精选高中数学多选题专项训练专题复习及解析(5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列多选题
1.设数列{}n a 满足11
02
a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .
21
12
a << B .{}n a 是递增数列 C .2020312
a <<
D .
20203
14
a << 答案:ABD 【分析】
构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,
所以当时,,
即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,
解析:ABD 【分析】
构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】
由()1ln 2n n n a a a +=+-,1102
a << 设()()ln 2f x x x =+-, 则()11122x
f x x x
-'=-
=--, 所以当01x <<时,0f x
,
即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭
为单调递增函数,
即()()102f f x f ⎛⎫<<
⎪⎝⎭
,
即()131
ln 2ln ln 1222
f x <<<+<+=, 所以()1
12
f x << , 即
1
1(2)2
n a n <<≥, 所以
2112a <<,20201
12
a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,
1
12
n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 231
32131113ln(2)ln ln 222234
a a a e =+->+>+=+> 因此20202020333
144
a a a ∴<><>,故D 正确 故选:ABD 【点睛】
本题考查了数列性质的综合应用,属于难题. 2.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4
B .-2
C .0
D .2
答案:AB 【分析】
由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,
上述式子累加可得:,, 对于任意的恒成立
解析:AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,
则
11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02
⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误;
对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣
⎦,不包含[]1,2,故D 错误, 故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.
3.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
答案:AD 【分析】
分类讨论大于1的情况,得出符合题意的一项. 【详解】 ①, 与题设矛盾. ②符合题意. ③与题设矛盾. ④ 与题设矛盾.
得,则的最大值为. B ,C ,错误. 故选:AD. 【点睛】
解析:AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q
n N -=∈.
4.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4
n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n
= B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1
{
}n
S 为递增数列 答案:AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】
因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;
解析:AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】
11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1
1104n n n S S S -≠∴
-= 因此数列1{
}n S 为以1
1
4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以
1144(1)44n n n n S S n
=+-=∴=,即A 正确; 当2n ≥时1111
44(1)4(1)
n n n a S S n n n n -=-=
-=--- 所以1,141,24(1)n n a n n n ⎧
=⎪⎪
=⎨⎪-≥-⎪⎩
,即B ,C 不正确;
故选:AD 【点睛】
本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.
5.(多选)在数列{}n a 中,若2
2
1(2,,n n a a p n n N p *
--=≥∈为常数),则称{}n a 为“等方差
数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .
(){}1n
- 是等方差数列
C .{}2
n
是等方差数列.
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列
答案:BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故
解析:BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.
【详解】
对于A ,若{}n a 是等差数列,如n a n =,则12222
(1)21n n a a n n n --=--=-不是常数,故
{}n
a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方
差数列,故B 正确; 对于C ,数列{}
2
n
中,()(
)
2
2
221
11
2234n
n n n n a a ----=-=⨯不是常数,{}
2n
∴不是等方差
数列,故C 错误; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数
列,()()2
2
2
112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,
故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BD. 【点睛】
关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.
6.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =
C .95S S >
D .6S 与7S 均为n S 的最大值
答案:BD 【分析】
设等差数列的公差为,依次分析选项即可求解. 【详解】
根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,
解析:BD 【分析】
设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】
根据题意,设等差数列{}n a 的公差为d ,依次分析选项:
{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;
又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误;
而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】
本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.
7.(多选题)在数列{}n a 中,若22
1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称
{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )
A .若{}n a 是等差数列,则{}
2
n a 是等方差数列
B .
