2016届高考数学(理)(人教A版)总复习课时演练 专题03 三角函数与向量的综合应用
2016届山东省济宁市高考数学理讲练练习第1讲三角函数的图像与性质1(新人教A版)
第一讲 三角函数的图象与性质1、已知角θ的终边上一点p (3a,4a )(a ≠0),则sin θ=________. 【解析】 ∵x =3a ,y =4a , ∴r =a 2+a 2=5|a |.此处在求解时,常犯r =5a 的错误,出错的原因在于去绝对值时,没有对a 进行讨论.(1)当a >0时,r =5a ,∴sin θ=y 5=45.(2)当a <0时,r =-5a ,∴sin θ=y 5=-45∴sin θ=±45.2、已知θ∈(0,π),sin θ+cos θ=3-12,则tan θ的值为( ) A .-3或-33B .-33C .- 3D .-32【解析】 法一 由sin θ+cos θ=3-12两边平方得, sin θcos θ=-34, 由sin θ·cos θ=sin θ·cos θsin 2θ+cos 2θ=tan θ1+tan 2θ=-34, 解得tan θ=-3或tan θ=-33, ∵θ∈(0,π),0<sin θ+cos θ=12(3-1)<1,∴θ∈⎝ ⎛⎭⎪⎫π2,π,|sin θ|>|cos θ|,∴|tan θ|>1, 即θ∈⎝ ⎛⎭⎪⎫π2,3π4.∴tan θ<-1,∴tan θ=-33舍去,故tan θ=- 3. 法二:由sin θ+cos θ=3-12,两边平方得 sin θ·cos θ=-34, ∴(sin θ-cos θ)2=1-2sin θ·cos θ=1+32=4+234=⎝ ⎛⎭⎪⎫3+122.∵θ∈(0,π),sin θ+cos θ=12(3-1)<1,∴θ∈⎝ ⎛⎭⎪⎫π2,π,sin θ-cos θ>0,∴sin θ-cos θ=3+12.由⎩⎪⎨⎪⎧sin θ+cos θ=3-12,sin θ-cos θ=3+12,解得⎩⎪⎨⎪⎧sin θ=32,cos θ=-12,∴tan θ=- 3. 【答案】 C3、(2013·天津高考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( ) A .-1 B .-22C.22D .0【解析】 ∵x ∈[0,π2],∴-π4≤2x -π4≤3π4,∴当2x -π4=-π4时,f (x )=sin(2x-π4)有最小值-22. 【答案】 B4、(2011山东)若函数 (ω>0)在区间上单调递增,在区间上单调递减,则ω= (A) (B) (C) 2 (D)3 【答案】B【解析】由题意知,函数在处取得最大值1,所以1=sin,。
人教A版高考总复习一轮理科数学精品课件 第4章 三角函数、解三角形 解答题专项二 三角函数与解三角形
令
1
− 2 cos
2x-
3
sin
4
2
π
+6
π
2x+6
∈
π
2
π
3
2 +
1
-2(cos
+
2x-1)=
3
sin
2
2
1
2x-2cos
2π
)
3
1-cos (2-
2x+1=-
2
1
-2cos
3
sin
4
−
1
cos
2
1
2x+2
1
2x+2
1
2x-4cos
2x+1
+1.
3π
2π, 2
+ 2π ,k∈Z,则 x∈
解答题
专项二
三角函数与解三角形
考情分析:高考对三角函数与解三角形的考查有较强的规律性,三角解答题
与数列解答题交替考查.只考小题的试卷有三道题目,共15分;考解答题时
有一大一小两个题目,共17分.在三个小题中,分别考查三角函数的图象与
性质、三角变换、解三角形;在一个小题和一个大题中,小题要么考查三角
π
6
+1,
,
1
≥-2,
结合正弦函数的图象与性质可知
π
−2
1
+1=- sin
2
π
2x-6
∈
7π
5π
− 6 ,− 6
∪
π 5π
−6, 6
,
,
即所求实数 x 的取值集合为 ∣
π
−
2
2016理科数学高考真题分类第三单元 三角函数
第三单元 三角函数C1 角的概念及任意角的三角函数C2 同角三角函数的基本关系式与诱导公式5.C2、C6[2016·全国卷Ⅲ] 若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825C .1 D.16255.A [解析] cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+4³341+⎝⎛⎭⎫342=6425. 16.C2,C7,C8[2016·山东卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan B cos A.(1)证明:a +b =2c ; (2)求cos C 的最小值.16.解:(1)证明:由题意知2(sin A cos A +sin B cos B )=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B . 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 从而sin A +sin B =2sin C . 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab =a 2+b 2-a +b 222ab=38(a b +b a )-14≥12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.C3 三角函数的图象与性质 5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.9.C3[2016·江苏卷] 定义在区间[0,3π]上的函数y =sin 2x 的图像与y =cos x 的图像的交点个数是________.9.7 [解析] 方法一:令sin 2x =cos x ,即2sin x cos x =cos x ,解得cos x =0或sin x =12, 即x =k π+π2或x =2k π+π6或x =2k π+56π(k ∈Z ),又x ∈[0,3π],故x =π2,3π2,5π2或x =π6,5π6,13π6,17π6,共7个解,故两个函数的图像有7个交点. 7个.3.C3[2016·四川卷] 为了得到函数y =sin(2x -π3)的图像,只需把函数y =sin 2x 的图像上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度3.D [解析] 由题可知,y =sin ⎝⎛⎭⎫2x -π3=sin 2⎝⎛⎭⎫x -π6,则只需把y =sin 2x 的图像向右平移π6个单位长度.7.C3[2016·全国卷Ⅱ] 若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图像的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )7.B [解析] 平移后的图像对应的解析式为y =2sin 2⎝⎛⎭⎫x +π12,令2⎝⎛⎭⎫x +π12=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ). 