实验七 用分光计测光栅常数和光波的波长

合集下载

光栅特性及测定光波波长实验报告

光栅特性及测定光波波长实验报告

实验名称:光栅特性及测定光波波长目的要求1. 了解光栅的主要特性2. 用光栅测光波波长3. 调节和使用分光计仪器用具1. JJY型分光计2. 透射光栅3. 平面镜4. 汞灯5. 钠光灯6. 可调狭缝7. 读数显微镜实验原理实验所用的是平面透射光栅,它相当于一组数目极多、排列紧密均匀的平行狭缝。

根据夫琅禾费衍射理论,当一束平行光垂直的投射到光栅平面上时,光通过每条狭缝都发生衍射,有狭缝射光又彼此发生干涉。

凡衍射角符合光栅方程:φkλsin(k=0,±1,±2,…)d=在该衍射角方向上的光将会加强,其他方向几乎完全抵消。

式中φ是衍射角,λ是光波波长,k 使光谱的级数,d 是缝距,称为光栅常数,它的倒数1/d 叫做光栅的空间频率。

当入射平行光不与光栅表面垂直时,光栅方程应写为:λφk i d =−)sin (sin (k =0,±1,±2,…)若用会聚透镜把这些衍射后的平行光会聚起来,则在透镜的后焦面上将会出现一系列的亮点,焦面上的各级亮点在垂直光栅刻线的方向上展开,称为谱线。

在φ=0的方向上可以观察到中央极强,即零级谱线。

其他 ±1,±2,…级的谱线对称的分布在零级谱线两侧。

若光源中包含几种不同波长的光,对不同波长的光,同一级谱线将有不同衍射角φ,因此在透镜的焦面上出现按波长次序级谱线级次,自第0级开始左右两侧由短波向长波排列的各种颜色的谱线,称为光栅衍射光谱。

用分光计测出各条谱线的衍射角φ,若已知光波波长,即可得到光栅常数d ;若已知光栅常数d ,即可得到待测光波波长λ。

分辨本领R: 定义为两条刚好能被该光栅分辨开的谱线的波长差△λ≡λ2-λ1去除它们的平均波长:λλ∆≡R , R 越大,表明刚刚那个能被分辨开的波长差△λ越小,光栅分辨细微结构的能力就越高。

由瑞利判据可以知道:kN R =其中N 是光栅有效使用面积内的刻线总数目。

角色散率D: 定义为同一级两条谱线衍射角之差△φ与它们的波长差△λ之比。

测量光栅波长实验报告

测量光栅波长实验报告

一、实验目的1. 了解光栅的基本原理和光栅常数对光波波长测量的影响;2. 掌握使用光栅进行光波波长测量的方法;3. 通过实验,验证光栅方程,提高实验技能。

二、实验原理光栅是一种分光元件,它可以将一束光分成多束不同方向的光。

当一束平行光垂直照射到光栅上时,光在光栅的狭缝中发生衍射,形成衍射光谱。

根据衍射光谱的衍射角和光栅常数,可以计算出光波的波长。

光栅方程为:d sinθ = k λ其中,d为光栅常数,θ为衍射角,k为衍射级数,λ为光波波长。

三、实验器材1. 分光计2. 透射光栅3. 汞灯4. 平面反射镜5. 光具座6. 计算器四、实验步骤1. 将分光计、透射光栅、汞灯、平面反射镜和光具座按实验要求组装好;2. 调节分光计,使望远镜的光轴与光栅平面垂直;3. 调节汞灯,使光束垂直照射到光栅上;4. 观察光栅的衍射光谱,记录第k级明纹的衍射角θ;5. 根据光栅常数d和衍射角θ,计算光波波长λ。

五、实验数据及处理1. 实验数据:光栅常数d = 0.1 mm第k级明纹的衍射角θ1 = 10°第k级明纹的衍射角θ2 = 20°2. 数据处理:根据光栅方程,可得:d sinθ1 = k1 λd sinθ2 = k2 λ将d、θ1、θ2、k1、k2代入上述方程,解得:λ1 = d sinθ1 / k1λ2 = d sinθ2 / k2六、实验结果与分析1. 实验结果:λ1 = 546.1 nmλ2 = 546.2 nm2. 分析:实验结果显示,光波波长λ1和λ2分别为546.1 nm和546.2 nm,与汞灯的波长546.1 nm基本一致。

这表明,本实验成功测量了光波波长,验证了光栅方程的正确性。

实验过程中,由于光栅常数、衍射角和仪器精度等因素的影响,测量结果存在一定的误差。

但在实验允许的误差范围内,本实验结果具有较高的可靠性。

七、实验总结1. 通过本次实验,掌握了使用光栅进行光波波长测量的方法;2. 理解了光栅常数对光波波长测量的影响;3. 验证了光栅方程的正确性。

【最新文档】物理实验报告《用分光计和透射光栅测光波波长》-推荐word版 (1页)

【最新文档】物理实验报告《用分光计和透射光栅测光波波长》-推荐word版 (1页)

【最新文档】物理实验报告《用分光计和透射光栅测光波波长》-推荐word版本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
物理实验报告《用分光计和透射光栅测光波波长》
也许您还喜欢:
∙实验报告范文
∙深圳大学物理化学实验报告--燃烧热的测定--谢佳澎苏竹
∙化学实验报告《食用碱和醋会不会产生化学反应》
∙高中化学实验报告
∙“提高学生英语言语技能”研究课题实验报告
∙化学实验报告《观察铁钉生锈的过程》
∙初一物理实验报告
∙节能照明灯安装实验报告
∙大学物理实验报告
∙《聋校语文教学学生学习兴趣引导的研究》实验报告
∙生物教学中引导学习教学模式的实验报告
∙英语课题组阶段性实验总结。

分光计册光栅常数及光波长

分光计册光栅常数及光波长

实验七用分光计测光栅常数和光波的波长【实验目的】1. 熟悉分光计的操作2. 用已知波长光光栅常数3. 用测出的光栅常数测某一谱线的波长【实验仪器】分光计及附件一套,汞灯关源;光栅一片【实验原理】本实验是利用全息光栅进行测量,光源采用GD20低压汞灯,它点燃之后能发生较强的特性光谱线,在可见区辐射的光谱波长分别为5790A0,5770 A0,5461 A0,4358 A0,4047 A0。

根据夫琅和费衍射原理,每一单色平行光垂直投射到光栅平面上,被衍射,亮纹条件为:dsinθ=Kλ(K=0, ±1, ±2,±3,······)d-----光栅常数θ-----衍射角λ-------单色光波长由于汞灯产生不同的单色光,每一单色光有一定的波长,因此在同级亮纹时,各色光的衍射角θ是不同的。

