八年级上册数学实数知识点归纳
八年级上册实数的知识点
八年级上册实数的知识点实数是指包括有理数和无理数在内的所有实数的集合。
实数在数学中占有非常重要的地位。
本文将会介绍八年级上册学习的实数知识点。
一、实数的类别实数可以分为有理数和无理数两类。
有理数是指形如 $\dfrac{p}{q}$ 的数,其中 $p$ 和 $q$ 均为整数且$q$ ≠ 0 。
有理数包括整数、正有理数、负有理数、零和分数等。
例如,-2,$\dfrac{3}{4}$,和 0.5 都是有理数。
无理数是指不能表示为有理数形式的实数。
无理数包括无限不循环小数和无限循环小数。
例如,$\sqrt{2}$ 和$\pi$ 都是无理数。
二、实数的比较在实数中,有大小之分。
不同的实数可以通过比较大小来确定它们之间的大小关系。
下面提出了几个规则来比较实数的大小:1.正数大于负数。
2.对于同号的两个实数,绝对值大的数更大。
3.对于不同号的两个实数,正数比负数大。
4.如果 $a > b$ 且 $b> c$ ,那么 $a> c$ 。
这被称为传递性。
三、实数的运算实数具有加、减、乘和除四种基本运算。
1.加法和减法:实数加法和减法之间满足交换律和结合律,即:交换律: $a+b=b+a$, $a-b=-b+a$结合律:$(a+b)+c=a+(b+c)$,$(a-b)-c=a-(b+c)$2.乘法和除法:二个实数之间的乘法和除法也满足交换律和结合律,并且它们的乘积和商也是实数。
交换律:$ab=ba$,$a÷b ≠b÷a$结合律:$(ab)c=a(bc))$,$a÷(bc) ≠ (a÷b) c$可以通过乘方表达式来快速表示乘积,例如 $a^3$ 可以代替$a×a×a$。
四、立方根和平方根1.立方根:如果一个数 $a$ 可以表示为 $b$ 的立方,即$a=b^3$ ,那么 $b$ 就是 $a$ 的立方根。
例如,立方根 $\sqrt[3]{8}$ 就是 2,因为 $2^3 = 8$。
八年级数学上册第二章实数知识点总结+练习
第二章:实数【无理数】1. 定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2. 常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)特殊结构的数(看似循环而实则不循环):如: 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-π是无理数 (4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2π,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)(3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①、②……、③75-、④π、⑤252.±、⑥32-、⑦……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号) (2)有五个数:…,…,-π,4,32其中无理数有 ( )个 【算术平方根】:1. 定义:如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
例如32=9,那么9的算术平方根是3,即39=。
特别规地,0的算术平方根是0,即00=,负数没有算术平方根。
2.算术平方根具有双重非负性:(1)若a 有意义,则被开方数a 是非负数。
(2)算术平方根本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个例:(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; (D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。
八年级数学实数知识点
八年级数学实数知识点八年级数学是学生们数学学习中的一个阶段,涉及到很多实用的数学知识和技能。
其中实数是一个重要的知识点。
实数是指所有的有理数和无理数的集合,是数学中的基本概念之一。
下面我们来详细了解一下八年级数学实数知识点。
一、实数概念实数是指所有的有理数和无理数的集合。
