是___的立方根.13.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是_______.14.若点P(﹣2,y)与Q(x,3)关于y轴对称,则x=_____,y=_____.15.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为_____.16.如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将 AOB 的面积平分的直线l2的表达式为_______.17.一长方体容器(如图1),长、宽均为2,高为8,里面盛有水,水面高为5,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD=________.三、解答题18.计算题:(1)27123(2)|1﹣3(π﹣2021)0﹣1448.19.如图,矩形纸片ABCD的长AD=6cm,宽AB=2cm,将其折叠,使点D与点B重合,求折叠后DE的长?20.如图所示,直线AB与x轴交于A,与y轴交于B.(1)请直接写出A,B两点的坐标:A,B;(2)求直线AB的函数表达式;(3)当x=5时,求y的值.21.如图是由边长为1个单位长度的小正方形组成的网格, ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3) ABC的面积为;(4)点P在y轴上,且 ABP的面积等于 ABC的面积,则点P的坐标为.22.甲、乙两人从学校出发,沿相同的线路跑向公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度继续跑向公园.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)之间函数关系的图象,根据题意填空:(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)图中b的值为;(3)乙最早出发时跑步的速度为米/秒,乙在途中等候甲的时间为秒;(4)乙出发秒后与甲第一次相遇.23.如图,Rt△ABC中,∠C=90°,D为AC边上一点,连接BD,将△ABC沿BD折叠,顶点C恰好落在边AB上的点E处,若AC=2,BC=1,求CD的长.24.已知:一次函数图象如图,(1)求一次函数的解析式;(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x轴的交点,若S△OAP =2,求点P的坐标.25.甲、乙两人在净月大街上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA﹣AB﹣BC﹣CD所示.(1)甲的速度为米/分,乙的速度为米/分.(2)求线段AB的表达式,并写出自变量x的取值范围.(3)求乙比甲早几分钟到达终点?26.如图1,直线y=1x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.2(1)直线BC的函数表达式为;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.①若∠MBC=90°,请直接写出点P的坐标;②若 PQB的面积为94,请直接写出点M的坐标;③若点K为线段OB的中点,连接CK,如图2,若在线段OC上有一点F,满足∠CKF=45°,请直接写出点P的坐标.参考答案1.D2.D3.C4.B5.A6.B7.D8.D9.D10.D11.<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1∴0<11.2故答案为:<.12.9±2512【分析】根据平方根和立方根的性质和定义,对上式进行一一计算,从而求解.【详解】=9,,∴4的平方根是±2;∵83=512,∴8是512的立方根,故答案为:9,±2,512.13【分析】先根据勾股定理求出OB的长,进而可得出结论.【详解】解:∵=,∴∵点A在原点的右边,∴点A,.14.23【分析】让纵坐标相等,横坐标互为相反数列式求值.