除中央亮纹外各级可有四条不同的亮纹,按波长不同进行排列,通过分光计观察时如(图8-3)所示。

这样,若对某一谱线进行观察(例如黄光λy=5790 A0)对准该谱线的某级亮纹(例如K=±1)时,求出其平均的衍射角θ〈y,代入公式就可求光栅常数d,然后可与标准比较。

本实验采用d=1/1000厘米的光栅。

相反,若将所求得的光栅常数d,并对绿光进行观察,求出某级亮纹(如K=±1)的平均衍射角θ〈y,代入公式,又可求出λg 。

同理,可以同级亮纹或不同亮纹的其他谱线进行观察和计算。

【实验步骤】(实验之前请先看实验七附录)1、先进行目镜和望远镜的调焦;2、调整望远镜的光轴垂直于旋转主轴;3、平行光管的调焦;4、调整平行光管的光轴垂直于旋转主轴;5、将平行光管狭缝调成垂直;(1-5安装时已基本调好)6、调节光栅平面,使光栅与转轴平行,且光栅平面垂直于平行光管。

调节方法:先开汞灯光源,把平行光管的狭缝照亮,把望远镜叉丝对准狭缝象,固定望远镜的锁紧螺钉。

用分光计测光栅常数和光波的波长

用分光计测光栅常数和光波的波长

衍射光栅是一种高分辨率的光学色散元件,它广泛应用于光谱分析.随着现代技术的发展,它在计量、无线电、天文、光通信、光信息处理等许多领域中都有重要的应用.【实验目的】1.观察光栅的衍射现象,研究光栅衍射的特点.2.测定光栅常数和汞黄光的波长.3.通过对光栅常数和波长的测量,了解光栅的分光作用,并加深对光的波动性的认识.【实验仪器与用具】分光计1台,光栅1个,低压汞灯1个.【实验原理】普通平面光栅是在一块玻璃片上用刻线机刻画出一组很密的等距的平行线构成的.光波射向光栅,刻痕部分不透光,只能从刻痕间的透明狭缝中通过.因此,可以把光栅看成一系列密集、均匀而又平行排列的狭缝.图15—1光栅衍射图光照射到光栅上,通过每个狭缝的光都发生衍射,而衍射光通过透镜后便互相干涉.因此,本实验光栅的衍射条纹应看做是衍射与干涉的总效果.下面我们来分析平行光垂直射到光栅上的情况(图15-1).设光波波长为λ,狭缝和刻痕的宽度分别为a和b,则通过各狭缝以角度φ衍射的光,经透镜会聚后如果是互相加强,在其焦平面上就得到明亮的干涉条纹.根据光的干涉条件,光程差等于波长的整数倍或零时形成亮条纹.由图15-1可知,衍射光的光程差为(a+b)sinφ,于是,形成亮条纹的条件为:(a+b)sinφ= Kλ,K = 0,±1,±2,…或d sinφ =Kλ.(15-1)式中,d=a+b称为光栅常数,λ为入射光波波长,K为明条纹(光谱线)级数,φ是K级明条纹衍射角.K=0的亮条纹叫中央条纹或零级条纹,K=±1为左右对称分布的一级条纹,K =±2为左右对称的二级条纹,以此类推.光栅狭缝与刻痕宽度之和a+b称为光栅常数.若在光栅片上每厘米宽刻有n条刻痕,则光栅常数d=(a+b)= cm.当a+b已知时,只要测出某级条纹所对应的衍射角φ,通过式(15-1)即可算出光波波长λ.当λ已知时,只要测出某级条纹所对应的衍射角φ,通过式(15—1)可计算出光栅常数.图15-2 光栅的放置在λ和a+b一定时,不同级次的条纹其衍射角不同.如a+b很小,则光栅衍射的各级亮条纹分得很开,有利于精密测量.另外,如果K和a+b一定时,则不同波长的光对应的衍射角也不同.波长愈长衍射角也愈大,有利于把不同波长的光分开.所以光栅是一种优良的分光元件.【实验内容和步骤】1.调整分光计参照实验十六.调整望远镜使其能接收平行光,且其光轴与分光计的中心轴垂直;调整载物台平面水平且垂直于中心轴;调整平行光管发出平行光,且光轴与望远镜等高同轴.2.测定光栅常数(1)放置光栅.按图15—2所示,将光栅放在载物台上,先用目视使光栅平面与平行光管光轴大致垂直(拿光栅时不要用手触摸光栅表面,只能拿光栅的边缘),使入射光垂直照射光栅表面.(2)调节光栅平面与平行光管光轴垂直.接上目镜照明器的电源,从目镜中看光栅反射回来的亮十字像是否与分划板上方的十字线重合.如果不重合,则旋转游标度盘,先使其纵线重合(注意:此时狭缝的中心线与亮十字的纵线、分划板的纵线三者重合),再调节载物台的调平螺钉2或3使横线重合(注意:绝不允许调节望远镜系统),然后旋紧游标盘止动螺钉,定住游标盘,从而定住载物台.(3)观察干涉条纹.去掉目镜照明器上的光源,放松望远镜止动螺钉16,推动支臂旋转望远镜,从目镜观察各级干涉条纹是否都在目镜视场中心对称,否则调节载物台下调平螺钉l,使之中心对称,直到中央明条纹两侧的衍射光谱基本上在同一水平面为止.(4)测衍射角.①推动支臂使望远镜和度盘一起旋转,并使分划板的十字线对准右边绿色谱线第一级明纹的左边缘(或右边缘);旋紧望远镜止动螺钉16,旋转望远镜微调螺钉,精确对准明纹的左边缘(或右边缘,注意对以后各级明纹都要对准同一边缘),从A、B两游标读取刻度数,记为、.同理测出左边绿色谱线第一级明纹的刻度数、,则第一级明纹的衍射角为(衍射光谱对中央明纹对称,两个位置读数之差的l/2即为衍射角φ) ,如图15—3所示,,.取平均得第一级明纹衍射角的平均值:图15—3衍射角的测定将代入(15-1)式求得d1.②用上述同样的方法测得绿色谱线第二级明纹的衍射角,同理求得d2 ,则所测光栅常数3.测定待测光波的波长转动望远镜,让十字叉丝依次对准中央条纹左、右两边K=±l、K±2的黄线亮条纹,按上述相同的方法,测出其衍射角、.由于已知d,将其代入(15-1)式,则得出λ1、λ2,故说明:为避免漏测数据,测量时也可将望远镜移至最左端,从-2、-l到+1、+2级依次测量.【数据记录及处理】1.测定光栅常数由式(15-1)得d=,绿光波长.表15—1 测定光栅常数数据表计算误差:= (△为衍射角的平均误差).结果表示d =±△d =±.2.测定黄光波长表15—2 测定黄光波长数据表计算误差:△= [△d/d +(cot )△]= ,结果= ±△= ±.【注意事项】1.光栅是精密光学器件,严禁用手触摸刻痕,以免弄脏或损坏.2.水银灯的紫外线很强,不可直视,以免灼伤眼睛.3.分光计各部分调节一定要细心、缓慢,如发现异常现象,要及时报告.【思考题】1.光栅光谱和棱镜光谱有哪些不同之处?2.用光栅观察自然光,看到什么现象?为什么紫光离中央0级条纹最近,红光离0级条纹最远?3.光狭缝太宽或太窄时,将会出现什么现象?为什么?4.按图15—2放置光栅有何好处?5.用光栅测定光波波长,对分光计的调节有什么要求?6.利用=5893 的纳光垂直入射到1mm内有500条刻痕的平面透射光栅上时,最多能看到几级光谱?1.进一步熟悉掌握分光计的调节和使用方法;2.观察光线通过光栅后的衍射现象;3.测定衍射光栅的光栅常数、光波波长和光栅角色散。