7.C7,C3[2016·山东卷] 函数f (x )=(3sin x +cos x )·(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π 7.B [解析] f (x )=2sin x cos x -3sin 2x +3cos 2x =sin 2x +3cos 2x =2sin(2x +π3),故T =2π2=π.5.C3[2016·浙江卷] 设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关5.B [解析] 若b =0,则f (x )=sin 2x +c =1-cos 2x 2+c =-12cos 2x +12+c 的最小正周期是π;若b ≠0,则f (x )=sin 2x +b sin x +c 的最小正周期是2π,故选B.C4 函数sin()y A x ωϕ=+的图象与性质7.C4[2016·北京卷] 将函数y =sin (2x -π3)图像上的点P (π4,t )向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图像上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π37.A [解析] 因为P (π4,t )在函数y =sin (2x -π3)的图像上,所以t =sin (2³π4-π3)=sin π6=12.因为s >0,y =sin (2x -π3)=sin 2(x -π6),所以函数y =sin (2x -π3)的图像至少向左平移π6个单位长度可以得到函数y =sin 2x 的图像,所以s 的最小值为π6.12.C4[2016·全国卷Ⅰ] 已知函数f (x )=sin(ωx +φ)(ω>0,|φ|≤π2),x =-π4为f (x )的零点,x =π4为y =f (x )图像的对称轴,且f (x )在π18,5π36单调,则ω的最大值为( )A .11B .9C .7D .512.B [解析] 由已知可得-π4ω+φ=k π,k ∈Z ,π4ω+φ=m π+π2,m ∈Z ,两式相加,得2φ=(k +m )π+π2.因为|φ|≤π2,所以k +m =0或k +m =-1,即φ=±π4,两式相减得ω=2(m -k )+1,即ω为正奇数.因为函数f (x )在区间(π18,5π36)单调,所以只要该区间位于函数f (x )图像的两条相邻对称轴之间即可,且5π36-π18≤12³2πω,即ω≤12.(1)当φ=π4时,f (x )=sin (ωx +π4),则k π-π2≤π18ω+π4且5π36ω+π4≤k π+π2,k ∈Z ,解得36k -272≤ω≤36k +95.由于ω≤12,故k 最大取1,此时4.5≤ω≤9,此时ω的最大值为9.(2)当φ=-π4时,f (x )=sin (ωx -π4),则k π-π2≤π18ω-π4且5π36ω-π4≤k π+π2,k ∈Z ,解得36k -92≤ω≤36k +275.由于ω≤12,故k 最大取0,此时ω≤275,此时ω的最大值为5.综上可知,ω的最大值为9. 14.C4[2016·全国卷Ⅲ] 函数y =sin x -3cos x 的图像可由函数y =sin x +3cos x 的图像至少向右平移________个单位长度得到.14.2π3 [解析] 函数y =sin x -3cos x =2sin (x -π3)的图像可由函数y =sin x +3cosx =2sin (x +π3)的图像至少向右平移2π3个单位长度得到.10.C4[2016·浙江卷] 已知2cos 2x +sin 2x =A sin (ωx +φ)+b (A >0),则A =________,b =________.10.2 1 [解析] 2cos 2x +sin 2x =sin 2x +cos 2x +1=2sin(2x +π4)+1,故A =2,b=1.12.C4,F3[2016·上海卷] 在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线y =1-x 2上一个动点,则BP →²BA →的取值范围是________.12.[0,1+2] [解析] 由题意得y =1-x 2表示以原点为圆心,1为半径的上半圆,设P (cos α,sin α),α∈[0,π],则BA →=(1,1),BP →=(cos α,sin α+1),所以BP →²BA →=cos α+sin α+1=2sin(α+π4)+1,因为α∈[0,π],所以0≤BP →²BA →≤1+ 2.13.C4[2016·上海卷] 设a ,b ∈R ,c ∈[0,2π).若对任意实数x 都有2sin(3x -π3)=a sin(bx +c ),则满足条件的有序实数组(a ,b ,c )的组数为________.13.4 [解析] 根据题意a =±2,b =±3.若a =2,则当b =3时,c =5π3,当b =-3时,c =4π3;若a =-2,则当b =3时,c =2π3,当b =-3时,c =π3.所以满足条件的有序实数组(a ,b ,c )的组数为4.C5 两角和与差的正弦、余弦、正切15.C5,C8[2016·北京卷] 在△ABC 中,a 2+c 2=b 2+2ac . (1)求∠B 的大小;(2)求2cos A +cos C 的最大值. 15.解:(1)由余弦定理及题设得 cos B =a 2+c 2-b 22ac =2ac 2ac =22.又因为0<∠B <π,所以∠B =π4.(2)由(1)知∠A +∠C =3π4.2cos A +cos C =2cos A +cos 3π4-A=2cos A -22cos A +22sin A =22cos A +22sin A =cos A -π4.因为0<∠A <3π4,所以当∠A =π4时,2cos A +cos C 取得最大值1.15.C8、C5[2016·江苏卷] 在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求cos A -π6的值.15.解:(1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-452=35,由正弦定理知AC sin B =ABsin C ,所以AB =AC ²sin C sin B =6³2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos(B +π4)=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45³22+35³22=-210.