【详解】∵P(-2,y)与Q(x,3)关于y轴对称,∴-2+x=0,y=3,解得x=2,y=3.故答案为2,3.15.(4,-2)【分析】直接利用已知点确立平面直角坐标系进而得出C点的坐标.【详解】如图所示:C点的坐标为:(4,﹣2).故答案为(4,﹣2).16.y=2x【分析】根据坐标轴上点的坐标特征求出A(2,0),B(0,4),则AB的中点为(1,2),所以l2经过AB的中点,直线l2把△AOB平分,然后利用待定系数法求l2的解析式.【详解】解:如图,当y=0,-2x+4=0,解得x=2,则A(2,0);当x=0,y=-2x+4=4,则B (0,4),∴AB 的中点坐标为(1,2),∵直线l 2把△AOB 面积平分∴直线l 2过AB 的中点,设直线l 2的解析式为y=kx ,把(1,2)代入得2=k ,解得k=2,∴l 2的解析式为y=2x ,故答案为:y=2x .【点睛】本题考查了待定系数法求一次函数的解析式,明确直线l 2过AB 的中点是解题的关键.17.10【解析】【详解】如图所示:设DE=x ,则AD=8-x ,根据题意得:12(8-x+8)×2×2=2×2×5,解得:x=6,∴DE=6,∵∠E=90°,由勾股定理得:22226+210DE CE故答案为:【点睛】考点:勾股定理的应用18.(1)3;(2)0【解析】【分析】(1)首先化简二次根式,再计算减法,最后计算乘法;(2)先去绝对值,计算零指数幂,化简二次根式,再算乘法,最后计算加减.【详解】解:(1)=(=3;(2)()01120214π+--1114-+-⨯11+-=0【点睛】此题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.19.103cm 【解析】【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】解:由折叠的性质得:BE=DE ,设DE 长为x cm ,则AE=(6-x )cm ,BE=x cm ,∵四边形ABCD 是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(6-x)2+22=x2,解得:x=10 3,即DE长为103 cm.【点睛】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.20.(1)(4,0);B(0,2);(2)y=-0.5x+2;(3)-0.5【解析】【分析】(1)从函数图象可直接写出两点坐标;(2)把A,B两点代入函数解析式即可求出k的值,从而求出其解析式;(3)把x=5代入函数解析式即可求出y的值.【详解】解:(1)A(4,0);B(0,2);(2)把b=2,以及A(4,0)代入y=kx+b,得到:0=4k+2,解得:k=-0.5,所以解析式:y=-0.5x+2;(3)当x=5时,y=-0.5.【点睛】本题考查的是用待定系数法求一次函数的解析式,通过函数图象可直接求出两点坐标,从而求出函数解析式,体现了数形结合的重要作用.21.(1)A(3,4),B(0,2);(2;(3)112;(4)(0,173)或(0,53 )【解析】【分析】(1)根据点的位置直接写出坐标;(2)利用勾股定理结合点的坐标计算;(3)利用割补法计算即可;(4)根据△ABC的面积得到△ABP的面积,再设P(0,a),根据三角形面积公式列出方程,解之即可.【详解】解:(1)由图可知:A(3,4),B(0,2);(2);(3)S△ABC=111 34234131222⨯-⨯⨯-⨯⨯-⨯⨯=112;(4)由题意可得:S△ABP=11 2,∵点P在y轴,则设P(0,a),∴1113222a⨯⨯-=,解得:173a=或53a=-,∴点P的坐标为(0,173)或(0,53-).22.