测定光栅常量实验报告

测定光栅常量实验报告

一、实验目的1. 了解光栅的基本原理和特性;2. 掌握使用分光计测量光栅常量的方法;3. 训练观察和分析实验现象的能力。

二、实验原理光栅是一种重要的分光元件,其基本原理是利用光的衍射现象实现光的色散。

当一束单色光垂直照射到光栅上时,光栅上的狭缝将产生衍射,衍射光之间发生干涉,从而形成明暗相间的干涉条纹。

光栅常数是指相邻两条狭缝之间的距离,是光栅的基本参数之一。

光栅方程:dsinθ = mλ其中,d为光栅常数,θ为衍射角,m为衍射级数,λ为光的波长。

通过测量光栅的衍射角,可以计算出光栅常数。

三、实验器材1. 分光计;2. 光栅;3. 汞灯;4. 镜子;5. 光具座;6. 刻度尺;7. 计算器。

四、实验步骤1. 将分光计放置在光具座上,调整水平,确保分光计的光轴与光具座平行;2. 将光栅固定在分光计的载物台上,确保光栅平面与光轴垂直;3. 打开汞灯,调节光栅与汞灯的距离,使汞灯发出的光束垂直照射到光栅上;4. 通过望远镜观察光栅的衍射条纹,记录下第一条明纹的衍射角θ1;5. 调整光栅与汞灯的距离,使汞灯发出的光束以不同角度照射到光栅上,重复步骤4,记录下多条明纹的衍射角;6. 利用光栅方程计算光栅常数。

五、实验数据及结果1. 光栅常数d的计算:根据光栅方程,d = mλ / sinθ,其中m为衍射级数,λ为光的波长,θ为衍射角。

以第一条明纹为例,m = 1,λ = 546.1nm(汞灯绿光的波长),θ1 = 15.6°,则d1 = 546.1nm / sin15.6° ≈ 1152.6nm。

2. 光栅常数的平均值:将多条明纹的衍射角代入光栅方程,计算出对应的光栅常数,求平均值得到光栅常数d。

六、实验结果分析1. 光栅常数与衍射级数的关系:从实验数据可以看出,随着衍射级数m的增加,光栅常数d逐渐减小。

这是因为光栅常数d与衍射角θ成正比,而衍射角θ与衍射级数m成反比。

2. 实验误差分析:实验误差主要来源于以下两个方面:(1)分光计的测量误差:分光计的读数精度有限,导致测量得到的衍射角存在误差;(2)光栅常数测量误差:光栅常数是通过计算得到的,计算过程中可能存在舍入误差。

光栅测光波波长实验报告物理实验报告用分光计和透射光栅测光波波长

光栅测光波波长实验报告物理实验报告用分光计和透射光栅测光波波长

光栅测光波波长实验报告物理实验报告用分光计和透射光栅测光波波长实验目的:用分光计和透射光栅测光波的波长,并验证光栅公式。

实验原理:透射光栅是由许多平行直线并紧密排列的光栅线组成的,当一束近似平行的光线垂直入射时,通过光栅后会发生衍射现象。

根据衍射原理,光栅上两个相邻的光栅线之间的距离称为光栅常数,记作d。

当入射光照射到光栅上时,光线会被衍射成许多不同角度的光线,这些衍射光线称为主光束或级次光线。

通过分光计可测得不同级次的衍射角度,并通过透射光栅实验公式进行计算,求得光波的波长。

实验器材:分光计、透射光栅实验步骤:1.调整分光计:将分光计放在实验台上,调整分光计的光束使其沿一条直线入射到透射光栅上。

2.将透射光栅固定在分光计位置,并保持垂直入射角。

3.调整分光计的角度,使得观察到的第一级次光线(最亮的一条)和参考线重合。

4.通过分光计测量不同级次光线(至少测量前五级次)的角度,并记录下来。

5.根据测得的角度,使用透射光栅公式计算不同级次光线对应的波长,求出平均波长。

6.对比计算结果,验证透射光栅公式的准确性。

实验注意事项:1.分光计调整需仔细,保持光线垂直入射。

2.观察光线和参考线的重合要准确。

3.测量时要注意准确记录各级次光线的角度。

4.使用透射光栅公式计算波长时,要对实验数据进行处理并求取平均值,增加结果的准确性。

5.实验结束后,要仔细清理实验器材。

实验结果与分析:根据实验数据和透射光栅公式,我们计算出了不同级次光线对应的波长,并求取了平均值。

通过对比计算结果和实验理论值的差异,我们可以得出实验结果的准确性。

结论:本次实验通过使用分光计和透射光栅,测量了光波的波长,并验证了光栅公式的准确性。

实验结果与理论预期基本吻合,证明了实验方法的可行性,并检验了透射光栅的工作原理。

同时,通过本实验,我们深入理解了光的衍射现象和光栅的作用,提高了我们在光学方面的实验操作能力。

分光计调整和光栅常数测量实验报告

分光计调整和光栅常数测量实验报告

分光计调整和光栅常数测量实验报告一、实验目的1、了解分光计的结构,掌握分光计的调节和使用方法。

2、观察光栅衍射现象,测量光栅常数。

二、实验原理1、分光计的原理分光计是一种能精确测量角度的光学仪器。

它由望远镜、平行光管、载物台和读数装置等部分组成。

通过调节分光计,使望远镜和平行光管的光轴都与仪器的中心转轴垂直,从而能够准确测量光线的偏转角度。

2、光栅衍射原理光栅是由大量等宽、等间距的平行狭缝组成的光学元件。

当一束平行光垂直照射在光栅上时,会产生衍射现象。

根据光栅方程:$d\sin\theta = k\lambda$(其中$d$为光栅常数,$\theta$为衍射角,$k$为衍射级数,$\lambda$为入射光波长),在已知入射光波长的情况下,通过测量衍射角$\theta$,可以计算出光栅常数$d$。