其中有理数是可以表示为两个整数之比的数,无理数是不能表示为有限小数或者分数的数。
实数在数学中具有很重要的地位,它们包含了我们所熟知的所有数,并且提供了基本的数学运算法则。
二、实数基本运算法则实数基本运算法则包括加法、减法、乘法和除法。
这些运算法则在实数中是适用的,可以通过这些法则来进行数学计算。
实数加、减法可以通过数轴的正负进行研究,而乘法和除法则需要注意除数不能为零。
三、实数绝对值实数的绝对值是这个数到原点的距离,绝对值是一个非负数。
正数的绝对值与它本身相等,负数的绝对值是它本身的相反数。
绝对值有很多应用,如求解不等式、导数的定义等。
四、实数的比较实数的比较需要注意大小关系,可以通过大小比较符号进行判断。
对于任意两个实数a和b,如果a<b,则称a小于b;如果a>b,则称a大于b;如果a=b,则称a等于b。
五、实数的分类实数可以根据有理数和无理数进行分类,有理数包括整数、分数和小数,而无理数则包括无限不循环小数和代数无理数。
有理数和无理数在数学中都有重要的应用,如证明勾股定理等。
六、实数的近似实数的近似是指通过一定的方法将复杂的数进行简化,以便于计算。
常见的近似方法包括四舍五入、截断和近似成一定的形式等。
近似方法在实际运用中很常见,如测量长度和面积、统计数据等。
总之,实数在八年级数学中是一个非常重要的知识点。
了解实数的概念、基本运算法则、绝对值、比较、分类和近似方法可以帮助我们更好地掌握数学相关知识,提高数学应用能力。
在学习实数这一知识点时,要注意理解概念,掌握方法,提高思维能力,才能在数学学习中获得更多的收益。
八年级数学上实数知识点
八年级数学上实数知识点实数是数学中一个非常重要的概念,也是数学学习的基础,因此在初中数学中也有相关知识点,下面本文将为大家介绍八年级数学上实数相关的知识点。
一、实数的定义实数是由有理数和无理数组成的数集。
其中有理数是可以表示为两个整数之比的数,无理数则不能用两个整数的比表示。
二、实数的分类实数可以分为有理数和无理数两类。
其中有理数可以分为正有理数、负有理数和零三类。
无理数则不可表示为两个整数之比。
三、实数的运算1.实数加减法加减法是实数运算中最基本的运算。
实数加减法遵循结合律、交换律和分配律,可以通过实数的相反数将减法转化为加法。
例如,对于实数a、b和c,有:①a+(b+c)=(a+b)+c②a+b=b+a③a×(b+c)=(a×b)+(a×c)④a-(b+c)=a-b-c2.实数乘除法乘除法也是实数运算中常用的运算方法。
实数乘除法也遵循结合律、交换律和分配律。
例如,对于实数a、b和c,有:①a×(b×c)=(a×b)×c②a×b=b×a③a÷(b×c)=a÷b÷c④a÷(b÷c)=a×c÷b四、实数的性质实数有许多重要的性质,这些性质对于解决实际问题非常重要。
本文只介绍实数的一些基本性质。
1.实数的传递性对于任意的实数a、b和c,如果a<b<b,则a<c,这就是实数的传递性。
2.实数的对称性对于实数a和b,如果a=b,则b=a。
3.实数的不等式性质实数的不等式性质包括四则运算的不等号关系和绝对值不等式。
其中四则运算的不等号关系指的是:①如果a<b,则a+c<b+c;②如果a<b 且 c>0,则ac<bc;③如果a<b 且 c<0,则ac>bc;④如果a>b,则a-c>b-c。
八上数学第二章实数
八上数学第二章实数八年级数学上册第二章“实数”主要涉及实数的概念、性质及其运算。
以下是该章节的主要内容:1.平方根和算术平方根:非负实数a的算术平方根是满足x^2=a的实数x;非负实数a的平方根是满足x^2=a的实数x,正数有两个平方根,它们互为相反数,0只有一个平方根,即0本身,负数没有平方根。
2.无理数:无限不循环小数称为无理数。
常见的无理数包括无限不循环小数、开方开不尽的数等。
3.实数的分类:实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是指不能表示为两个整数的比的数。
4.实数的运算:实数的加、减、乘、除运算与正数和0的运算规则相同,但需要注意负数的运算。
在运算过程中,需要注意运算法则和运算顺序,以免出现错误。
5.实数的应用:实数在实际生活中有着广泛的应用,例如测量、计算、工程设计等方面都需要用到实数。
在学习这一章时,学生需要理解并掌握实数的概念、性质和运算规则,同时还需要能够运用所学知识解决实际问题。