因为0<A <π,所以sin A =1-cos 2A =7210,因此cos(A -π6)=cos A cos π6+sin A sin π6=-210³32+7210³12=72-620.C6 二倍角公式5.C2、C6[2016·全国卷Ⅲ] 若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825C .1 D.16255.A [解析] cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+4³341+⎝⎛⎭⎫342=6425. 11.C6[2016·四川卷] cos 2π8-sin 2π8=________.11.22 [解析] 由题可知,cos 2π8-sin 2π8=cos π4=22. 9.C6[2016·全国卷Ⅱ] 若cos (π4-α)=35,则sin 2α=( )A.725B.15 C .-15 D .-7259.D [解析] ∵cos (π4-α)=35,∴sin 2α=cos (π2-2α)=2cos 2(π4-α)-1=-725. 7.C6,C7[2016·上海卷] 方程3sin x =1+cos 2x 在区间[0,2π]上的解为________. 7.π6或5π6[解析] 由3sin x =1+cos 2x ,得3sin x =2-2sin 2x ,所以2sin 2x +3sin x -2=0,解得sin x =12或sin x =-2(舍去),所以原方程在区间[0,2π]上的解为π6或5π6.C7 三角函数的求值、化简与证明7.C7,C3[2016·山东卷] 函数f (x )=(3sin x +cos x )·(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π 7.B [解析] f (x )=2sin x cos x -3sin 2x +3cos 2x =sin 2x +3cos 2x =2sin(2x +π3),故T =2π2=π.16.C2,C7,C8[2016·山东卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan B cos A.(1)证明:a +b =2c ; (2)求cos C 的最小值.16.解:(1)证明:由题意知2(sin A cos A +sin B cos B )=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B . 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 从而sin A +sin B =2sin C . 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-a +b 222ab=38(a b +b a )-14≥12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.7.C6,C7[2016·上海卷] 方程3sin x =1+cos 2x 在区间[0,2π]上的解为________. 7.π6或5π6[解析] 由3sin x =1+cos 2x ,得3sin x =2-2sin 2x ,所以2sin 2x +3sin x -2=0,解得sin x =12或sin x =-2(舍去),所以原方程在区间[0,2π]上的解为π6或5π6.C8 解三角形15.C5,C8[2016·北京卷] 在△ABC 中,a 2+c 2=b 2+2ac .(1)求∠B 的大小;(2)求2cos A +cos C 的最大值. 15.解:(1)由余弦定理及题设得 cos B =a 2+c 2-b 22ac =2ac 2ac =22.又因为0<∠B <π,所以∠B =π4.(2)由(1)知∠A +∠C =3π4.2cos A +cos C =2cos A +cos 3π4-A=2cos A -22cos A +22sin A=22cos A +22sin A =cos A -π4.因为0<∠A <3π4,所以当∠A =π4时,2cos A +cos C 取得最大值1.14.C8、E6[2016·江苏卷] 在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.14.8 [解析] 方法一:∵sin A =2sin B sin C ,sin A =sin(B +C )=sin B cos C +cos B sin C ,∴sin B cos C +cos B sin C =2sin B sin C ,两边同除以cos B cos C ,可得tan B +tan C =2tan B tan C ,tan A tan B tan C =-tan(B +C )tan B tan C =-tan B +tan C1-tan B tan C²tan B tan C =2(tan B tan C )2tan B tan C -1,由三角形为锐角三角形得tan B >0,tan C >0,tan A =tan B +tan Ctan B tan C -1>0,即tan B tan C -1>0.令tan B tan C -1=t (t >0),则tan A tan B tan C =2(t +1)2t =2t +1t+2≥8,当t =1,即tan B tan C =2时取等号.方法二:同方法一可得tan B +tan C =2tan B tan C , 又tan A +tan B +tan C =tan A +(1-tan B tan C )·tan(B +C )=tan A -tan A +tan A tan B tan C =tan A tan B tan C ,所以tan A tan B tan C =tan A +tan B +tan C =tan A +2tan B tan C ≥22tan A tan B tan C ⇒tan A tan B tan C ≥8,当且仅当tan A =2tan B tan C =4时取等号.15.C8、C5[2016·江苏卷] 在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求cos A -π6的值.15.解:(1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-452=35,由正弦定理知AC sin B =ABsin C ,所以AB =AC ²sin C sin B =6³2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos(B +π4)=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45³22+35³22=-210.因为0<A <π,所以sin A =1-cos 2A =7210,因此cos(A -π6)=cos A cos π6+sin A sin π6=-210³32+7210³12=72-620.17.C8[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.17.