(){}1n
-是等方差数列
C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列
答案:BCD 【分析】
根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】
对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正
解析:BCD 【分析】
根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】
对于A 选项,取n a n =,则
()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦
()()221221n n n =+++不是常数,则{}
2
n a 不是等方差数列,A 选项中的结论错误;
对于B 选项,()()2
2
111110n n
+⎡⎤⎡⎤---=-=⎣⎦⎣⎦
为常数,则(){
}
1n
-是等方差数列,B 选项
中的结论正确;
对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得22
1n n a a p +-=,则数列
{}2n
a 为等差数列,所以(
)
2
21kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方
差数列,C 选项中的结论正确;
对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得
n a dn m =+,
则()()()()2
2
2
1112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,
由于数列{}n a 也为等方差数列,所以,存在实数p ,使得22
1n n a a p +-=,
则()222d n m d d p ++=对任意的n *
∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩
,得0p d ==,
此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】
本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 8.定义11222n n
n a a a H n
-++
+=
为数列{}n a 的“优值”.已知某数列{}n a 的“优
值”2n
n H =,前n 项和为n S ,则( )
A .数列{}n a 为等差数列
B .数列{}n a 为等比数列
C .
20202023
20202
S = D .2S ,4S ,6S 成等差数列
答案:AC 【分析】
由题意可知,即,则时,,可求解出,易知是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出,判断C ,D 的正误. 【详解】 解:由, 得, 所以时,, 得时,, 即时,, 当时,由
解析:AC 【分析】 由题意可知112222n n n
n a a a H n
-++
+==,即112222n n n a a a n -+++=⋅,则2
n ≥时,()()1
112
21212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数
列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】
解:由112222n n n
n a a a H n
-++
+==,
得112222n n n a a a n -++
+=⋅,①
所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②
得2n ≥时,()()1
112
21212n n n n n a n n n ---=⋅--⋅=+⋅,
即2n ≥时,1n a n =+,
当1n =时,由①知12a =,满足1n a n =+.
所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()
32
n n n S +=
,所以2020202320202S =,故C 正确.
25S =,414S =,627S =,故D 错,
故选:AC . 【点睛】
本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 9.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <
C .80a =
D .n S 的最大值是8
S 或者9S
答案:BD 【分析】
由,即,进而可得答案. 【详解】 解:, 因为
所以,,最大, 故选:. 【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.
解析:BD 【分析】
由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】
解:1167891011950S S a a a a a a -=++++==, 因为10a >
所以90a =,0d <,89S S =最大, 故选:BD . 【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 10.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{
}n
a n
是递增数列 D .数列{}3n a nd +是递增数列
答案:AD 【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】
, ,所以是递增数列,故①正确, ,当时,数列不是递增数列,故②不正确, ,当时,不是递增数列,故③不正确, ,因
解析:AD 【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】
0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,
()()2
111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d -<时,数列{}n na 不是递增数列,故②不正确, 1n a a d d n n -=+,当10a d -<时,{}n a n 不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确,
故选:AD 【点睛】
本题主要考查了等差数列的性质,属于基础题.
11.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
【分析】
先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】
解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:
解析:AD 【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,
0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=>,()
112121202
a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.
12.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17a
B .35S
C .1719a a -
D .1916S S -
答案:BD 【分析】
由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确.
因为,所以,所以, 因为公差,所以,故不正确; ,故正确; ,故不正确; ,故正确. 故选:BD.
解析:BD 【分析】 由1718S S =得18
0a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可
知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】
因为1718S S =,所以18170S S -=,所以18
0a =,
因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;
13518
351835()35235022
a a a S a +⨯=
===,故B 正确; 171920a a d -=-≠,故C 不正确;
19161718191830S S a a a a -=++==,故D 正确.
故选:BD. 【点睛】
本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.
二、等差数列多选题
13.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-
B .180S =
C .当0d >时,6140a a +>
D .当0d <时,614a a >
解析:ABC 【分析】
因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质
961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,
140a <即可判断选项D ,进而得出正确选项.
【详解】
因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:
1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,
对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()
()
11891018181802
2
a a a a S ++=
=
=,故选项B 正确;
对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;
对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,
所以614a a <,故选项D 不正确, 故选:ABC 【点睛】
关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.