三、实验仪器分光计、光栅、汞灯、平面反射镜四、实验步骤1、分光计的调整粗调:将望远镜、平行光管和载物台大致调水平。

望远镜的调节:调节目镜,使分划板清晰;将平面反射镜放在载物台上,通过调节望远镜的俯仰和水平调节螺丝,使反射回来的十字像清晰且与分划板上的十字叉丝重合。

平行光管的调节:打开平行光管的狭缝,调节平行光管的俯仰和水平调节螺丝,使狭缝像清晰且与望远镜分划板的竖线平行。

载物台的调节:使载物台平面与分光计的中心转轴垂直。

2、光栅的放置将光栅放在载物台上,使光栅平面与平行光管的光轴垂直。

3、测量光栅常数用汞灯作为光源,照亮平行光管的狭缝。

转动望远镜,观察光栅衍射光谱。

找到中央明条纹(零级条纹)和左右两侧的一级、二级等衍射条纹。

分别测量各级衍射条纹对应的角度。

为了减小误差,采用左右游标读数法,即分别读取左右游标对应的角度值,然后取平均值。

五、实验数据记录与处理1、分光计游标读数左游标读数右游标读数2、各级衍射条纹的角度测量一级衍射条纹(左)一级衍射条纹(右)二级衍射条纹(左)二级衍射条纹(右)3、数据处理根据光栅方程计算光栅常数。

物理实验报告《用分光计和透射光栅测光波波长》

物理实验报告《用分光计和透射光栅测光波波长》

物理实验报告《用分光计和透射光栅测光波波长》【实验目的】观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。

求物理实验《分光计的调整和三棱镜顶角的测定》的数据测三棱镜顶角时,只要满足L时的1与R时的1相差120,2也相差120L和R中1与2相差180就可以随便编数据了老师告诉我的哦很准的防抓取,提供内容。

【实验仪器】大学物理试验中分光计调节及三棱镜折射率的测量实验中如何判...移去中央载物台上的平面镜,用白纸在平行光管的物镜端检查并调节光源的位置以确保其发出的光在物镜的整个孔径上照明均匀将已经调节完毕的望远镜的内防抓取,提供内容。

分光计,透射光栅,钠光灯,白炽灯。

大学物理实验利用分光计测量折射率的思考题 1.答:不能说明望远镜光轴还没有调好。

因为将平面镜取下后,又放到载物台上(放的位置与拿下前的位置不同),这时平面镜已经不与仪器主轴平行了,所以不能说明望远镜光轴防抓取,提供内容。

【实验原理】大学物理实验思考题(分光计)1假设平面镜反射面已经和转轴平行,而望远镜光轴和仪器转轴成一定角度B,则反射的小十字像和平面镜转过180°后反射的小十字像的位置应该是怎样的?此时应如何调节?试...防抓取,提供内容。

光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。

大学物理分光计的实验思考题不能说明望远镜光轴还没有调好。

因为将平面镜取下后,又放到载物台上(放的位置与拿下前的位置不同),这时平面镜已经不与仪器主轴平行了,所以不能说明望远镜光轴还没有...防抓取,提供内容。

光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。

刻痕和狭缝的宽度之和称为光栅常数,用d 表示。

大学物理实验,分光计的调整和使用,用分光计测三棱镜的顶角,所...如经过零点,应在相应读数加上360°(或减去360°)后再计算。

最新 分光计和透射光栅测光波波长实验报告-精品

最新 分光计和透射光栅测光波波长实验报告-精品

分光计和透射光栅测光波波长实验报告【实验目的】观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。

【实验仪器】分光计,透射光栅,钠光灯,白炽灯。

【实验原理】光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。

光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。

刻痕和狭缝的宽度之和称为光栅常数,用d表示。

由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。

用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。

凡衍射角满足以下条件k=0,±1,±2, (10)的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。

式(10)称为光栅方程。

式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。

当k=0时,θ=0得到零级明纹。

当k=±1,±2…时,将得到对称分立在零级条纹两侧的一级,二级…明纹。

实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。

【实验内容与步骤】1.分光计的调整分光计的调整方法见实验1。

2.用光栅衍射测光的波长(1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。

先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。

将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。

分光计测定光栅常数实验数据

分光计测定光栅常数实验数据

分光计测定光栅常数实验数据在我们的物理实验室里,今天的任务就是用分光计测定光栅常数。

这可不是一件简单的事,毕竟光栅常数听起来就像是个高大上的东西。

大家可能会想,光栅到底是什么呢?简单来说,它就是一个像棋盘一样的小东西,上面布满了许多细小的缝隙,这些缝隙就像是通向彩虹的门,让不同波长的光线透过时,分开成一条条美丽的光谱。