此外,学生还需要注意与之前所学有理数知识的联系和区别,以便更好地掌握数学基础知识。
实数这一章的重点内容还包括以下几个方面:1.平方根的性质:实数的平方根具有一些重要的性质,例如正实数的平方根有两个,它们互为相反数,其中正的平方根就是算术平方根。
此外,当被开方数的小数点向右每移动两位时,其算术平方根的小数点会向右移动一位。
2.立方根的性质:实数的立方根也有其独特的性质。
例如,当被开方数的小数点每向右移动三位时,其立方根的小数点会向右移动一位。
3.实数的表示:实数可以用不同的方式来表示,例如根号形式、小数形式和分数形式等。
此外,实数还可以在数轴上表示出来,这样可以更直观地理解实数的性质和运算。
4.实数的运算性质:实数的加、减、乘、除等运算具有一些重要的性质,例如运算法则、运算律和运算顺序等。
学生需要理解和掌握这些性质,以便能够正确地进行实数的运算。
5.实数的应用:实数在实际生活中有着广泛的应用,例如测量、计算、工程设计等方面都需要用到实数。
八年级上册总结实数知识点
八年级上册总结实数知识点八年级上册数学学习中,实数是一个非常重要的知识点。
实数包括整数、有理数和无理数三部分。
本文将对这三部分的实数知识点进行总结和回顾。
1. 整数整数是指正整数、负整数和0。
其中“正整数”指大于0的整数,“负整数”指小于0的整数。
0既不是正整数也不是负整数,但它也是整数的一种,是非常重要的。
2. 有理数有理数是指可以表示为两个整数相除的数。
有理数包括正有理数、负有理数和0。
它们可以表示为分数的形式,如2/3,-1/5,0等。
其中,“正有理数”指大于0的有理数,“负有理数”指小于0的有理数。
在有理数中,我们需要掌握分数的四则运算法则,以及分数和整数之间的运算方法。
3. 无理数无理数是指不能表示为两个整数相除的数,有限无理数的表示是无限不循环小数。
例如√2、√3、π等。
无限不循环小数是一种连续不断地无限延续的小数,不能用分数形式表示。
在无理数中,我们需要掌握无理数之间的大小比较和无理数与有理数的运算方法。
4. 实数实数包括整数、有理数和无理数三部分。
任何实数都可以表示为有理数和无理数的和。
例如√2是一个无理数,但√2+3/4就是一个实数。
我们需要掌握实数之间的大小比较和运算方法,如加减乘除等。
总结一下,八年级上册数学中的实数知识点可以分为三部分,即整数、有理数和无理数。
其中,整数是指正整数、负整数和0;有理数是指可以表示为两个整数相除的数;无理数是指不能表示为两个整数相除的数,有限无理数的表示是无限不循环小数。
实数包括整数、有理数和无理数三部分,任何实数都可以表示为有理数和无理数的和。
掌握实数知识点是数学学习的基础,也是以后数学学习的必备知识。
八年级上册数学各章知识点总结
《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方1. 平方根的含义如果一个数的平方等于 , 那么这个数就叫做 的平方根。
即 , 叫做 的平方根。
2.平方根的性质与表示⑴表示: 正数 的平方根用 表示, 叫做正平方根, 也称为算术平方根, 叫做 的负平方根。
⑵一个正数有两个平方根: (根指数2省略) 0有一个平方根, 为0, 记作 , 负数没有平方根 ⑶平方与开平方互为逆运算⑷a 的双重非负性例: 得知⑸如果正数的小数点向右或者向左移动两位, 它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为 的平方根为 4开平方后, 得 3.计算a 的方法⎪⎪⎪⎩⎪⎪⎪⎨⎧精确到某位小数 =非完全平方类 =完全平方类 773294 *若 , 则(二)立方根和开立方1. 立方根的定义如果一个数的立方等于 , 呢么这个数叫做 的立方根, 记作 2.立方根的性质任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0. 3.开立方与立方开立方: 求一个数的立方根的运算。
()a a =33a a =3333a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。
*0的平方根和立方根都是0本身。
(三)推广: 次方根1.如果一个数的 次方( 是大于1的整数)等于 ,这个数就叫做 的 次方根。
当为奇数时, 这个数叫做的奇次方根。
当为偶数时, 这个数叫做的偶次方根。