解:(1)由已知及正弦定理,得 2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C , 可得cos C =12,所以C =π3.(2)由已知,得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25, 所以△ABC 的周长为5+7.8.C8[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-310108.C [解析] 如图所示,作AD ⊥BC 交BC 于点D ,设BC =3,则AD =BD =1,AB=2,AC = 5.由余弦定理得32=(2)2+(5)2-2³2³5³cos A ,解得cos A =-1010.13.C8[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.13.2113 [解析] ∵cos A =45,cos C =513,且A ,C 为三角形的内角,∴sin A =35,sin C =1213, ∴sin B =sin(A +C )=sin A cos C +cos A sin C =6365.由正弦定理得b sin B =a sin A ,解得b =2113.16.C2,C7,C8[2016·山东卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan Bcos A.(1)证明:a +b =2c ; (2)求cos C 的最小值.16.解:(1)证明:由题意知2(sin A cos A +sin B cos B )=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B . 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 从而sin A +sin B =2sin C . 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab =a 2+b 2-a +b 222ab=38(a b +b a )-14≥12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.3.C8[2016·天津卷] 在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3 D .43.A [解析] 设AC =x ,由余弦定理得cos 120°=x 2+9-132·x ·3=-12,则x 2-4=-3x ⇒x 2+3x -4=0,解得x =1或x =-4(舍),∴AC =1.16.C8[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B .(1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.16.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以 B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B , 所以A =2B .(2)由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B .又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4. 9.C8[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________. 9.733 [解析] 利用余弦定理可求得最大边所对角的余弦值为32+52-722³3³5=-12,所以此角的正弦值为32,设外接圆半径为R ,则由正弦定理得2R =732,所以R =733. C9 单元综合17.C9[2016·四川卷] 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b=sin C c. (1)证明:sin A sin B =sin C ;(2)若b 2+c 2-a 2=65bc ,求tan B . 17.解:(1)证明:根据正弦定理,可设a sin A =b sin B =c sin C=k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C ,代入cos A a +cos B b =sin C c 中,有 cos A k sin A +cos B k sin B =sin C k sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C .(2)由b 2+c 2-a 2=65bc 及余弦定理,得 cos A =b 2+c 2-a 22bc =35, 所以sin A =1-cos 2A =45. 由(1)知,sin A sin B =sin A cos B +cos A sin B ,所以45sin B =45cos B +35sin B , 故tan B =sin B cos B=4. 15.C9[2016·天津卷] 已知函数f (x )=4tan x sin (π2-x )cos (x -π3)- 3. (1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间[-π4,π4]上的单调性. 15.解:(1)f (x )的定义域为{x|x ≠π2+k π,k ∈Z}.f (x )=4tan x cos x cos (x -π3)-3=4sin x cos (x -π3)-3=4sin x (12cos x +32sin x )-3=2sin x cos x +23sin 2x -3=sin 2x +3(1-cos 2x )-3=sin 2x -3cos 2x =2sin (2x -π3), 所以f (x )的最小正周期T =2π2=π. (2)令z =2x -π3,函数y =2sin z 的单调递增区间是[-π2+2k π,π2+2k π],k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z . 设A =[-π4,π4],B ={x|-π12+k π≤x ≤5π12+k π},k ∈Z ,易知A ∩B =[-π12,π4]. 所以当x ∈[-π4,π4]时,f (x )在区间[-π12,π4]上单调递增,在区间[-π4,-π12)上单调递减.6.[2016·大理一模] 函数f (x )=sin 2x -sin ⎝⎛⎭⎫2x +π3的最小值为( ) A .0 B .-1 C .