14.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >
B .130S >,140S <,则78a a >
C .若915S S =,则n S 中的最大值是12S
D .若2
n S n n a =-+,则0a =
解析:AD 【分析】
对于A ,作差后利用等差数列的通项公式运算可得答案;
对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;
对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】
对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,
所以2
4619150a a a a d -=>,所以4619a a a a >,故A 正确;
对于B ,因为130S >,140S <,所以
77713()
1302
a a a +=>,即70a >,
787814()
7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以
7878||||0a a a a -=+<,即78||||a a <,故B 不正确;
对于C ,因为915S S =,所以101114150a a a a ++
++=,所以12133()0a a +=,即
12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值
是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;
对于D ,若2
n S n n a =-+,则11a S a ==,2n ≥时,
221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,
所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】
关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.
15.已知数列{}n a 满足:12a =,当2n ≥时,)
2
12n a =
-,则关于数列
{}n a 的说法正确的是 ( )
A .27a =
B .数列{}n a 为递增数列
C .2
21n a n n =+-
D .数列{}n a 为周期数列
解析:ABC 【分析】
由)
2
12n a =
-1=,再利用等差数列的定义求
得n a ,然后逐项判断. 【详解】
当2n ≥时,由)
2
12n a =-,
得)
2
21n a +=
,
1=,又12a =,
所以
是以2为首项,以1为公差的等差数列,
2(1)11n n =+-⨯=+,
即2
21n a n n =+-,故C 正确;
所以27a =,故A 正确;
()2
12n a n =+-,所以{}n a 为递增数列,故正确;
数列{}n a 不具有周期性,故D 错误; 故选:ABC 16.题目文件丢失!
17.设数列{}n a 满足11
02
a <<
,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列
说法正确的是( ) A .
21
12
a << B .{}n a 是递增数列 C .2020312
a << D .
20203
14
a << 解析:ABD 【分析】
构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】
由()1ln 2n n n a a a +=+-,1102
a << 设()()ln 2f x x x =+-, 则()11122x
f x x x
-'=-
=--, 所以当01x <<时,0f x
,
即()f x 在0,1上为单调递增函数,
所以函数在10,2⎛⎫
⎪⎝⎭
为单调递增函数,
即()()102f f x f ⎛⎫<<
⎪⎝⎭
,
即()131
ln 2ln ln 1222
f x <<<+<+=, 所以()1
12
f x << , 即
1
1(2)2
n a n <<≥, 所以
2112a <<,20201
12
a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,
1
12
n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 231
32131113ln(2)ln ln 222234
a a a e =+->+>+=+> 因此20202020333
144
a a a ∴<><>,故D 正确 故选:ABD 【点睛】
本题考查了数列性质的综合应用,属于难题.
18.若不等式1(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2 解析:ABC 【分析】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n
-<恒成立,当n 为偶数时有1
2a n
<-恒成立,分别计算,即可得解. 【详解】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:1
2+a n
-<恒成立,
由12+
n 递减,且1
223n
<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:1
2a n
<-恒成立, 由12n -
第增,且31
222n ≤-<, 所以3
2
a <
, 综上可得:322
a -≤<, 故选:ABC . 【点睛】
本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题. 19.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨
⎩为奇数
为偶数
B .1(1)1n n a -=-+
C .2sin 2
n n a π= D .cos(1)1n a n π=-+
解析:BD 【分析】
根据选项求出数列的前4项,逐一判断即可. 【详解】
解:因为数列{}n a 的前4项为2,0,2,0,
选项A :不符合题设;
选项B :0
1(1)12,a =-+=1
2(1)10,a =-+=
23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin
2,2
a π
==22sin 0,a π==
332sin
22
a π
==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=
3cos 212,a π=+=4cos310a π=+=,符合题设.
故选:BD. 【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 20.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
解析:AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意.
③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q
n N -=∈.
21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( )
A .68S a =
B .733S =
C .135********a a a a a ++++=
D .222
2123202020202021a a a a a a ++++=
解析:BCD 【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2
121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,
故2222
123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD 【点睛】
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.