2.正数的偶次方根有两个:;0的偶次方根为0:;负数没有偶次方根。
正数的奇次方根为正。
0的奇次方根为0。
负数的奇次方根为负。
(四)实数1.实数: 有理数和无理数统称为实数实数的分类:①按属性分类: ②按符号分类2.实数和数轴上的点的对应关系:实数和数轴上的点一一对应, 即每一个实数都可以用数轴上的一个点表示.数轴上的每一个点都可以表示一个实数.的画法: 画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:①尺规可作的无理数, 如②尺规不可作的无理数 , 只能近似地表示, 如π, 1.010010001……思考:(1)-a2一定是负数吗?-a一定是正数吗?(2)大家都知道是一个无理数, 那么-1在哪两个整数之间?(3)的整数部分为a,小数部分为b, 则a= , b= 。
八年级数学上册实数知识点
八年级数学上册实数知识点在八年级数学课程中,实数是重要的概念之一。
实数包括有理数和无理数,是数学中的基本概念之一。
本文将重点介绍实数的相关知识。
一、实数的定义实数是可以用数轴上的点来表示的数。
它包括有理数和无理数。
具体来说,有理数是可以表示为两个整数的比值的数,而无理数则不能表示为两个整数的比值。
二、实数的表示1、数轴上的表示实数可以用数轴上的点来表示。
数轴上的零点表示0,正数表示在零点右侧的数,负数表示在零点左侧的数。
2、小数的表示小数是实数的一种常见表示形式。
它的整数部分表示数轴上的整数部分,小数部分表示数轴上的小数部分。
三、实数的基本性质实数具有以下基本性质:1、对于任意实数a,b,c,满足交换律、结合律和分配律。
2、实数有加法逆元和乘法逆元。
对于任意实数a,存在一个实数-b,使得a+b=0;对于任意非零实数a,存在一个实数1/a,使得a×1/a=1。
3、实数的四则运算仍为实数。
特别的,除数为0时,除法没有意义。
四、实数的关系运算实数之间可以进行大小比较。
常用的关系运算有以下几种:1、大于:设a,b为实数,若a>b,则a在数轴上位于b的右侧。
2、小于:设a,b为实数,若a<b,则a在数轴上位于b的左侧。
3、大于等于:设a,b为实数,若a≥b,则a在数轴上位于b 的右侧或位于同一点上。
4、小于等于:设a,b为实数,若a≤b,则a在数轴上位于b 的左侧或位于同一点上。
五、实数的应用实数在生活中的应用广泛。
例如,将数轴上的点和实际情况对应,可以用来表示温度、海拔高度、经纬度等物理量。
六、实数的拓展除了有理数和无理数以外,还有复数等拓展概念。
复数包括实部和虚部,是实数和虚数的和。
虚数有单位虚数i,满足i²=-1。
七、总结实数是数学中的基本概念之一,包括有理数和无理数。
实数有数轴上的表示和小数的表示两种方式,还具有四则运算、大小比较等基本性质。
实数的应用非常广泛,还有复数等拓展概念。
八年级上册数学实数知识点
八年级上册数学实数知识点
一、实数的概念
实数包括有理数和无理数两部分,其中有理数可以表示为分数形式,而无理数则不能。
实数集是数学中最重要的基础,同时也是数学的一个研究方向。
二、实数的分类
实数的分类是按照其性质来划分的。
实数可以分为无限小数和有限小数两类。
无限小数指的是无限循环的小数,而有限小数则是有限位的小数。
另外,实数还可以根据其大小来分类,可以分为正数、负数、零。
三、实数的运算
实数的基本运算有加法、减法、乘法和除法四种,它们都符合四则运算法则,即加法交换律、结合律、乘法交换律、结合律、分配律等等。
实数的运算还包括绝对值和幂运算,其中绝对值是指一个实数离原点的距离,幂运算则是指一个数乘以自己的若干次方。
四、实数的比较
实数的大小可以用于比较,可以用大于号(>)、小于号(<)和等于号(=)来表示大小的关系。
实数的比较还包括绝对值比较和对数比较,其中绝对值比较是指比较两个实数的绝对值的大小,对数比较则是指比较两个实数的对数的大小。
五、实数的性质
实数具有很多重要的性质,如传递性、对称性、存在性等等。
这些性质在数学研究中都起到了非常重要的作用。
六、实数的应用
实数在生活中有着广泛的应用,如在金融领域、工程领域、物理学等多个领域中都有应用。
实数的应用可以变得非常复杂,需要学生掌握较高的数学知识才能进行有效的应用。
七、总结
八年级上册数学实数知识点包含了实数的概念、分类、运算、比较、性质和应用等方面的内容。