- 2 D. -26.B [解析] f (x )=sin 2x -12sin 2x -32cos 2x =12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3,故所求最小值为-1.11.[2016·宿州一检] 函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图像如图K161所示,为了得到函数y =cos ωx 的图像,只需把函数y =f (x )的图像( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度 11.D [解析] 根据已知得14³2πω=7π12-π3=π4,解得ω=2,又f ⎝⎛⎭⎫7π12=sin ⎝⎛⎭⎫2³7π12+φ=-1,所以φ=2k π+3π2-7π6=2k π+π3,k ∈Z .因为|φ|<π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫2x +π3,只要把函数y =f (x )的图像向左平移π12个单位长度,便可得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π3=sin ⎝⎛⎭⎫2x +π2=cos 2x 的图像. 5.[2016·宜宾诊断] 已知在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若sin(B-A )+sin(B +A )=3sin 2A ,且c =7,C =π3,则△ABC 的面积是( ) A.334 B.736C.213D. 334或7365.D [解析] 由sin(B -A )+sin(B +A )=3sin 2A ,得2sin B cos A =6sin A cos A ,所以cosA =0或sinB =3sin A .若cos A =0,则A =π2,在Rt △ABC 中,C =π3,所以b =c tan C =213,此时△ABC 的面积S =12bc =12³213³7=736;若sin B =3sin A ,即b =3a ,由余弦定理得7=a 2+9a 2-2·a ·3a ·12,得a =1,所以b =3,此时△ABC 的面积S =12ab sin C =12³1³3³32=334. 15.[2016·贵阳模拟] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ).(1)求角B 的大小;(2)求函数f (x )=2cos 2x +cos(2x -B )在区间⎣⎡⎦⎤0,π2上的最小值及对应x 的值. 15.解:(1)由已知得b cos A =()2c +a cos ()π-B ,即sin B cos A =-()2sin C +sin A cos B ,即sin ()A +B =-2sin C cos B ,∴sin C =-2sin C cos B , ∴cos B =-12,即B =2π3. (2)f ()x =2cos 2x +cos 2x cos 2π3+sin 2x sin 2π3= 32cos 2x +32sin 2x =3sin ⎝⎛⎭⎫2x +π3, 由x ∈⎣⎡⎦⎤0,π2知2x +π3∈⎣⎡⎦⎤π3,4π3. 当2x +π3=4π3,即x =π2时,f ⎝⎛⎫π2=3³⎝⎛⎭⎫-32=-32, 所以函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为-32,此时x =π2. 17.[2016·安庆二模] 如图K183所示,D 是直角三角形ABC 斜边BC 上一点,AC =3DC .(1)若∠DAC =30°,求角B 的大小;(2)若BD =2DC ,且AD =22,求DC 的长.图K18417.解:(1)在△ADC 中,由AC sin ∠ADC =DC sin ∠DAC,及AC =3DC , 得sin ∠ADC =3sin ∠DAC =32. 又∠ADC =B +∠BAD =B +60°>60°,所以∠ADC =120°.于是C =180°-120°-30°=30°,所以B =60°.(2)设DC =x ,则BD =2x ,BC =3x ,AC =3x ,AB =6x .于是sin B =AC BC =33,所以cos B =63. 在△ABD 中, AD 2=AB 2+BD 2-2AB ·BD cos B ,即(22)2=6x 2+4x 2-2³6x ²2x ²63=2x 2 ,得x =2. 故DC =2.。
2016版高考数学大二轮总复习(全国通用 理科)配套课件:专题三 三角函数 解三角形与平面向量 第1讲
1 2 3 4
1 π 于是 f(0)=2A,f(2)=Asin(4+6),
13π π f(-2)=Asin-4+6=Asin 6 -4 ,
π 5π π 7π π 又∵-2< 6 -4<6<4- 6 <2,
其中
5π π π f(2)=Asin4+6=Asinπ-4+6=Asin 6 -4 ,
A.f(2)<f(-2)<f(0) B.f(0)<f(2)<f(-2) C.f(-2)<f(0)<f(2) D.f(2)<f(0)<f(-2)
1 2 3 4
解析 由于f(x)的最小正周期为π, ∴ω=2,即f(x)=Asin(2x+φ),
2π 4π π 又当 x= 3 时,2x+φ= 3 +φ=2kπ-2(k∈Z), 11π ∴φ=2kπ- 6 (k∈Z), π 又 φ>0,∴φmin=6, π 故 f(x)=Asin(2x+6).
y=sin 4x 的图象
π 向右平移12个单位.
答案 B
1 2 3 4
2.(2015· 课标全国 Ⅰ) 函数 f(x) = cos(ωx + φ) 的部分图象如图 所示,则f(x)的单调递减区间为( 1 3 A.kπ-4,kπ+4 ,k∈Z 1 3 B.2kπ-4,2kπ+4 ,k∈Z 1 3 C.k-4,k+4,k∈Z 1 3 2 k - , 2 k + D. ,k∈Z 4 4 )
2x
令f(x)=0,得sin 2x=|ln(x+1)|.
1 2 3 4
在同一坐标系中作出两个函数y=sin 2x与函数y=|ln(x+1)|
【金版教程】届高考数学总复习 第3章 第3讲 三角函数的图象与性质课件 理 新人教A版
求形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间,基
本思路是把ωx+φ看作一个整体,由-
π 2
+2kπ≤ωx+φ≤
π 2
+
2kπ(k∈Z)求得函数的增区间,由
π 2
+2kπ≤ωx+φ≤
3π 2
+2kπ(k
∈Z)求得函数的减区间.若在y=Asin(ωx+φ)中,ω<0,则应
先利用诱导公式将解析式转化,使x的系数变为正数,再进行
(1)y=cos(x+π3)(x∈[0,π])的值域________. (2)y=tan(4π-x)的单调递减区间__________.
1.f(x+T)=f(x) 最小 最小正周期
想一想:提示:f[(x+2)+2]=-f(x+2)=f(x),即f(x+4)
=f(x),所以f(x)是周期为4的函数.