(1)900,1.5;(2)400;(3)2.5,100;(4)150【解析】【分析】(1)根据函数图象可以得到甲跑的路程和甲的速度;(2)根据所求甲的速度,可得b值;(3)根据函数图象和题意,可以得到乙跑步的速度及乙在途中等候甲的时间;(4)根据函数图象可以分别求得甲乙的函数关系式,然后联立组成二元一次方程组,即可【详解】解:(1)由函数图象可得,在跑步的全过程中,甲共跑了900米,甲的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(2)由图象可得,a=500×1.5=750,c=750-150=600,∴b=600÷1.5=400,(3)由图象可得,甲跑500秒的路程是:500×1.5=750米,甲跑600米的时间是:(750-150)÷1.5=400秒,乙跑步的速度是:750÷(400-100)=2.5米/秒,乙在途中等候甲的时间是:500-400=100秒,即乙跑步的速度是2.5米/秒,乙在途中等候甲的时间是100秒;(4)∵D(600,900),A(100,0),B(400,750),∴OD的函数关系式是y=1.5x,AB的函数关系式是y=2.5x-250,根据题意得,1.52.5250 y xy x=⎧⎨=-⎩,解得x=250,250-100=150(秒),即乙出发150秒时第一次与甲相遇.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23【解析】【分析】依据翻折的性质得到BE=BC,再根据勾股定理解答即可.解:由折叠及对称性可得:BE=BC=1,DE=DC ,∠DEA=∠C=90°.在Rt △ABC 中,根据勾股定理,可得:=,则1.在Rt △ADE 中,根据勾股定理,AD 2=DE 2+AE 2,即22221CD CD -=+-()),解得:.【点睛】本题主要考查的是勾股定理和翻折的性质,熟练掌握勾股定理和翻折的性质是解题的关键.24.(1)y =﹣x+1;(2)P 点坐标为(﹣3,4)或(5,﹣4).【解析】【分析】(1)利用待定系数法求一次函数解析式;(2)先计算出函数值为0所对应的自变量的值得到A 点坐标,设P (t ,-t+1),根据三角形面积公式得到12×1×|-t+1|=2,然后解绝对值方程求出t 即可得到P 点坐标.【详解】(1)设一次函数解析式为y =kx+b ,把(﹣2,3)、(2,﹣1)分别代入得2321k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩,所以一次函数解析式为y =﹣x+1;(2)当y =0时,﹣x+1=0,解得x =1,则A (1,0),设P (t ,﹣t +1),因为S △OAP =2,所以12×1×|﹣t+1|=2,解得t =﹣3或t =5,所以P 点坐标为(﹣3,4)或(5,﹣4).【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.25.(1)60,80;(2)y =﹣20x+320(4≤x≤16);(3)乙比甲早6分钟到达终点.【解析】(1)根据线段OA ,求出甲的速度,根据图可知:乙在点A 处开始追甲,在点B 处追上甲,乙的速度=,计算求值即可;(2)根据图示,设线段AB 的表达式为:y =kx+b ,把把(4,240)、(16,0)代入得到关于k 、b 的二元一次方程组,解之即可得到答案;(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】解:(1)由线段OA 可知:甲的速度为:2404=60(米/分),乙的步行速度为:()24016460164+-⨯-=80(米/分),故答案为:60;80;(2)根据题意得:设线段AB 的表达式为:y =kx+b ()416x ≤≤,把(4,240),(16,0)代入得:4240160k b k b +=⎧⎨+=⎩,解得20320k b =-⎧⎨=⎩,即线段AB 的表达式为:()20320416y x x =-+≤≤;(3)在B 处甲乙相遇时,与出发点的距离为:240+(16﹣4)×60=960(米),与终点的距离为:2400﹣960=1440(米),相遇后,到达终点甲所用的时间为:144060=24(分),相遇后,到达终点乙所用的时间为:144080=18(分),24﹣18=6(分),答:乙比甲早6分钟到达终点.