对于学生而言,掌握这些知识可以帮助他们更好地理解数学的基础,并有效地应用到生活中。
八年级上册数学实数知识总结
实数一、实数的概念及分类1.实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2.无理数: 无限不循环小数叫做无理数。
在理解无理数时, 要抓住“无限不循环”这一时之, 归纳起来有四类:(1)开方开不尽的数, 如等;(2)有特定意义的数, 如圆周率π, 或化简后含有π的数, 如+8等;(3)有特定结构的数, 如0.1010010001…等;(4)某些三角函数值, 如sin60o等二、实数的倒数、相反数和绝对值1.相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数, 零的相反数是零), 从数轴上看, 互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0, a=—b, 反之亦成立。
2.绝对值在数轴上, 一个数所对应的点与原点的距离, 叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身, 也可看成它的相反数, 若|a|=a, 则a≥0;若|a|=-a, 则a≤0。
3.倒数如果a与b互为倒数, 则有ab=1, 反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4.数轴规定了原点、正方向和单位长度的直线叫做数轴解题时要真正掌握数形结合的思想, 理解实数与数轴的点是一一对应的, 并能灵活运用。
5.估算三、平方根、算数平方根和立方根1.算术平方根: 一般地, 如果一个正数x的平方等于a, 即x2=a, 那么这个正数x就叫做a的算术平方根。
特别地, 0的算术平方根是0。
表示方法: 记作“”, 读作根号a。
性质: 正数和零的算术平方根都只有一个, 零的算术平方根是零。
2.平方根: 一般地, 如果一个数x的平方等于a, 即x2=a, 那么这个数x就叫做a的平方根(或二次方根)。
表示方法: 正数a的平方根记做“”, 读作“正、负根号a”。
性质:一个正数有两个平方根, 它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算, 叫做开平方。
人教版八年级上册数学实数知识点
人教版八年级上册数学实数知识点
八年级上册数学实数部分的知识点主要包括以下内容:
1. 实数的定义:实数由有理数和无理数组成。
2. 有理数的性质:
- 有理数可以进行四则运算,符号相同的有理数相加(或相乘)的结果仍然是有理数。
- 有理数的加法和乘法满足交换律、结合律和分配律。
- 有理数除以非零有理数的结果仍然是有理数。
3. 无理数的性质:
- 无理数不能表示为两个整数的比值。
- 无理数可以用无限不循环小数来表示。
- 无理数与有理数的和、差、积、商的结果都是无理数。
4. 实数的扩展:
- 实数集合包括有理数和无理数。
- 实数集合满足实数的代数运算性质和大小关系。
5. 实数的大小关系:
- 实数的大小关系可以用数轴来表示。
- 数轴上实数a与实数b的大小关系可分为以下几种情况:a>b,a<b,a=b。
6. 实数的绝对值:
- 实数a的绝对值表示为|a|,表示a到原点的距离。
- 绝对值的性质:|a|≥0,|a|=0当且仅当a=0,|a|>-a,|ab|=|a||b|。
以上是人教版八年级上册数学实数部分的主要知识点,具体的内容还需要参考教材。
八年级上册实数知识点
八年级上册实数知识点八年级上册数学中的实数知识点在数学中,实数通常指有理数和无理数的总称,实数包含了可以用小数、分数或整数来表示的所有数字。
在八年级上册数学学习中,实数就是一个重要的知识点,为学生们的数学生涯打下坚实的基础,下面,本文将详细介绍八年级上册实数的知识点。
一、实数的分类实数包括有理数和无理数两大类,其中有理数可以表示成两个整数的比,而无理数不能用有限个整数的比表示。
1.有理数有理数可以表示为分数形式或整数形式,分数形式的有理数又分为有限小数和循环小数。
例如,-5,0,1.5,6/3,-0.25都是有理数。
2.无理数无理数通常记作raiz(a),表示不能化为两个整数的比的实数。
其中irracional 的a≠0,且a不是整数的完全平方数。
例如,根号2,根号3,圆周率都是无理数。