____
________
________
____
y=tanx
无最值
____ ________ 无对称轴
____
判断以下命题的正误. ①y=sinx在第一象限是增函数.( ) ②y=cosx在[0,π]上是减函数.( ) ③y=tanx在定义域上为增函数.( ) ④y=|sinx|的周期为2π.( ) ⑤y=ksinx+1,x∈R则y的最大值为k+1.( )
Z)
π+2kπ(k∈Z)
奇
偶
奇
(kπ,0),k∈Z
(kπ+
π 2
,
0),k∈Z
(
kπ 2
,0),k∈Z
x=kπ+
π 2
,k∈Z
x=kπ,k∈Z
2π 2π π
判一判:①× ②√ ③× ④× ⑤×
【三维设计】(新课标)2016届高考数学大一轮复习精品讲义 第三章 三角函数、解三角形(含解析)
第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数基础盘查一角的有关概念(一)循纲忆知了解任意角的概念(角的定义、分类、终边相同角).(二)小题查验1.判断正误(1)三角形的内角必是第一、二象限角( )(2)第一象限角必是锐角( )(3)不相等的角终边一定不相同( )(4)若β=α+k·720°(k∈Z),则α和β终边相同( )答案:(1)×(2)×(3)×(4)√2.(人教A版教材习题改编)3 900°是第________象限角,-1 000°是第________象限角.答案:四一3.若α=k·180°+45°(k∈Z),则α在第________象限.答案:一、三基础盘查二弧度的定义和公式(一)循纲忆知了解弧度制的概念,能进行弧度与角度的互化.(二)小题查验1.判断正误(1)终边落在x轴非正半轴上的角可表示为α=2πk+π(k∈Z)( )(2)一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位( )答案:(1)×(2)√2.(人教A版教材练习改编)已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为________.答案:1.2基础盘查三任意角的三角函数(一)循纲忆知理解任意角的三角函数(正弦、余弦、正切)的定义.(二)小题查验1.判断正误(1)三角函数线的长度等于三角函数值( )(2)三角函数线的方向表示三角函数值的正负( )(3)点P (tan α,cos α)在第三象限,则角α终边在第二象限( ) (4)α为第一象限角,则sin α+cos α>1( ) 答案:(1)× (2)√ (3)√ (4)√2.(人教A 版教材练习改编)已知角θ的终边经过点P (-12,5),则cos θ=________,sin θ=________,tan θ=________.答案:513 -1213 -1253.若角α终边上有一点P (x,5),且cos α=x13(x ≠0),则 sin α=________.答案:513对应学生用书P44考点一 角的集合表示及象限角的判定(基础送分型考点——自主练透)[必备知识]角的概念(1)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.[题组练透]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .3.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°[类题通法](1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.考点二 三角函数的定义(题点多变型考点——全面发掘)[必备知识]任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)三角函数值在各象限内符号为正的口诀 一全正,二正弦,三正切,四余弦.(3)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.[提醒] 三角函数线是有向线段.[一题多变][典型母题]设角α终边上一点P (-4a,3a )(a <0),求 sin α的值.[解] 设P 与原点的距离为r , ∵P (-4a,3a ),a <0, ∴r =-4a2+3a2=|5a |=-5a .∴sin α=3a -5a =-35. [题点发散1] 若本例中“a <0”,改为“a ≠0”,求 sin α的值. 解:当a <0时,sin α=-35;当a >0时, r =5a, sin α=35.[题点发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α, cos α, tan α的值.解:设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[题点发散3] 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α, tan α的值. 解:由题设知x =-3,y =m ,∴r 2=|OP |2=()-32+m 2(O 为原点),r =3+m 2.∴sin α=m r=2m 4=m 22, ∴r =3+m 2=22, 即3+m 2=8,解得m =± 5.当m =5时,r =22,x =-3,y =5, ∴cos α=-322=-64, tan α=-153;当m =-5时,r =22,x =-3,y =-5, ∴cos α=-322=-64, tan α=153.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 扇形的弧长及面积公式(题点多变型考点——全面发掘)[必备知识]弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.[一题多变][典型母题][题点发散1] 去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?解:设圆心角是θ,半径是r , 则2r +r θ=10.S =12θ·r 2=12r (10-2r )=r (5-r )=-⎝ ⎛⎭⎪⎫r -522+254≤254,当且仅当r =52时,S max =254,θ=2.所以当r =52,θ=2时,扇形面积最大.[题点发散2] 若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为r ,则圆内接正方形的对角线长为2r , ∴正方形边长为2r , ∴圆心角的弧度数是2rr= 2.答案: 2[题点发散3] 若本例条件变为:扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l .解:设扇形的半径为r cm ,如图.由sin 60°=6r,得r =4 3 cm ,∴l =|α|·r =2π3×43=833π cm.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.对应A 本课时跟踪检测十七一、选择题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A.3.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A. 3 B .± 3 C .- 2D .- 3解析:选D 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,选D. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12 解析:选A 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32. 5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35. 6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 二、填空题7.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 解析:2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为-5π6.答案:-5π68.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)9.已知角θ的终边上有一点(a ,a ),a ∈R 且a ≠0,则sin θ的值是________. 解析:由已知得r =a 2+a 2=2|a |,则sin θ=ar=a2|a |=⎩⎪⎨⎪⎧22,a >0,-22,a <0.所以sin θ的值是22或-22. 答案:22或-2210.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.答案:四 三、解答题11.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)法一:∵2r +l =8 ∴S 扇=12lr =14l ·2r≤14⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4, 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4. ∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4. ∴弦长AB =2sin 1×2=4sin 1. 12.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z . (2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0,所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节同角三角函数的基本关系与诱导公式对应学生用书P46基础盘查一 同角三角函数的基本关系 (一)循纲忆知理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.(二)小题查验 1.判断正误(1)对任意角α,sin 23α+cos 23α=1都成立( ) (2)对任意角α,sinα2cosα2=tan α2都成立( )(3)对任意的角α,β有sin 2α+cos 2β=1( ) 答案:(1)√ (2)× (3)×2.(人教A 版教材例题改编)已知sin α=-35,则tan α=________.答案:34或-343.化简:2sin 2α-11-2cos 2α=________. 答案:1基础盘查二 三角函数的诱导公式 (一)循纲忆知能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.(二)小题查验 1.