【点睛】本题考查一次函数的实际应用,解题的关键是能够通过函数图象结合题意分析出两个人的运动过程,求出速度、路程、时间等因素解决问题.26.(1)132y x =-+;(2)①39,24⎛⎫- ⎪⎝⎭;②⎫⎪⎝⎭或⎛⎫ ⎪ ⎪⎝⎭;③9,010⎛⎫ ⎪⎝⎭【分析】(1)先确定出点B 坐标和点A 坐标,进而求出点C 坐标,最后用待定系数法求出直线BC 解析式;(2)①设点M(m ,0),则点P(m ,132x +),则OM m =-,由B (0,3),C (6,0),则3OB =,6OC =,6MC m =-,再由勾股定理得222BM BC MC +=,222BM OM OB =+,222BC OC OB =+则()222223636m m +++=-,由此求解即可;②设点M(m ,0),则点P(m ,132x +),Q(m,132x -+)过点B 作BD ⊥PQ 于点D ,则113322PQ m m m =-+--=,BD OM m ==,再由2119==224PQB S PQ BD m ⋅=△进行求解即可;③过点K 以KC 为直角边作等腰直角△KHC ,延长KF 交HC 于T ,过点H 作HG ⊥y 轴于G ,△KHG ≌△CKO 得到KG=OC ,HG=OK ,由此求出3922H ⎛⎫-- ⎪⎝⎭,,再由∠HKC=90°,HK=CK ,∠TKC=45°,得到HT=CT ,即T 为HC 的中点,则99,44T ⎛⎫- ⎪⎝⎭,设直线KT 的解析式为11y k x b =+,求出直线KT 的解析式为5332y x =-+,则直线KT 与x 轴的交点坐标为即为所求.【详解】解:(1)对于132y x =+与x 轴、y 轴的交点,∴A (-6,0),B (0,3),∵点C 与点A 关于y 轴对称,∴C(6,0),设直线BC 的函数解析式为y kx b =+,则360b k b =⎧⎨+=⎩,解得123k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数解析式为132y x =-+;故答案为:132y x =-+;(2)①设点M(m ,0),则点P(m ,132x +),∴OM m =-,∵B (0,3),C (6,0),∴3OB =,6OC =,∴6MC m =-,∵∠MBC=90º,∴△BMC 是直角三角形,∴222BM BC MC +=,∵222BM OM OB =+,222BC OC OB =+,∴()222223636m m +++=-,解得32m =-,∴39,24P ⎛⎫- ⎪⎝⎭;故答案为:39,24⎛⎫- ⎪⎝⎭;②如图1,设点M(m ,0),则点P(m ,132x +),Q(m ,132x -+),过点B 作BD ⊥PQ 于点D ,∴113322PQ m m m =-+--=,∵BD OM m ==,∴2119==224PQB S PQ BD m ⋅=△,解得2m =±,∴M ⎫⎪⎪⎝⎭或,02M ⎛⎫- ⎪⎝⎭;故答案为:2⎛⎫ ⎪⎝⎭或2⎛⎫- ⎪ ⎪⎝⎭;③如图所示,过点K 以KC 为直角边作等腰直角△KHC ,延长KF 交HC 于T ,过点H 作HG ⊥y 轴于G ,∴∠CKH=∠HGK=∠KOC=90°,KC=KH ,∴∠HKG+∠KHG=∠HKG+∠CKO ,∴∠KHG=∠CKO ,∴△KHG ≌△CKO (AAS ),∴KG=OC ,HG=OK ,∵B (0,3),C (6,0),∴OB=3,KG=OC=6,∵K 是OB 的中点,∴1322HG OK ===,∴92OG KG OK =-=,∴3922H ⎛⎫-- ⎝⎭,,∵∠HKC=90°,HK=CK ,∠TKC=45°,∴HT=CT ,即T 为HC 的中点,∴99,44T ⎛⎫- ⎪⎝⎭,设直线KT 的解析式为11y k x b =+,∴111329944b k b ⎧=⎪⎪⎨⎪+=-⎪⎩,∴115332k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线KT 的解析式为5332y x =-+,∴直线KT 与x 轴的交点坐标为9,010⎛⎫ ⎪⎝⎭,∴F 的坐标为9,010⎛⎫⎪⎝⎭.。