二、实数的运算实数的运算包括加、减、乘、除、乘方等运算,其中加、减、乘、除是四种基本运算。
1.加法运算实数加法的交换律和结合律都成立。
学生们需要牢记两个实数相加等于一数线上这两个点之间的距离。
a +b = b + a (交换律)(a + b) + c = a + (b + c) (结合律)2.减法运算实数减法也有交换律和结合律。
a -b ≠ b - a(a - b) - c = a - (b + c) 或者 (a - c) - b3.乘法运算实数乘法的交换律和结合律也成立。
a xb = b x a (交换律)(a x b) x c = a x (b x c) (结合律)4.除法运算实数除法与整数的除法不同,需要注意分母不能为零,当分子为零时,结果为零。
同时,实数的除法没有交换律。
a ÷b ≠ b ÷ a5.乘方运算实数的乘方是将一个实数按照自乘的次数进行运算,指数通常是自然数、整数或分数。
a的n次幂通常表示为a^n。
其中,a^0 = 1,a^1 = a。
三、实数的比较大小方法实数的大小之间有一个大小关系,在生活中也常见不同金额、不同长度或不同体积的比较。
八年级上册数学第四章知识点
八年级上册数学第四章知识点第四章:平方根和实数1. 平方根的定义:一个数的平方根是指能使它的平方等于这个数的数。
2. 平方根的性质:- 非负数的平方根是一个非负数。
- 0 的平方根是 0。
- 任何正数的平方根都是两个数,一个是正的,一个是负的。
3. 平方根的表示方法:- 符号√表示平方根。
- √a表示非负的平方根,即√a ≥ 0。
- -√a表示负的平方根,即-√a ≤ 0。
4. 平方根的性质:- 如果 a > b,则√a > √b 。
- 如果 a > 0 ,则√a > 0 。
- 如果 a > 1,且 a > b > 0 ,则√a > √b 。
5. 实数的定义:实数是有理数和无理数的总称。
6. 无理数:无理数是不能表示成两个整数的比例的数。
7. 无理数的表示方法:无理数可以用无窗尺寸小数或根号表示。
8. 无理数的例子:π(圆周率)、e(自然对数的底数)、√2(2 的平方根)。
9. 实数的运算性质:- 实数的加法、减法、乘法、除法仍是实数。
- 实数的加法、乘法满足交换律和结合律。
- 实数的加法和乘法满足分配律。
10. 绝对值的定义:一个实数的绝对值是它到 0 的距离。
11. 绝对值的表示方法:符号 |a| 表示 a 的绝对值。
12. 绝对值的性质:- 当 a ≥ 0 时,|a| = a。
- 当 a < 0 时,|a| = -a。
- |a * b| = |a| * |b|。
- |a + b| ≤ |a| + |b|。
八年级实数所有知识点归纳总结
八年级实数所有知识点归纳总结在八年级数学中,实数是一个非常重要的内容。
实数包括有理数和无理数,是数轴上的全部点。
对于实数的学习,我们需要了解实数的性质、运算规则以及实数的表示方法等知识点。
在本文中,我们将对八年级实数相关的知识点进行归纳总结。
一、实数及其分类实数是可以用小数或分数表示的有理数和不能用分数形式表示的无理数的统称。
实数可以根据其性质分为有理数和无理数两类。
1. 有理数有理数是可以表示为两个整数的比值形式的数,包括正整数、负整数、零以及分数形式的数。
- 正整数:例如 1、2、3,它们在数轴上位于原点右侧。
- 负整数:例如 -1、-2、-3,它们在数轴上位于原点左侧。
- 0:位于原点上的数。
- 分数形式的数:例如 1/2、3/4,可以用两个整数的比值表示。
2. 无理数无理数是不能表示为两个整数的比值形式的数,它们包括无限不循环小数和根号形式的数。
- 无限不循环小数:例如π、√2,它们的小数部分是无限不循环的。
- 根号形式的数:例如√3、√5,它们的根号表示形式是无法化简的。
二、实数的大小比较在实数中,我们可以通过数轴来进行实数的大小比较。
对于两个实数的大小关系,可以通过以下规则判断:1. 正数之间的大小比较:数值大的正数大于数值小的正数。
2. 负数之间的大小比较:数值大的负数小于数值小的负数。
3. 正数与负数之间的比较:正数大于负数,且绝对值大的负数小于绝对值小的正数。
4. 零与其他数的比较:零小于任何正数,零大于任何负数。
三、实数的运算规则实数的运算包括加法、减法、乘法和除法。