22.已知数列0,2,0,2,0,2,
,则前六项适合的通项公式为( )
A .1(1)n
n a =+-
B .2cos
2
n n a π= C .(1)2sin 2
n n a π
+= D .1cos(1)(1)(2)n a n n n π=--+--
解析:AC 【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,1(1)n
n a =+-取前六项得:0,2,0,2,0,2,满足条件;
对于选项B ,2cos 2
n n a π
=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin
2
n n a π
+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件;
故选:AC
23.已知数列{}n a 的前n 项和为,n S 2
5,n S n n =-则下列说法正确的是( )
A .{}n a 为等差数列
B .0n a >
C .n S 最小值为214
- D .{}n a 为单调递增数列
解析:AD 【分析】
利用11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对
25,n S n n =-进行配方可对C 进行判断
【详解】
解:当1n =时,11154a S ==-=-,
当2n ≥时,22
15[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,
当1n =时,14a =-满足上式, 所以26n a n =-,
由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于2
2
525
5()2
4
n S n n n =-=--
,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】
此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题
24.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )
A .2
n S n =
B .2
23n S n n =-
C .21n a n =-
D .35n a n =-
解析:AC 【分析】
利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S . 【详解】
等差数列{}n a 的前n 项和为n S .39S =,47a =,
∴31413239237
S a d a a d ⨯⎧
=+
=⎪⎨⎪=+=⎩,
解得11a =,2d =,
1(1)221n a n n ∴+-⨯=-=.
()21212
n n n S n +-=
=
故选:AC . 【点睛】
本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.
三、等比数列多选题25.题目文件丢失!
26.在数列{}n a 中,如果对任意*n N ∈都有
21
1n n n n
a a k a a +++-=-(k 为常数),则称{}n a 为等
差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0
C .若32n
n a =-+,则数列{}n a 是等差比数列
D .若等比数列是等差比数列,则其公比等于公差比 解析:BCD 【分析】
考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】
对于数列{}n a ,考虑121,1,1n n n a a a ++===,
21
1n n n n
a a a a +++--无意义,所以A 选项错误;
若等差比数列的公差比为0,
21
2110,0n n n n n n
a a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;
若32n
n a =-+,
21
13n n n n
a a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则1
1,1n n q a a q -=≠,
()()
11211111
111111n n n
n n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】
易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.
27.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有
()()()f x y f x f y +=,若112
a =
,()()*
n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为
12
C .数列{}n S 递增,最小值为12
D .数列{}n S 递减,最大值为1
解析:AC 【分析】
计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =
,所以1(1)2
f =, 所以2
21
(2)(1)4
a f f ===
, 31
(3)(1)(2)8
a f f f ===,
……
所以1
()2
n n a n N +=∈,
所以11(1)
122111212
n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112
S a ==, 故选:AC 【点睛】
关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列
{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档
题
28.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列
B .2n
n a =
C .数列{}2n
a 的前n 项和为2122
3
n +-
D .数列11n n b b +⎧⎫
⎨⎬⋅⎩⎭
的前n 项和为n T ,则
1n T <
解析:BD 【分析】
根据22n n S a =-,利用数列通项与前n 项和的关系得1,1
,2n n
S n a S n =⎧=⎨≥⎩,求得通项n a ,然
后再根据选项求解逐项验证. 【详解】
当1n =时,12a =,
当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,
所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n
n a =,2
4n
n a =,数列{}2
n
a 的前n 项和为()14144414
3
n n n
S +--'==
-, 则22log log 2n
n n b a n ===,
所以
()11111
11
n n b b n n n n +==-⋅⋅++,
所以 1111111
(11123411)
n T n n n =-+-++-=-<++, 故选:BD 【点睛】
方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()
11122
n n n a a n n S na d +-=
=+②等比数列的前n 项和公式()
11,1
1,11n
n na q S a q q q =⎧⎪=-⎨≠⎪
-⎩
;
(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.
(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.