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试题一、单选题1.在实数0.3,02π123454545…中,无理数有()A .2个B .3个C .4个D .5个2.平面直角坐标系中,点P(3,-4)位于A .第一象限B .第二象限C .第三象限D .第四象限3.下列二次根式中,是最简二次根式的是()AB C .D 4.下列说法正确的是()A .-81的平方根是±9B .任何数的平方是非负数,因而任何数的平方根也是非负数C .任何一个非负数的平方根都不大于这个数D .3是9的平方根5.如图,一场大风后,一棵大树在高于地面1米处折断,大树顶部落在距离大树底部3米处的地面上,那么树高是()A .4mB mC .+1)mD .+3)m6.如图,在平面直角坐标系中,点P 的坐标为()3,4-,以点O 为圆心,以OP 长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标为()A .5B .-3C .-4D .-57.如图,学校(记作A )在蕾蕾家(记作B )南偏西25°的方向上,且与蕾蕾家的距离是4km ,若∠ABC =90°,且AB =BC ,则超市(记作C )在蕾蕾家的()A .南偏东65°的方向上,相距4kmB .南偏东55°的方向上,相距4kmC .北偏东55°的方向上,相距4kmD .北偏东65°的方向上,相距4km8123)A .1与2B .2与3C .3与4D .4与59.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 21,则点C 所对应的实数是()A .12B .22C .221D .22110.如图,在Rt ABC 中,CA =CB =2,M 为CA 的中点,在AB 上存在一点P ,连接PC 、PM ,则 PMC 周长的最小值是()A 5B 3C 5D 3二、填空题1133的倒数为____________.12.函数y=kx 的图像经过点P(3,-1),则k 的值为______________.1319x x --有意义,那么代数式()219x x --______.14.一艘轮船以16/km h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12/km h 的速度向东南方向航行,它们离开港口1小时后相距__________.15.已知点()3,M a 和(),4N b 关于x 轴对称,则()2021a b +的值为______.16.如图,Rt △ABC 中,AC =5,BC =12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为_____.17.如图,直线y ,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按照此做法进行下去,点n A 的坐标为__.三、解答题18.计算:(2)190(220.若y -1与x +2成正比例,且当x =2时,y =5.(1)求y 与x 的函数关系式;(2)如果点(),5m 在该函数图象上,求m 的值.21.在正方形网格中建立如图的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,点A 的坐标是(4,4),请解答下列问题:(1)将△ABC 向下平移5单位长度,画出平移后的△A1B1C1并写出点A 对应点A1的坐标;(2)画出△A1B1C1关于y 轴对称的△A2B2C2并写出A2的坐标;(3)求S △ABC .22.已知610a ,小数部分为b ,试求())12106b a -+的值.23.如图所示,一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?24.如图,在直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式22(3)40a b c -+--=,(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,12),请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积为△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.25.先阅读一段文字,再回答下列问题:已知在平面内两点坐标()111,P x y ,()222,P x y ,其两点间距离公式为12PP =,例如:点()3,2和()4,0同时,当两点所在的直线在坐标轴上或平行于x 轴或垂直于x 轴距离公式可简化成1221PP x x =-或1221PP y y =-.(1)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-1,则A ,B 两点的距离为______.(2)已知()A 3,5,()2,1B --,试求A ,B 两点的距离;(3)已知一个三角形各顶点坐标为()0,6A ,()3,2B -,()3,2C ,你能断定此三角形的形状吗?参考答案1.B 【解析】【分析】根据无理数的定义判断即可.【详解】2π故选:B .【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.2.D【解析】【分析】首先清楚的是,平面直角坐标系的四个象限横纵坐标的正负情况,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.然后根据p点横纵坐标正负判断所在象限.