想想看,那可真是个“百花齐放”的场面,五光十色,眼花缭乱。

于是,我们一群小伙伴兴冲冲地围在分光计旁边,准备展开这场光的探险。

我们得把光源打开,哦,瞬间房间里就亮了起来,仿佛进入了一个魔法世界。

我们调节分光计,确保光线能够精准地射入光栅。

光栅上的每一个缝隙,仿佛都在期待我们的到来。

调试过程中,有几个小伙伴手忙脚乱,把仪器搞得七零八落,哈哈,真是让人忍俊不禁。

不过,这就是实验的乐趣嘛,没点小插曲怎么能算得上是一场精彩的探险呢?我们开始记录数据。

大家纷纷拿起尺子,开始测量光斑的位置。

这里面可有大学问,得小心翼翼,生怕一不小心就错过了那些光斑。

这时,一个伙伴突然喊道:“哎呀,光跑得可真快啊!”大家都笑了,因为我们知道,光速可是每秒三十万公里,根本不跟你客气。

每次看到那清晰的光斑,我们心里都乐开了花,仿佛抓住了某种神秘的力量。

然后,就是计算光栅常数的时刻。

把测量的数据整理好,像拼图一样,努力将每一块都拼接起来。

这个过程就像在解密,眼前的公式让人感到一丝紧张,但也有种豁然开朗的快感。

随着一行行数字的跳动,心中那股期待感越来越强,最终得出的结果就像打开了一扇新世界的大门。

我们大声欢呼,光栅常数的值在我们的努力下终于揭晓,简直是如梦似幻,太有成就感了。

在实验的尾声,大家开始分享自己的感受。

有人说:“我觉得今天真是太有意思了,不光学到了知识,还锻炼了我们的团队合作。

”另一个小伙伴附和道:“是啊,大家一起奋斗的感觉,真是‘一鼓作气’的快感。

”听着大家的感慨,我不禁想起了那句老话:“众人拾柴火焰高。

”这次实验真的是个团结合作的大好机会,让我们彼此更加了解,也增进了友谊。

用分光计测光栅常数和光波的波长

用分光计测光栅常数和光波的波长

实验二用分光计测光栅常数和光波的波长[实验目的]1.了解分光计的构造,工作原理,调节和使用方法。

2.学会用分光计测光波长、光栅常数和光谱的方法。

3.学会光栅、棱镜、汞灯、钠灯的使用方法。

[实验仪器器材]分光计(JJY型),汞灯,光栅,三棱镜,平面镜[仪器描述]JJY型分光计是一种分光测角光学仪器,在利用光的反射、折射、干涉、衍射和偏振原理的各项实验中作角度测量。

可测量棱镜的棱角、折射率、光栅常数、光波波长和光谱,利用光学透镜可作衍射、偏振等实验。

各种光谱仪、分光光度计、单色仪等光学仪器的基本结构也是以其为基础的。

因此分光计是光学实验中的基本仪器之一。

分光计主要由底座、望远镜、平行光管、载物台、刻度盘五部分组成,如图2-1所示。

图2-1分光计外形图1.平行光管狭缝装置2.狭缝装置锁紧螺丝3.平行光管镜筒4.游标盘制动架5.载物台6.载物台调平螺丝7.载物台锁紧螺丝8.望远镜筒9.目镜筒锁紧螺丝10.阿贝式自准直目镜11.目镜视度调节手轮12.望远镜光轴俯仰角调节螺钉13.望远镜光轴水平方位调节螺钉14.支持臂15.望远镜方位角微调螺钉16.望远镜锁紧螺钉17.望远镜转座与度盘锁紧螺钉18.望远镜制动架19.底座20.望远镜转座21.主刻度盘22.游标内盘23.立柱24.游标盘微调螺丝25.游标盘锁紧螺钉26.平行光管光轴水平方位调节螺钉27.平行光管光轴俯仰角调节螺钉28.狭缝宽度调节手轮1.底座的中央固定一圆柱形中心竖轴,称为主轴,望远镜和刻度盘可绕主轴转动。

2.平行光管用以产生平行光束,由消色差物镜、镜筒和可调狭缝组成。

狭缝的调节范围为0-2mm,并可沿镜筒伸缩转动。

平行光管安装在底座的固定立柱上,平行光管的水平和高低位置可由立柱上的螺丝微调。

如图2-2。

图2-2平行光管示意图3.阿贝式自准直望远镜由阿贝式自准直目镜、消色差物镜和镜筒组成,用以观察图像和确定光线方位,如图2-3。

望远镜安装在转动支臂上可绕主轴旋转,望远镜光轴高低和水平位置可由支臂上的螺丝微调。

实验7 用透射光栅测量光波波长

实验7  用透射光栅测量光波波长

实验7 用透射光栅测量光波波长实验目的1.加深对光栅分光原理的理解。

2.使用透射光栅测定光栅常数,光栅角色散和光波波长。

3.熟悉分光计的调节和使用,并了解在测量中影响测量精度的因素。

仪器和用具分光计,平面透射光栅,汞灯。

实验原理光栅是重要的分光元件,和棱镜一样,被广泛应用于单色仪,摄谱仪等光学仪器中。

光栅实际上是一组数量极大的平行排列的,等宽、等距狭缝。

应用透射光工作的称为透射光栅,应用反射光工作的称为反射光栅。

本实验采用透射光栅进行测量。

如图7-1所示,设S为位于透镜L1物方焦面上的细长狭缝光源,G为光栅,光栅上相邻狭缝的间距d称为光栅常数。

自光源经透镜垂直入射于光栅平面的平行光经单个狭缝产生衍射,与光栅法线成θ角的衍射光经透镜L2会聚于象方焦平面的θP图7-1点,其产生亮条纹的条件由光栅方程决定,式中θ为衍θkλsin (7-1)d=射角,λ为光波波长,k是光谱级数(k = 0,±1,±2…)。

当k = 0时,在θ= 0处,各种波长的亮线重叠在一起,形成白色的明亮零级条纹。

对于k的其它数值,不同波长的亮纹出现在不同方向上,形成光谱,此时各波长的亮线称为光谱线。

而与k的正、负两组值所对应的两组光谱则对称地分布在零级象的两侧。

因此,可以根据式(7-1)在测定衍射角θ的条件下,确定通常在k=±1时的d和λ间关系,也就是说只要知道光栅常数d,就可以求出未知光波长λ,反过来也是一样。

这样就为我们进行光谱分析提供了方便而快捷的方法。

式(7-1)的推导十分简单,因为θsin d 是相邻两狭缝光的位相差,位相差为波长的整数倍时,显然有相干光干涉会增强,各狭缝的光束增强形成相应波长光波的亮线。

此外,光栅的多缝衍射干涉的结果还有以下特征:(1) 亮线位置和狭缝个数无关,其宽度随狭缝个数增加而减小,强度增大。

(2) 相邻的亮线间有强度非常小的亮纹,亮纹强度也随狭缝个数增大而迅速减小。

用透射光栅测量光波波长及角色散率(有实验数据)

用透射光栅测量光波波长及角色散率(有实验数据)

实验七 用透射光栅测量光波波长及角色散率一、 目的:1 加深对光的衍射理论及光栅分光原理的理解;2 掌握用透射关光栅测定光波波长、光栅常数及角色散率的方法。

3 测量光波波长。

二、 仪器及用具分光计、透射光栅、汞灯。

三、 原理1光栅衍射及光波波长的测定由夫琅和费衍射理论,当波长为λ的单色光垂直入射至光栅上,满足光栅方程 λθk d =sin ( ,3,2,1,0=k ) (1)时,θ方向的光加强,其余方向的光几乎完全抵消。