29.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确
的有( )
A .若{}n a 是等差数列,则{}n A 是等差数列
B .若{}n A 是等差数列,则{}n a 是等差数列
C .若{}n a 是等比数列,则{}n A 是等比数列
D .若{}n A 是等差数列,则{}2n a 都是等差数列 解析:AD 【分析】
利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】
对于A ,若{}n a 是等差数列,设公差为d ,
则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,
()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,
奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则
11111n n n n n n n n n n
a q a A a a a q
q a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】
本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 30.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,415
16
S =
C .当12
p =时,()*
,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 解析:AC 【分析】
由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】
由122(2)n n S S p n --=≥,得22
p a =
. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,
又
2112a a =,数列{}n a 为首项为p ,公比为1
2
的等比数列,故A 正确; 由A 可得1p =时,441
11521812
S -
=
=-,故B 错误; 由A 可得m n m n a a a +⋅=等价为
212
1122m n m n
p p ++⋅=⋅,可得12p =,故C 正确; 38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫
+=+=⋅ ⎪⎝⎭
,
则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】
本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题.
31.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n S n +为等比数列
B .数列{}n a 的通项公式为1
21n n a -=-
C .数列{}1n a +为等比数列
D .数列{}2n S 的前n 项和为2224n n n +--- 解析:AD 【分析】
由已知可得
11222n n n n S n S n
S n S n ++++==++,结合等比数列的定义可判断A ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由
1231,1,3a a a ===可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++.
又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故B 错误;
由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即
322111
11
a a a a ++≠++,故C 错; 因为1
222n n S n +=-,所以2
3
1
1222...2221222 (2)
2n n S S S n ++++=-⨯+-⨯++-
()()()23122412122...2212 (22412)
2n n n n n n n n n ++--⎡
⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】
本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前
n 项和,考查了分组求和.
32.将2n 个数排成n 行n 列的一个数阵,如下图:
11121321
2223231
32
3331312
n n n n n n n
n
a a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为
S .下列结论正确的有( )
A .3m =
B .7
67173a =⨯
C .1
(31)3j ij a i -=-⨯
D .()1
(31)314
n S n n =
+- 解析:ACD 【分析】
根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】
由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,
可得22
13112a a m m ==,6111525a a d m =+=+,所以22251m m =++,
解得3m =或1
2
m =-
(舍去),所以选项A 是正确的; 又由666
6761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;
又由1
111111(3[((1)][2(1)3]31)3j j j j ij i a m
a i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选
项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++
++++++++++
11121(13)(13)(13)131313
n n n n a a a ---=++
+
---1(231)(31)22n
n n +-=-⋅ 1
(31)(31)4
n n n =
+-,所以选项D 是正确的, 故选ACD. 【点睛】
本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.
33.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,
b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1 B .1<b 1C .S 2n <T 2n
D .S 2n ≥T 2n
解析:ABC 【分析】
利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解. 【详解】
∵数列{a n }为递增数列;∴a 1<a 2<a 3; ∵a n +a n +1=2n , ∴1223
2
4a a a a +=⎧⎨
+=⎩;
∴12123
212244a a a a a a a +⎧⎨+=-⎩>>
∴0<a 1<1;故A 正确.
∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3; ∵b n •b n +1=2n
∴1223
24b b b b =⎧⎨=⎩;
∴2132
b b b b ⎧⎨⎩>>;
∴1<b
1B 正确. ∵T 2n =b 1+b 2+…+b 2n
=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )
(
)()()()
12
1
2
12122
12
2
n
n
n
b b b b ⋅--=
+=+-
))
2121n n ≥-=-;
∴对于任意的n ∈N*,S 2n <T 2n ;故C 正确,D 错误. 故选:ABC 【点睛】
本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.
34.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2
{}n a 是等比数列
B .若32a =,732a =,则58a =±
C .若123a a a <<,则数列{}n a 是递增数列
D .若数列{}n a 的前n 和1
3n n S r -=+,则1r =-
解析:AC 【分析】
在A 中,数列{}
2
n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,
数列{}n a 是递增数列;在D 中,13
r =-. 【详解】
由数列{}n a 是等比数列,知: 在A 中,
22221n n a a q -=,
22221122221n
n n n a a q q a a q
+-∴==是常数, ∴数列{}
2n a 是等比数列,故A 正确;
在B 中,若32a =,732a =
,则58a =,故B 错误;
在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则
01q <<,数列{}n a 是递增数列,故C 正确;
在D 中,若数列{}n a 的前n 和1
3n n S r -=+,。