下面我们分别来看每种运算的规则:1. 加法规则:- 相同符号的实数相加,取绝对值相加,并保留它们的原有符号。
- 不同符号的实数相加,取绝对值较大的数,然后减去绝对值较小的数,并保留绝对值较大的数的符号。
2. 减法规则:将减号转化为加一个负数的运算,根据加法规则进行运算。
3. 乘法规则:- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
初二数学上册:实数知识点
初二数学上册:实数知识点初二数学上册:实数知识点?1、加法:(1)同号两数相加,取原先的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上那个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以那个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
6、实数的运算顺序:唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
而对那些专门讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,要紧协助国子、博士培养生徒。
数学实数知识点归纳总结
数学实数知识点归纳总结一、有理数有理数是能用整数表示为两个整数的比值的数。
有理数包括正整数、负整数、零和分数。
正整数是大于零的整数,负整数是小于零的整数,零是没有大小的数,分数是整数 a 与不等于零的整数 b 的比。
有理数的性质:1. 有理数的加法性质:加法交换律、结合律、加法单位元、加法逆元2. 有理数的乘法性质:乘法交换律、结合律、分配律、乘法单位元、乘法逆元3. 有理数的比较性质:任意两个有理数可以比较大小,可以用符号表示大小有理数的运算规律:1. 加法运算规律:同号相加取绝对值相加,异号相加取绝对值较大减去绝对值较小2. 减法运算规律:a-b=a+(-b)3. 乘法运算规律:同号得正,异号得负4. 除法运算规律:a÷b=a×(1/b),非零有理数除法规律二、无理数无理数是不能用有限小数、有限分数、循环小数等形式表示的数,通常用无限不循环小数表示。
无理数包括开方数、圆周率π 、自然对数 e 等。
无理数的性质:1. 无理数和有理数的比较性质:任何无理数和有理数比较大小,都可以用符号表示大小2. 无理数的运算性质:无理数和有理数的四则运算规则,开方运算规则无理数的性质和运算规律是数学中非常重要的概念,对于学习和使用实数有着重要的影响。
无理数的性质和运算规律对于数学推理和证明有着重要的作用。
三、实数的表示实数可以用小数、分数、无限循环小数、无限不循环小数等形式表示。
实数可以用数轴上的点表示,数轴是一个用来表示实数的直线,原点表示零。
比如 1/2、0.5、-2、√2、π 等都可以在数轴上找到对应的位置。
实数的表示有着重要的意义,我们可以用实数表示现实生活中的物理量、经济金额等。
实数的表示对于数学思考和计算有着重要的作用。
四、实数的运算实数的运算包括加法、减法、乘法和除法四则运算。
实数的四则运算遵循有理数和无理数的运算规律。
实数的运算需要遵循运算法则,掌握有理数和无理数的运算规律,才能正确地进行实数的运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学实数知识点归纳
八年级上册数学实数知识点归纳
定义:任何有限小数或无限循环小数都是有理数。
无限不循环小数叫做无理数
(有理数总可以用有限小数或无限循环小数表示)
一般地,如果一个正数x的平方等于a,那么这个正数x就叫做
a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的
平方根(也叫二次方根)
一个正数有两个平方根;0只有一个平方根,它是0本身;负数没
有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的
立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的.运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的
每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。