式中d 为光栅常数,θ为衍射角。

若已知λ,则可求d ;若已知d ,则可求λ。

2 光栅的角色散率光栅在θ方向的角色散率为θλθsin d kD =∆∆= (2) 测出d 及θ,可求出该方向的角色散率D 。

四、实验内容1 仪器调节分光计的调节,见实验三。

载物台调水平后,使光栅平面与入射光垂直。

2 测光波波长、光栅常数、角色散率以汞灯的绿谱线A 75460⋅为已知,取1=k ,测该谱线左、右衍射光的角位置1T 、2T ,则衍射角2121T T -=θ,由(1)式可求光栅常数。

a) 绿光''014818±= θ由(1)和(2)式可分别求得光栅常数和角色散率分别为 m d 510)002.0645.1(-⨯±=1410)02.088.1(-⨯±=cm Db)紫光'_4115=θ, '02=∆--θ, ''024115+= θ由(1)和(2)式分别求得A 4454360⋅±⋅=λ 1410)02.094.1(-⨯±=cm D b) 黄光''041121±= θA )8.50.5774(±=λ 1410)03.068.1(-⨯±=cm D。

实验七 用分光计测光栅常数和光波的波长

实验七 用分光计测光栅常数和光波的波长

实验七用分光计测光栅常数和光波的波长【实验目的】1. 熟悉分光计的操作2. 用已知波长光光栅常数3. 用测出的光栅常数测某一谱线的波长【实验仪器】分光计及附件一套,汞灯关源;光栅一片【实验原理】本实验是利用全息光栅进行测量,光源采用GD20低压汞灯,它点燃之后能发生较强的特性光谱线,在可见区辐射的光谱波长分别为5790A0,5770 A0,5461 A0,4358 A0,4047 A0。

根据夫琅和费衍射原理,每一单色平行光垂直投射到光栅平面上,被衍射,亮纹条件为:dsinθ=Kλ(K=0, ±1, ±2,±3,······)d-----光栅常数θ-----衍射角λ-------单色光波长由于汞灯产生不同的单色光,每一单色光有一定的波长,因此在同级亮纹时,各色光的衍射角θ是不同的。

除中央亮纹外各级可有四条不同的亮纹,按波长不同进行排列,通过分光计观察时如(图8-3)所示。

这样,若对某一谱线进行观察(例如黄光λy=5790 A0)对准该谱线的某级亮纹(例如K=±1)时,求出其平均的衍射角θ〈y,代入公式就可求光栅常数d,然后可与标准比较。

本实验采用d=1/1000厘米的光栅。

相反,若将所求得的光栅常数d,并对绿光进行观察,求出某级亮纹(如K=±1)的平均衍射角θ〈y,代入公式,又可求出λg 。

同理,可以同级亮纹或不同亮纹的其他谱线进行观察和计算。

【实验步骤】(实验之前请先看实验七附录)1、先进行目镜和望远镜的调焦;2、调整望远镜的光轴垂直于旋转主轴;3、平行光管的调焦;4、调整平行光管的光轴垂直于旋转主轴;5、将平行光管狭缝调成垂直;(1-5安装时已基本调好)6、调节光栅平面,使光栅与转轴平行,且光栅平面垂直于平行光管。

调节方法:先开汞灯光源,把平行光管的狭缝照亮,把望远镜叉丝对准狭缝象,固定望远镜的锁紧螺钉。

用分光计和光栅测定光波的波长

用分光计和光栅测定光波的波长

用分光计和光栅测定光波的波长
分光计(谱仪)是以两个光源和一个光栅为主要部分构成的仪器,用于测量激发光谱
线的波长。

谱仪结构包括一个光栅(通常由激发线和反射线组成),微小的镜子用来交替
把两个光源(本底光源和被激发光源)投射到光栅之上。

操作中,被激发光源通常先投射到光栅之上,然后本底光源继续投射(通常是定标用
的稳定的和可靠的),用于反映光栅上每一个波长的强度。

本底光源的光强量会被激发光
源的强度抑制,而从这种抑制的程度中可以测得被激发光线的强度。

仪器会根据测量的强
度和波长显示出光谱曲线。

通常,仪器的操作中会先调节本底光源的强度,使其光强量的大小介于特定的范围,
接着再通过调节被激发光源的波长,用被激发光源把本底光源抑制,通过抑制前后本底光
源强度的比较来得出激发光源具体的波长。

因为光栅是由不同波长的来回反射波组成的,所以只要可以测到激发光源可以强有力
地抑制被测波长,就可以通过慢慢调整被激发光源的波长,使其强度做到最高,从而得出
精确的波长,从而确定激发光谱线的波长。

总的来说,用分光计和光栅来测定光谱线的波长,是比较简单、容易操作的一种技术。

一般来说,在具体操作时,首先要准确地调整本底光源,使其拥有一定的强度,然后再调
节被激发光源的波长,使其能够与本底光源相匹配,使其可以被最大程度的抑制,从而从
中得出光谱线的波长。

光波波长的测量及光栅特性的研究

光波波长的测量及光栅特性的研究

实验光波波长的测量及光栅特性的研究一、目的:1、学习用分光计测量光栅常数;2、利用光栅测量未知光源光谱的波长。

二、原理:衍射光栅是一种分光元件,由于其基质材料不同而有透射光栅和反射光栅两类。

它们都相当于一组数目很多,排列紧密,均匀的平行狭缝,透射光栅是用金刚石在一块平面玻璃上刻划而成的。

反射光栅则是刻划在精研过的硬质金属面上,用这种方法刻制的光栅,由于要求非常精密,因而制造困难,所以价格非常昂贵,而平常所用的光栅大都是复制品。

如今由于单色性好的激光的出现,应用其干涉原理制成了全息光栅,制造容易,价格便宜,从而使光栅实验得以普及。

本实验用的光栅是一块全息光栅。

根据夫琅和费衍射理论,一束单色平行光垂直投射到光栅平面上,被衍射后,凡是衍射角适合条件:()d K K⋅==±±±sin,,,θλ0123 (1)光会加强,其它方向将抵消,如图1所示。

式中θ是衍射角,d 是缝距又常称为光栅常数(d = a + b ,其中a 是刻痕宽度,b为狭缝宽度),k 为衍射光谱的级数,λ是光的波长,θ、k、λ分别表示波长为λ的光的第k 级衍射光谱的衍射角。

图1 图2如果用会聚透镜把这些衍射后的平行光会聚起来,则在透镜的焦平面上将出现明亮的条纹称为谱线。

在θ= 0的方向上可以观察到中央极大,称为零级谱线,其它级数的谱线对称地分布在零级谱线的两侧,如图2所示。

如果入射光源中包含有几种不同的波长,则这束复色平行光通过光栅后形成的谱线将按级次序排列在该级谱线系列中,对不同的波长有一一对应的θ、k、λ从而在不同的位置上形成不同的彩色谱线,称为该入射光源的光谱。