判断正误(1)六组诱导公式中的角α可以是任意角( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化( )(3)角π+α和α终边关于y 轴对称( ) 答案:(1)√ (2)√ (3)× 2.(人教A 版教材习题改编)(1)sin ⎝ ⎛⎭⎪⎫-31π4=________,(2)tan ⎝ ⎛⎭⎪⎫-263π=________. 答案:(1)22(2) 3对应学生用书P46考点一 三角函数的诱导公式(基础送分型考点——自主练透)[必备知识][提醒] 对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.[题组练透]1.已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15.2.已知A =k π+αsin α+k π+αcos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.sin 600°+tan 240°的值等于________.解析:sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. 答案:324.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________. 解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-335.化简:π-απ-α⎝ ⎛⎭⎪⎫-α+3π2-α-π-π-α.解:原式=-tan α·cos α-cos απ+α-π+α=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1.考点二 同角三角函数的基本关系(题点多变型考点——全面发掘)[必备知识]同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ).(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z . [一题多变][典型母题]已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值. [解] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2 α+cos 2 α=1, ②由①得 cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角, ∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0, cos α<0, sin α-cos α >0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,α-cos α=75,得⎩⎨⎧sin α=45,α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α =sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. [题点发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求 sin α+cos α的值.解:法一:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010,故 sin α+cos α=-105. 法二:∵α是三角形的内角且tan α=-13,∴α为第二象限角, ∴sin α=1010, cos α=-31010, ∴sin α+cos α=-105. [题点发散2] 保持本例条件不变, 求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知: tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2 =-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825. [题点发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5, 求tan α的值.解:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.对应B 本课时跟踪检测十八一、选择题1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B ∵sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0,cos θ<0.2.(2015·成都外国语学校月考)已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35D .-35解析:选B tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 3.已知f (α)=π-απ-α-π-αα,则f ⎝ ⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin α·cos α-cos α tan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3 =-cos π3=-12.4.(2015·福建泉州期末)若tan α=2,则2sin 2α+1sin 2α的值为( )A.53 B .-134C.135D.134解析:选D 法一:(切化弦的思想):因为tan α=2, 所以 sin α=2cos α, cos α=12sin α.又因为sin 2α+cos 2α=1, 所以解得 sin 2α=45.所以2sin 2α+1sin2α=2sin 2α+12sin α cos α=2sin 2α+1sin 2α=2×45+145=134.故选D. 法二:(弦化切的思想):因为2sin 2α+1sin 2α=3sin 2α+cos 2α2sin α cos α=3tan 2α+12tan α=3×22+12×2=134.故选D.5.(2015·湖北黄州联考)若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sinB -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0, sin B -cos A >0, ∴点P 在第二象限,选B.6.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 015)的值为( )A .-1B .1C .3D .-3解析:选D ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 015)=a sin(2 015π+α)+b cos(2 015π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-(a sin α+b cos β)=-3. 即f (2 015)=-3. 二、填空题7.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α =-1-sin 2α=-35,∴tan α= sin αcos α=-43.答案:-438.化简:sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-απ+α+π-α⎝ ⎛⎭⎪⎫π2+απ+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0. 答案:09.(2015·绍兴二模)若f (cos x )=cos 2x, 则f (sin 15°)=________. 解析:f (sin 15°)=f (cos 75°)=cos 150°=cos(180°-30°)=-cos 30°=-32. 答案:-3210.(2015·新疆阿勒泰二模)已知α为第二象限角, 则cos α1+tan 2α+sin α1+1tan 2α=________. 解析:原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α=cos α1|cos α|+ sin α1|sin α|,因为α是第二象限角,所以sin α>0, cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.答案:0 三、解答题11.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 12.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α =sin 2α+sin 2αsin 2α+14sin 2α=85.第三节三角函数的图象与性质对应学生用书P47基础盘查 正弦函数、余弦函数、正切函数的图象和性质 (一)循纲忆知1.能画出y =sin x, y =cos x, y =tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. (二)小题查验 1.判断正误(1)函数y =sin x 的图象介于直线y =1与y =-1之间( ) (2)将余弦曲线向右平移π2个单位就得到正弦曲线( )(3)函数y =sin ⎝⎛⎭⎪⎫2x +3π2是奇函数( ) (4)函数y =sin x 的对称轴方程为x =2k π+π2(k ∈Z )( )(5)正切函数在整个定义域内是增函数( ) 答案:(1)√ (2)√ (3)× (4)× (5)×2.(人教A 版教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上都是减函数C .在[0,π]上是增函数,在[]-π,0上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π和⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数 答案:B3.(2015·皖南八校模拟)函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:选C f (x )=1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C. 4.(人教A 版教材习题改编)函数y =-tan ⎝⎛⎭⎪⎫x +π6+2的定义域为____________________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π3,k ∈Z对应学生用书P48考点一 三角函数的定义域与值域(基础送分型考点——自主练透)[必备知识]正弦、余弦函数的定义域为R ,正切函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z;正弦、余弦函数的值域为[-1,1],正切函数的值域为R .