【详解】因为平面直角坐标系中,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.点p(3,-4),横纵坐标正负情况为正负,所以位于第四象限.故选D.【点睛】本题考查了点的象限,解题关键是知道直角坐标系每个象限点的横纵坐标正负情况,通过横纵坐标的正负情况,判断所在象限.3.C【解析】【分析】化简得到结果,即可做出判断.【详解】A.不是最简二次根式;不是最简二次根式;C.D.不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.4.D【解析】【分析】对于A,根据负数的平方根的性质判断即可;对于B,根据正数的平方根的性质判断;对于C,以分数为例,判断即可;对于D,根据平方根的定义判断即可.【详解】因为负数没有平方根,所以A不符合题意;因为1的平方根是±1,所以B不符合题意;因为14的平方根是12±,而1142<,所以C不符合题意;因为3是9的一个平方根,所以D符合题意.故选:D.【点睛】本题主要考查了平方根的定义和性质,理解平方根的性质是解题的关键.5.C【解析】【分析】首先根据勾股定理求得折断的树高,继而即可求出折断前的树高.【详解】解:根据勾股定理可知:折断的树高米,则这棵大树折断前的树高=()米.故选:C.【点睛】考查了利用勾股定理解应用题,关键在于把折断部分、大树原来部分和地面看作一个直角三角形,利用勾股定理求解.6.D【解析】【分析】首先根据勾股定理求出OP,进而得出OA的长,再根据点A的位置得出答案.【详解】根据勾股定理,得5OP==,∴OA=OP=5.∵点A在x轴的负半轴,∴点A的横坐标是-5.故选:D.本题主要考查了平面直角坐标系内点的坐标,根据勾股定理求出线段的长是解题的关键.7.A【解析】【分析】直接利用方向角的定义得出∠2的度数,进而确定超市(记作C)与蕾蕾家的位置关系.【详解】解:如图所示:由题意可得:∠1=25°,∠ABC=90°,BC=AB=4km,则∠2=65°,故超市(记作C)在蕾蕾家的南偏东65°的方向上,相距4km.故选:A.【点睛】本题主要考查了方向角的定义,正确根据图形得出∠2的度数是解题关键.8.A【解析】【分析】先化简,然后再利用“夹逼法”估算无理数的大小即可.【详解】∵1<3<4,∴12.故选:A.9.D【解析】设点C 所对应的实数是x ,根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【详解】设点C 所对应的实数是x .则有x 1),解得.故选D .【点睛】本题考查的是数轴上两点间距离的定义,根据题意列出关于x 的方程是解答此题的关键.10.C【解析】【分析】作点C 关于直线AB 的对称点D ,连接DM 交AB 于点P ,此时PCM ∆周长最小,根据PCM ∆周长PC PM CM PD PM CM =++=++,求出DM 即可解决问题.【详解】解:作点C 关于直线AB 的对称点D ,连接DM 交AB 于点P ,此时PCM ∆周长最小.CA CB = ,90ACB ∠=︒,45BAC B BAD ∴∠=∠=∠=︒,在Rt ADM ∆中,90DAM ∠=︒ ,2AD =,1AM =,DM ∴∴此时PCM ∆的周长为1PC PM CM PM PD CM ++=++=.故选:C .【点睛】本题考查轴对称-最短问题,勾股定理等知识,解题的关键是利用轴对称找到点P 位置,属于中考常考题型.11【解析】【分析】根据倒数的定义计算即可求解.【详解】解:1=1【点睛】本题考查了倒数的定义,二次根式的乘除,熟练进行二次根式的乘除运算是解题关键.12.1 3-【解析】【详解】解:将点P(3,-1)代入函数y=kx,13k-=,解得:k=1 3-.故答案为:1 3-.【点睛】本题考查了求正比例函数得函数表达式,把点代入函数表达式是解答本题的关键.13.8【解析】【分析】首先根据算术平方根的性质确定x的取值范围,再将待求式去掉根号,最后计算可得答案.【详解】∴x-1≥0,9-x≥0,解得1≤x≤9,即9-x≥0.则198x x x=-+-=.故答案为:8.【点睛】本题主要考查了算术平方根的性质,理解算术平方根双重非负性是解题的关键.14.20km【解析】【分析】根据题意,画出图形,且东北和东南的夹角为90°,根据题目中给出的1小时和速度可以计算AC,BC的长度,在直角△ABC中,已知AC,BC可以求得AB的长.【详解】作出图形,因为东北和东南的夹角为90°,所以△ABC为直角三角形.在Rt△ABC中,AC=16×1=16km,BC=12×1=12km.则==20km,故答案为:20km.【点睛】本题考查了勾股定理在实际生活中的应用,根据题意画出图形,确定△ABC为直角三角形,并且根据勾股定理计算AB是解题的关键.15.-1【解析】【分析】根据关于x 轴的对称点的特点可得答案.【详解】解:∵点()3,M a 和(),4N b 关于x 轴对称,∴a=-4,b=3,∴()2021a b +=()202111-=-,故答案为:-1【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.16.30【解析】【分析】根据勾股定理可得:AB=13,根据图形可得:阴影部分的面积=以BC 为直径的半圆的面积+以AC 为直径的半圆的面积+△ABC 的面积-以AB 为直径的半圆的面积,由此进行计算即可.【详解】Rt △ABC 中,AC =5,BC =12,∴,∴S 阴影=2221121511135122222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=30,故答案为30.17.1(2,0)n -【解析】【分析】先根据y =和1A 坐标求出1B 点坐标,再根据1B 点坐标求出点2A 坐标,以此类推,找出规律即可得到答案.