初一数学和差倍分知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学和差倍分知识点
初一数学和差倍分知识点
在年少学习的日子里,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。

哪些知识点能够真正帮助到我们呢?以下是店铺收集整理的初一数学和差倍分知识点,欢迎大家分享。

(1)和、差、倍、分问题。

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

(2)等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:
①形状面积变了,周长没变;②原料体积=成品体积。

(3)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

这类问题要搞清人数的变化,常见题型有:
①既有调入又有调出;
②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

(4)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

甲走的路程+乙走的路程=全路程
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

① 同时不同地:
甲的时间=乙的时间
甲走的路程-乙走的路程=原来甲、乙相距的路程
② 同地不同时:
甲的时间=乙的时间-时间差
甲的路程=乙的路程
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)航行问题:相对运动的合速度关系是:
顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:
①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。

②车离桥指车头离开桥到车尾离开桥的一段路程。

所走的路程为一个成长
③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长
④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长
行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

(5)工程问题。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(6)溶液配制问题。

其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。

这类问题常根据配制前后的溶质质量或溶
剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

(7)利润率问题。

其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。

商品售价=商品标价×折扣率
(8)银行储蓄问题。

其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。

注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

(9)数字问题。

要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。

列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。

(10)年龄问题其基本数量关系:
大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

(11)比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。

因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。

拓展:其它七年级知识点
一、数学有理数知识点
有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
二、整式的加减知识点
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

三、初一学生必背数学重点
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的'垂线。

4.平行线:在同一平面内,不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:
同位角:1与5像这样具有相同位置关系的一对角叫做同位角。

内错角:2与6像这样的一对角叫做内错角。

同旁内角:2与5像这样的一对角叫做同旁内角。

一、整式
1、单项式:表示数与字母的积的代数式。

另外规定单独的一个数或字母也是单项式。

单项式中的数字因数叫做单项式的系数。

注意系数包括前面的符号,系数是1时通常省略,是系数,的系数是
单项式的次数是指所有字母的指数的和。

2、多项式:几个单项式的和叫做多项式。

(几次几项式)
每一个单项式叫做多项式的项,注意项包括前面的符号。

多项式的次数:多项式中次数最高的项的次数。

项的次数是几就叫做几次项,其中不含字母的项叫做常数项。

3、整式;单项式与多项式统称为整式。

(最明显的特征:分母中不含字母)
二、整式的加减:
①先去括号; (注意括号前有数字因数)
②再合并同类项。

(系数相加,字母与字母指数不变)
三、幂的运算性质
1、同底数幂相乘:底数不变,指数相加。

2、幂的乘方:底数不变,指数相乘。

3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。

4、零指数幂:任何一个不等于0的数的0次幂等于1。

注意00没有意义。

5、负整数指数幂: ( 正整数, )
6、同底数幂相除:底数不变,指数相减。

注意:以上公式的正反两方面的应用。

四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。

五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。

六、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。

七、平方差公式
两数的和乘以这两数的差,等于这两数的平方差。

即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。

八、完全平方公式
两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。

常见错误:
九、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。

十、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。

相关文档
最新文档