浦北县高中2018-2019学年上学期高三数学10月月考试题(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦北县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. sin45°sin105°+sin45°sin15°=( )
A .0
B .
C .
D .1
2. 设x ∈R ,则x >2的一个必要不充分条件是( )
A .x >1
B .x <1
C .x >3
D .x <3
3. 已知定义在R 上的奇函数f (x )满足f (x )=2x ﹣4(x >0),则{x|f (x ﹣1)>0}等于( ) A .{x|x >3} B .{x|﹣1<x <1} C .{x|﹣1<x <1或x >3} D .{x|x <﹣1}
4. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C.
D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 5. 二项式(1)(N )n
x n *
+?的展开式中3
x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.
6. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )
A .15
B .
C .15
D .15
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 7. 已知平面向量(12)=,
a ,(32)=-,
b ,若k +a b 与a 垂直,则实数k 值为( ) A .1
5
- B .119 C .11 D .19
【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.
8. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1
B .2
C .3
D .4
9. 已知实数y x ,满足不等式组⎪⎩
⎪
⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.
10.已知集合{| lg 0}A x x =≤,1
={|
3}2
B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]
C .(1,3]
D .1
[,1]2
【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.
11.下列函数中,与函数()3
x x
e e
f x --=的奇偶性、单调性相同的是( )
A
.(ln y x = B .2y x = C .tan y x = D .x
y e =
12.如图,程序框图的运算结果为( )
A .6
B .24
C .20
D .120
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .
14.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且
2AB BC CA ===,则
球表面积是_________.
15.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32
x = 处的导数302f ⎛⎫
'<
⎪⎝⎭,则13f ⎛⎫
= ⎪⎝⎭
___________. 16.已知1a b >>,若10
log log 3
a b b a +=
,b a a b =,则a b += ▲ . 三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分10分)选修4-4:坐标系与参数方程:
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐
标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2
sin 2cos (0)p p ρθθ=>.
(1)设t 为参数,若22
x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2
||||||PQ MP MQ =⋅,求实数p 的值.
18.(本小题满分12分)
数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .
19.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试. (Ⅰ)若选出的4名同学是同一性别,求全为女生的概率; (Ⅱ)若设选出男生的人数为X ,求X 的分布列和EX .
20.证明:f (x )是周期为4的周期函数;
(2)若f (x )=
(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.
18.已知函数f (x )=是奇函数.
21.(本小题满分10分)选修4-1:几何证明选讲
如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD
CE ;
(2)若AB 是圆的直径,4AB =,1DE =,求AD 长
22.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设
,且
,则的最小值为
(几何证明选做题)如图,中,
,以
为直径的半圆分别交
于点
,
若
,则
浦北县高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1.【答案】C
【解析】解:sin45°sin105°+sin45°sin15°
=cos45°cos15°+sin45°sin15°
=cos(45°﹣15°)
=cos30°
=.
故选:C.
【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.
2.【答案】A
【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,
x<1是x>2的既不充分也不必要条件,
x>3是x>2的充分条件,
x<3是x>2的既不充分也不必要条件,
故选:A
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
3.【答案】C
【解析】解:当x>0时,由f(x)>0得2x﹣4>0,得x>2,
∵函数f(x)是奇函数,
当x<0时,﹣x>0,则f(﹣x)=2﹣x﹣4=﹣f(x),
即f(x)=4﹣2﹣x,x<0,
当x<0时,由f(x)>0得4﹣2﹣x>0,得﹣2<x<0,
即f(x)>0得解为x>2或﹣2<x<0,
由x﹣1>2或﹣2<x﹣1<0,
得x>3或﹣1<x<1,
即{x|f(x﹣1)>0}的解集为{x|﹣1<x<1或x>3},
故选:C.
【点评】本题主要考查不等式的求解,根据函数奇偶性的性质先求出f(x)>0的解集是解决本题的关键.
4.【答案】B
【解析】设
2
(,)
4
y
P y
,则
2
1
||
||
y
PF
PA
+
=.又设
2
1
4
y
t
+=,则244
y t
=-,1
t…
,所以
||
||
PF
PA
==,当且仅当2
t=,即2
y=±时,等号成立,此时点(1,2)
P±,PAF
∆的面积为
1
||||222
22
AF y
⋅=⨯⨯=,故选B.
5.【答案】B
【解析】因为(1)(N)
n
x n*
+?的展开式中3x项系数是3C
n
,所以3C10
n
=,解得5
n=,故选A.
6.【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE^平面ABCD,如图所示,所以此四棱锥表面积
为
1
S=26
2
创
?
11
23+226
22
创创?
15
=,故选C.
46
46
10
10
1
1
3
2
6
E
V
D
C
B
A
7.【答案】A
8.【答案】B
【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═
{(x,y)|}
将x2﹣y=0代入x2+y2=1,
得y2+y﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M ∩N 中元素的个数为2个,
故选B .
【点评】本题既是交集运算,又是函数图形求交点个数问题
9. 【答案】C
【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需
直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.
10.【答案】D
【解析】由已知得{}=01A x x <?,故A B =1
[,1]2
,故选D .
11.【答案】A 【解析】
试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.
考点:函数的单调性与奇偶性. 12.【答案】 B
【解析】解:∵循环体中S=S ×n 可知程序的功能是: 计算并输出循环变量n 的累乘值,
∵循环变量n 的初值为1,终值为4,累乘器S 的初值为1, 故输出S=1×2×3×4=24, 故选:B .
【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】.
【解析】解:∵tanβ=,α,β均为锐角,
∴tan(α﹣β)===,解得:tanα=1,
∴α=.
故答案为:.
【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.
14.【答案】64 9
【解析】111]
考点:球的体积和表面积.
【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.
15.【答案】1 2
【解析】
考
点:三角函数图象与性质,函数导数与不等式.
【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫
'< ⎪⎝⎭
来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭
.1
16.【答案】 【解析】
试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33
a b b b b b a a a a +=
⇒+=⇒=或(舍),因此
3a b =,因为b a a b =,所以3
333,1b b b b b b b b a =⇒=>⇒=a b +=考点:指对数式运算
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.
18.【答案】(1)1
22n n b +=-;(2)2
2
2
(4)n n S n n +=-++.
【解析】
试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-
+
211()a a a +-+求得.
试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵12
22
n n b b ++=+,
又121224b a a +=-+=,
∴23
12(21)
(2222)22222221
n
n n n a n n n +-=+++
+-+=
-+=--.
∴224(12)(22)
2(4)122
n n n n n S n n +-+=
-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 19.【答案】
【解析】解:(Ⅰ)若4人全是女生,共有C 74=35种情况;若4人全是男生,共有C 84
=70种情况;
故全为女生的概率为=.…
(Ⅱ)共15人,任意选出4名同学的方法总数是C 154
,选出男生的人数为X=0,1,2,3,4…
P (X=0)==;P (X=1)==;P (X=2)==;
P (X=3)==;P (X=4)==.…
X
EX=0×
+1×
+2×
+3×
+4×
=
.…
【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.
20.【答案】
【解析】(1)证明:由函数f (x )的图象关于直线x=1对称, 有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).
又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).
从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.
(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],
.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],
.
从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.
【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函
数对函数式进行整理,本题是一个中档题目.
21.【答案】
【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考
查逻辑推证能力、转化能力、识图能力.
∴
DE DC BC BA =BC AB
=,则2
4BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,1
2
BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,
∴在Rt ABD ∆中,30ABD ∠=︒,所以1
22
AD AB ==.
22.【答案】 【解析】A
B。