【详解】解:由题意,点1A (1,0),11A B x ⊥轴,∴点1B 的横坐标是1,代入到y =得1B ,12OB ∴=,点2A 是以原点O 为圆心,1OB 长为半径画弧与x 轴的交点,212OA OB ∴==,∴点2A 的坐标是(2,0),同理可得2(2,B ,3(4,0)A ,以此类推可得点n A 的坐标是1(2,0)n -,故答案为:1(2,0)n -.【点睛】本题考查一次函数的应用,用了类比推理、数形结合的数学方法,平时需要多加练习这种题型.18.(1)(2)【解析】【分析】对于(1)==,再根据二次根式加减法法则计算;对于(2),根据乘法分配律计算即可.(1)原式=+=(2)原式⨯+⨯=.【点睛】本题主要考查了二次根式的计算,掌握二次根式运算的法则是解题的关键.191【解析】【分析】先化简二次根式,再算二次根式的乘法和零指数幂,最后算加减法即可.【详解】解:原式=13+=11+.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的运算法则和二次根式的性质,是解题的关键.20.(1)3y x =+(2)2【解析】【分析】(1)根据y -1与x +2成正比例列关系式1(2)y k x -=+,将x =2时,y =5,代入求解即可;(2)将x =m ,y =5代入(1)中所求函数关系式,求解即可.(1)解: y -1与x +2成正比例,∴设1(2)y k x -=+,将x =2时,y =5,代入得:51(22)k -=+,解得1k =,∴12y x -=+,移项得3y x =+,故y 与x 的函数关系式为:3y x =+;(2)点(),5m 在该函数图象上,∴53m=+,解得2m=,故m的值是2.【点睛】本题考查待定系数法求一次函数关系式、函数上点的坐标,属于基础题,注意(1)中求出12y x-=+后要移项合并同类项.21.(1)如图所示见解析,点A1的坐标(4,﹣1);(2)如图所示见解析,A2(﹣4,﹣1);(3)2.【解析】【分析】(1)根据网格结构找出点A、B、C向下平移5个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A1、B1、C1关于点y轴对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据三角形的面积公式求出△ABC的面积.【详解】(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标(4,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形;A2(﹣4,﹣1);(3)S△ABC=12×2×2=2.【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,以及三角形的面积计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.-1【解析】【分析】的整数部分,从而得到的整数部分a 、小数部分b ,然后将a 、b 代入计算即可.【详解】解:∵3<4,∴−4<<−3,∴2<<3,∴a=2,小数部分为−2=.∴())126b a -+=()14226--=()1226=()14106-=-1【点睛】本题主要考查估算无理数的大小,二次根式的混合运算,求出a 、b 的值是解题关键.23.能,理由见解析【解析】【分析】首先根据题意确定相应线段,再根据勾股定理求出CD 的长,进而求出CH 的长,再判断即可.【详解】能通过,理由如下:根据题意可知DH=2.3米.卡车关于中线对称更容易通过,所以OD=0.8米.在Rt △OCD 中,根据勾股定理,得0.6CD =(米),∴CH=CD+DH=0.6+2.3=2.9>2.5,∴卡车能通过此门.【点睛】本题主要考查了勾股定理的应用,构造直角三角形是解决这一类问题的常用方法.24.(1)a =2,b =3,c =4;(2)S 四边形ABOP =3﹣m ;(3)存在,点P (﹣3,12)【解析】【分析】(1)根据几个非负数和的性质得到a-2=0,b-3=0,c-4=0,分别解一元一次方程得到a=2,b=3,b=4;(2)根据三角形的面积公式和四边形ABOP 的面积=S △AOP+S △AOB 进行计算;(3)若S 四边形ABOP≥S △AOP ,则-m+3≥2×1212×2×(-m ),解得m≥-3,则m=-1,-2,-3,然后分别写出P 点的坐标.【详解】解:(1)由已知22(3)0a b -+-+,可得:a =2,b =3,c =4;故答案为:a =2,b =3,c =4.(2)∵S △ABO =12×2×3=3,S △APO =12×2×(﹣m )=﹣m ,∴S 四边形ABOP =S △ABO+S △APO =3+(﹣m )=3﹣m ,即S 四边形ABOP =3﹣m ;故答案为:S 四边形ABOP =3﹣m .(3)因为S △ABC =12×4×3=6,∵S 四边形ABOP =S △ABC∴3﹣m =6,则m =﹣3,所以存在点P(﹣3,12)使S四边形ABOP=S△ABC.故答案为:存在,P(﹣3,12).25.(1)6(3)等腰三角形【解析】对于(1),直接根据平行与y轴的两点之间的距离公式计算即可;对于(2),根据任意两点之间的距离公式计算即可;对于(3),分别根据两点之间的距离公式求出三边长,再判断即可.(1)根据题意可知5(1)6AB=--=.故答案为:6;(2)∵点A(3,5),点B(-2,-1),∴AB==所以A,B;(3)△ABC是等腰三角形,理由如下:∵点A(0,6),点B(-3,2),点C(3,2),∴5AB==,6BC==,5AC==,∴AB=AC,∴△ABC是等腰三角形.。