图3为汞灯光源通过光栅后所形成的光谱示意图。

若光栅常数d为已知,在实验中测定了某谱线的衍射角θλK和对应的光谱级k,则可由公式(1)求该谱线的波长λ;反之,如果波长λ是已知的,则可求出光栅常数d。

衍射光栅的基本特性可以用它的“分辨本领”与“色散率”来表征。

分光计补充讲义:光栅常数及光波波长测量

分光计补充讲义:光栅常数及光波波长测量

1
图 1 光栅衍射原理 如果光源中包含几种不同的波长的光,对不同的波长的光,同一级谱线将有不同衍射角 。因 此在透镜的焦平面上出现按波长次序及谱线级次, 自第 0 级开始左右两侧由短波长向长波排列的各 种颜色的谱线,称为光栅衍射光谱。图 2 是水银灯的部分光栅衍射光谱示意图。
图2
低压汞灯部分光谱线
光栅常数及光波波长测量
[实验目的] 1)学习测量光栅常数; 2)学习用光栅测光波波长; 3)熟练掌握分光计的调节和使用。 [实验仪器]分光计、透射光栅、平面镜、低压汞灯 [实验原理] 光栅和棱镜一样,是重要的分光元件,它可以把入射光中不同波长的光分开。利用光栅分光制 成的单色仪和光谱仪已被广泛应用。 衍射光栅有透射光栅和反射光栅两种,本实验用的是平面透射光栅,它相当于一组数目极多、 排列紧密均匀的平行狭缝。 根据夫琅禾费衍射理论, 当一束平行光垂直地透射到光栅平面上时, 光通过每条狭缝都会发生 衍射,所有狭缝的衍射光又彼此发生干涉。凡衍射角符合下列条件
d sin k , k 0, 1, 2
(1)
在该衍射角方向上的光强会加强,其他方向几乎完全抵消。式(1)称为光栅方程,式中 是 衍射角, 是光波波长, k 是光谱的级数, d 是缝距,即相邻两狭缝上对应点之间的距离,称为光 栅常数。它的倒数 1 / d 叫做光栅的空间频率。 当入射平行光不与光栅表面垂直时,光栅方程式应写成
用分光计测出各条谱线的衍射角 。若已知光波波长,由式(1)可以得到光栅常数 d ;若已 知光栅常数 d ,由式(1)可以得到待测光波波长 。 [实验内容] 1.仪器调节 本实验在分光计上进行。 要使实验满足式 ( 1) 成立的条件, 入射光应该是垂直入射的平行光, 衍射后要用聚焦于无穷远的望远镜观察和测量。 为了保证测量准确, 衍射谱线的等高面应该与分光 计转轴垂直。 所以, 对分光计的调节要求是: 1) 平行光管产生平行光; 2) 望远镜聚焦于无穷远 (既 能接收平行光) ;3)使平行光管和望远镜的光轴都垂直仪器的转轴;4)光栅平面与平行光管光轴 垂直;5)光栅的刻痕与仪器转轴平行。 上述 1)至 3)部分的调节同《测量三棱镜折射率》实验内容。4) 、5)部分的调节如下: 4)调节光栅平面(即刻痕所在平面)与平行光管光轴垂直。调节方法是:先用低压汞灯把平 行光管的狭缝照亮,使望远镜目镜中分划板中心垂直线对准狭缝像。然后固定望远镜。把光栅放置 在载物台上(如图 3) ,根据目测使光栅平面垂直平分 b1b2 连线,而 b3 应在光栅平面内,并使光栅平 面大致垂直于望远镜。再用自准直法调节光栅平面,直到从光栅平面反射镜反射回来的亮“+”字像 与分划板 MN 线重合。此时光栅平面与望远镜光轴垂直。在调节平行光管狭缝像与“+”字像重合,

用分光计和衍射光栅测光波波长 (2)

用分光计和衍射光栅测光波波长 (2)
300
入射光
d
a
b
光栅
1
d sin 1
1
一级明条纹
中央明条纹
一级明条纹
k = -1
k =0
k = +1
入射光经过透射
光栅后,在不同的
衍射角度,会形成
以中央明条纹为对
称中心的±1, ±2,⋅⋅⋅
各级衍射条纹。
平行光管
平行光
载物台
光栅
望远镜
一级明纹 中央明纹
= −1
=0
一级明纹
= +1
k = -1
k =0
k = +1
0级明纹的位置 0 =
正负一级明纹
的平均偏转角:
+1级明纹的位置
测量值
1
2
0 + 0
1
1 = [ − 0 +
2
1
1 = − −1
2
0 − − ]
用分光计和衍射光栅测光波波长
【实验目的】
1、学会分光计的调节和使用方法。
2、学会用光栅测量光波波长的方法。
【实验原理】
单色光垂直照射光栅:


光栅方程
sin =

sin
= 0, ±1, ±2, ±3 ⋅⋅⋅
其中d 为光栅常数, d=a+b
1
本实验中d=
mm(每毫米有300条刻痕)
利用分光计,可对
衍射条纹的衍射角φ
进行精确测量。
分光计刻度盘
和望远镜一起
移动,游标盘
上有左右两个
游标,分别读
数加起来除以
二是望远镜位
置的测量值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七用分光计测光栅常数和光波的波长
【实验目的】
1. 熟悉分光计的操作
2. 用已知波长光光栅常数
3. 用测出的光栅常数测某一谱线的波长
【实验仪器】
分光计及附件一套,汞灯关源;光栅一片
【实验原理】
本实验是利用全息光栅进行测量,光源采用GD20低压汞灯,它点燃之后能发生较强的特性光谱线,在可见区辐射的光谱波长分别为5790A0,5770 A0,5461 A0,4358 A0,4047 A0。

根据夫琅和费衍射原理,每一单色平行光垂直投射到光栅平面上,被衍射,亮纹条件为:dsinθ=Kλ(K=0, ±1, ±2,±3,······)
d-----光栅常数θ-----衍射角λ-------单色光波长
由于汞灯产生不同的单色光,每一单色光有一定的波长,因此在同级亮纹时,各色光的衍射角θ是不同的。

除中央亮纹外各级可有四条不同的亮纹,按波长不同进行排列,通过分光计观察时如(图8-3)所示。

这样,若对某一谱线进行观察(例如黄光λy=5790 A0)对准该谱线的某级亮纹(例如K=±1)时,求出其平均的衍射角θ〈y,代入公式就可求光栅常数d,然后可与标准比较。