2016-2017学年北师大版七年级数学下册期末试题及答案

2016-2017学年北师大版七年级数学下册期末试题及答案

2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。

本试题共8页,满分为120分。

考试时间为120分钟。

答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。

考试结束后,将本试卷和答题卡一并交回。

本考试不允许使用计算器。

第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。

有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年度上学期期中考试试卷
八年级数学
(全卷满分100分,考试时间100分钟)
一 选择题(本大题共8小题,每小题3分,共24分)
1.在实数-3.14,2-,0.1010010001,3π
-,7
1,4中,无理数有( ) A.1个 B.2个 C.3个 D.4个
2.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( )
A.a=2,b=3,c=4
B.a=5,b=12,c=13
C.a=6,b=8,c=10
D.a=7,b=24,c=25
3.如图所示:数轴上点A 所表示的数为m ,则m 的值是( )
A.5
B.2
C.12-
D.15-
4.点M 在第二象限,它到X 轴、Y 轴的距离分别为4和2,则点M 的坐标为( )
A.(4,2)
B.(-2,4)
C.(-4,-2)
D.(2,4)
5.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为( )米
A.4米
B.5米
C.7米
D.8米
6.如图,是一次函数y=kx+b 的图像,下面哪个点在的图像上。

( )
A.(-3,-4)
B.(-1,-3)
C.(2,-1)
D.(6,2)
7.下列函数中,其图像同时满足两个条件:
①y 随着x 的增大而减小;②与y 轴的正半轴相交.则它的解析式为( )
A.y=-2x-1
B.y=-2x+1
C.y=2x-1
D.y=2x+1
8.直线y=x+3与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )
A.4
B.5
C.7
D.8
二 填空题(本大题共8小题,每小题3分,共24分)
9.如果将电影票上“4排5号”简记为(4,5),那么“10排10号”可表示为 ;(6,3)表示的含义是 。

10.x 是9的平方根,y 是-27的立方根,则x+y 的值为 。

11.根据你发现的规律填空:
①已知442.133=,则3003.0= ;
②已知07696.0000456.03=,则=3456 。

12.如图,一只蚂蚁从长、宽、高都是3cm 的正方体纸箱的A 点沿纸箱爬到B 点,那么它所走的最短路线的长是 。

13.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是 。

14.如图,一根树在离地面5米处断裂,树的顶部落在离底部12米处,树折断之前有 米。

15.若13的整数部分为x ,小数部分为y ,则y-x= 。

16.为了加强公民节水意识,某市制定了如下用水收费标准:每户每月用水不超过10吨,水价为每顿1.2元;超过10顿时,超过部分按每顿1.8元收费。

该市某户居民5月份用水x 吨(x>10),应交水费y 元,则y 关于x 的关系式 。

三 (本大题共2小题,共11分)
17.(6分)计算: (1)3)273
12123(÷+- (2))1311)(1311(+-
18.(5分)如图,阴影部分是一个正方形,则此正方形的面积为多少cm 2

四 (本大题共3小题,共18分)
19.(6分)有一个正数的平方根分别是3a-2与5-2a ,你知道a 是多少?这个正数又是多少?
20.(6分)在平行四边形ABCD中,BC边上的高AE=3,AD=5,∠ABE为450,若以点E为原点,BC所在直线为x 轴,AE所在直线为y轴,请:(1)建立平面直角坐标系,并画出图形;(2)分别求出平行四边形ABCD四个顶点的坐标。

21.(6分)已知函数y=(2m-1)x+m+3。

(1)若函数图像经过原点,求m的值;
(2)若这个函数是一次函数,且与y轴交点为(0,3),求一次函数图像与坐标轴围成的面积。

五(本大题共2小题,共15分)
S 。

22.(7分)如图,△ABC在直角坐标系中,(1)请求△ABC三边的长;(2)求出ABC
23.(8分)已知如图,直线42
1:1+-=x y l 与x 轴、y 轴分别交于点A 、点B ,另一直线)(0:2≠+=k b kx y l 经过点C (4,0),且把△AOB 分成两部分。

(1)若1l ∥2l ,求过点C 的直线的解析式。

(2)若△AOB 被直线2l 分成的两部分面积相等,求过点C 的直线的解析式。

24.(8分)先观察下列等式,再回答问题。

①2111111112111122=+-+=++
; ②6111212113121122=+-+=++
; ③12
1113131141
31
122=+-+=++; (1)请你根据上面三个等式提供的信息,猜想2251
41
1++的结果,并进行验证;
(2)请按照上面各式反映的规律,试写出用含n 的式子表示的等式(n 为正整数)。

参考答案
1.B
2.A
3.D
4.B
5.C
6.A
7.D
8.C
9.(10,10),6排3号
10.0,-6
11.0.1442,7.696 12.53
13.(-1,-2),(7,-2)
14.18 15.6-13
16.y=1.8x-6
17.(1)3
18;(2)-2 18.64
19.a=-3,121
20.A(0,3),B(-3,0),C (2,0),D (5,3)
21.(1)m=-3;(2)y=-x+3,面积为2
9。

22.(1)AB=345322=+;524222=+=AC ;103122=+=BC ;
(2)面积为7
23.解:(1)22
1+-=x y (2)当y=0时,x=8,所以A(8,0),所以OA=2OC.所以BC 是△OAB 的中线,所以y =-x+4. 24.(1)20
1141141151
41
122=+-+=++ (2))
1(11)1(11122++=+++
n n n n。

相关文档
最新文档