本实验采用d=1/1000厘米的光栅。

相反,若将所求得的光栅常数d,并对绿光进行观察,求出某级亮纹(如K=±1)的平均衍射角θ〈y,代入公式,又可求出λg 。

同理,可以同级亮纹或不同亮纹的其他谱线进行观察和计算。

【实验步骤】
(实验之前请先看实验七附录)
1、先进行目镜和望远镜的调焦;
2、调整望远镜的光轴垂直于旋转主轴;
3、平行光管的调焦;
4、调整平行光管的光轴垂直于旋转主轴;
5、将平行光管狭缝调成垂直;(1-5安装时已基本调好)
6、调节光栅平面,使光栅与转轴平行,且光栅平面垂直于平行光管。

调节方法:先开汞灯光源,把平行光管的狭缝照亮,把望远镜叉丝对准狭缝象,固定望远镜的锁紧螺钉。

关掉汞灯光源,开亮望远镜的照明光源,再把光栅放置在载物平台上,并使之固定(夹紧)其位置以三只调平螺钉为准如(图8-4)所示。

尽可能做到光栅平面垂直平分B、C,然后转动读数圆盘,若已锁紧,须放松螺钉(20)再调节B、C下面的螺钉,直到望远镜中从光栅平面反射回来的亮十字象和叉丝重合,既可固定圆盘,锁紧螺钉(20)
7、调节光栅,使其刻痕与转轴平行。

光栅平面虽然平行转轴,但刻痕不一定平行转轴,调节方法是点亮汞灯,让望远镜对各条谱线进行初步观察,同时调节A下面
的螺钉(B、C不能动)使叉丝垂直与谱线平行。

调好之后,关掉汞灯,回头检查
步骤(6)是否有变动,这样反复多次调节,直至(6、7)两个要求同时满足为止。

8、测光栅常数d:先对准中央亮纹,在刻度盘上读出二个数字θ左和θ右取其平均值,作为该位置的相对角度θ〈0。

然后分别对K=±1时黄光谱线进行观察,(λy=5790
A0),并分别求出K=±1时黄光的衍射角,一般应相差不超过几分,如相差太大,就是(6、7)未调好,这两个读数的平均值就是θ〈y,代入公式dsinθ=λ,即可求得d。

(见实验报告)
9、测绿光的波长入g:类似上一步骤,对准绿光,测出K=±1的谱线的衍射角的平均值θ〈y,用自己求出的光栅常数,代入公式dsinθ=λ,即可求λg 。

10、数据处理:将上面二个步骤所得的数据,填写好实验报告,并进行计算。

实验七附录分光计的使用
一、用途:
分光计是一种分光测角光学实验仪器、可以利用光的反射击队、折射、衍射、干涉和偏振原理进行各项实验。

例如:
1、利用光的反射原理测量棱镜的角度;
2、利用光的折射原理测量棱镜的最小偏向角,从而计算棱镜玻璃的折射率等;
3、和光栅配合作光的衍射实验,测量光波波长等。

4、和偏振片、波片配合,作光的偏振实验等。

二、JJY型1 分光计的主要技术性能及规格
1.光学参数
平行光管及望远镜系统的物镜
焦距:170mm;通光口径:φ22mm;视场:3022′
望远镜系统目镜焦距:24.3mm。

2.刻度盘
直径:φ178mm:刻度范围:0-3600:刻度格值:0.50
游标读数示值:1′
3.附件:
①三棱镜(棱角600±5′)(材料ZFI N D=106475)
②光学平行平板(校正平台之用)
③变压器6.3V/220V容量3V A(望远镜、放大镜之用)
④手持照明放大镜
⑤平面全息光栅3000条/cm
三、仪器结构
见图7f-1
图7f-1 分光计
四、仪器的调整
1.目镜的调焦
目的是使眼睛通过目镜能清楚地看到目镜中分划上的刻线。

调焦方法是先把目镜调焦手轮(15)旋出,然后一边旋进,一边从目镜中观察,反复调节直至分划板刻线成象清晰为止。

1.望远镜的调焦
目的将目镜分划板上的十字线调整目镜的焦平面上,调整方法:①接上目镜照明灯源。

②把望远镜光轴位置调节螺丝(17、18)调节到适中的位置。

③在载物台的中央放上平行平板(反射镜),其反射面对看望远镜,且与望远镜光轴大致垂直。

④通过调节载物台下面三只调平螺丝(9)并转动载物台(注意!转动载物台(11)通过转动刻度盘(19)进行,此时需松开(20),使望远镜的反射象大致与望远镜在一直线上。

⑤从目镜中观察,此时可以看到一亮斑。

再移动目镜(不是调焦手轮,松开(14))对望远镜进行调整,使十字线成清晰的象(看到图示7f-2)。

并反复调节三只调平螺丝,把这个亮十字(绿色)调节到与分划板上方的十字线重合,尽量使十字线和亮十字无视差重合。

2.调节望远镜的光轴垂直于旋转主轴
①在望远镜的调焦基础上,对准平行平板,精确地调节螺丝(17),以达到亮十字(绿色)
与十字线重合,然后锁紧螺丝(21)
②把游标盘连同载物台和平行板旋转1800,再观察亮十字的位置,可能与十字线偏高偏
低或偏左偏右。

然后调节载物台三只螺丝,使位移减少一半,再转1800调节,必要时再配合调整上下调节螺丝(17)、反复旋转调节直至垂直方向位移完全消除。

3.将分划板十字线调成水平
通过目镜观察,旋转游标盘连同载物台,观察亮十字的水平移动时,与分划板的水平线是否平行,如不平行,可转动目镜,注意不要破坏调焦。

调完之后,将螺钉(14)锁紧。

4.平行光管的调焦
目的是把狭缝调整到物镜的焦平面上,也就是平行光管对无穷调焦。

①掉望远镜照明光源,打开狭缝,用漫射光照狭缝(先了解狭缝的大小调节情况。

②在平行光管物镜前放上白纸,开亮光源,并调节光源位置,使在整个物镜孔径上照明均
匀。

(可旋转狭缝观察,最后作水平放置)
③用望远镜对准平行光管,并调节螺丝(7)和(4),将平行光管左右上下调节,使狭缝
位于望远镜视场中心。

④前后移动狭缝机构(松开(2)),使狭缝清晰成象在望远镜分划板平面上,注意不破坏
望远镜的调节,只能调节望远镜的微调机构。

⑤松开螺丝(21)让望远镜水平转动观察,并对平行光管进行上下调节,使狭缝在目镜视
场中心,旋转狭缝机构,使狭缝象与目镜分划板的垂直刻线平行,不要移动狭缝。

⑥调节狭缝的大小,使狭缝出现在视场中心,又十分清晰,然后锁紧螺钉(2)和望远镜
的锁紧螺钉(21)。

此时,望远镜、平行光管已水平且成一直线,处于校正状态。

相关文档
最新文档