[题组练透]1.函数y =2sin x -1的定义域为( ) A.⎣⎢⎡⎦⎥⎤π6,5π6B.⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ) C.⎝⎛⎭⎪⎫2k π+π6,2k π+5π6(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π+π6,k π+5π6(k ∈Z ) 解析:选B 由2sin x -1≥0, 得sin x ≥12,所以2k π+π6≤x ≤2k π+5π6(k ∈Z ).2.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3 解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.3.函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π24.求函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值与最小值.解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎪⎫||x ≤π4的最大值为54,最小值为1-22.[类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.考点二 三角函数的单调性(重点保分型考点——师生共研)[必备知识]正弦函数的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z ),单调递减区间是⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z );余弦函数的单调递增区间是[-π+2k π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );正切函数的单调递增区间是⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k∈Z ).[典题例析]写出下列函数的单调区间: (1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3;(2)y =|tan x |.解:(1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,它的递增区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递减区间,它的递减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ;递增区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .(2)观察图象(图略)可知,y =|tan x |的递增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,递减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z . [类题通法]三角函数的单调区间的求法 (1)代换法:所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.[提醒] 求解三角函数的单调区间时,若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[演练冲关]1.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2)解析:选A 由π2<x <π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A.2.函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为__________________________________.解析:函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12(k ∈Z ) 考点三 三角函数的奇偶性、周期性及对称性(常考常新型考点——多角探明)[必备知识]1.正弦、正切函数是奇函数,余弦函数是偶函数.2.正弦、余弦函数的最小正周期为T =2π,函数y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的周期是T =2π|ω|;正切函数的最小正周期为T =π,函数y =A tan(ωx +φ)+b的周期是T =π|ω|.3.正弦函数y =sin x 的对称轴是x =k π+π2,k ∈Z ,对称中心为(k π,0),k ∈Z .余弦函数y =cos x 的对称轴是x =k π,k ∈Z ,对称中心为⎝ ⎛⎭⎪⎫π2+k π,0,k ∈Z ,即弦函数的对称轴是过函数的最高点或最低点且垂直于x 轴的直线,对称中心是图象与x 轴的交点,即函数的零点;正切函数没有对称轴,其对称中心为⎝⎛⎭⎪⎫k π2,0,k ∈Z . [多角探明]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用. 角度一:三角函数的周期1.函数y =-2cos 2⎝ ⎛⎭⎪⎫π4+x +1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数解析:选A 因为y =-cos ⎝ ⎛⎭⎪⎫π2+2x =sin 2x ,所以是最小正周期为π的奇函数. 2.(2015·长沙一模)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或3角度二:求三角函数的对称轴或对称中心 3.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎪⎫3π4-x ( )A .是奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称解析:选C ∵当x =π4时,函数f (x )取得最小值,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=sin ⎝ ⎛⎭⎪⎫x -3π4.∴y =f ⎝ ⎛⎭⎪⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎪⎫3π4-x 是奇函数,且图象关于直线x =π2对称.角度三:三角函数对称性的应用4.(2015·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.5.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________. 解析:由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z ).答案:k π+π2(k ∈Z )[类题通法]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.对应A 本课时跟踪检测十九一、选择题 1.函数y =cos x -32的定义域为( ) A.⎣⎢⎡⎦⎥⎤-π6,π6 B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z ) D .R解析:选C ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 2.(2015·石家庄一模)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. 3.给定性质:①最小正周期为π;②图象关于直线x =π3对称,则下列四个函数中,同时具有性质①②的是( )A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 B .y =sin ⎝ ⎛⎭⎪⎫2x -π6C .y =sin ⎝⎛⎭⎪⎫2x +π6 D .y =sin|x |解析:选B 注意到函数y =sin ⎝⎛⎭⎪⎫2x -π6的最小正周期T =2π2=π,当x =π3时,y =sin ⎝⎛⎭⎪⎫2×π3-π6=1,因此该函数同时具有性质①②.4.(2015·沈阳质检)已知曲线f (x )=sin 2x +3cos 2x 关于点(x 0,0)成中心对称,若x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( ) A.π12 B.π6 C.π3D.5π12解析:选C 由题意可知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,其对称中心为(x 0,0),故2x 0+π3=k π(k ∈Z ),∴x 0=-π6+k π2(k ∈Z ),又x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴k =1,x 0=π3,故选C. 5.若函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝ ⎛⎭⎪⎫π4=( )A.12B.22C.32D .1解析:选C 由题意得函数f (x )的周期T =2⎝⎛⎭⎪⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝ ⎛⎭⎪⎫π6,1代入上式得sin ⎝ ⎛⎭⎪⎫π3+φ=1⎝ ⎛⎭⎪⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,于是f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+π6=cos π6=32.6.(2015·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎪⎫x +π3为( )A .奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递增B .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递增C .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递减D .奇函数且在⎝⎛⎭⎪⎫0,π4上单调递减 解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6,则y =f ⎝ ⎛⎭⎪⎫x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递减,故选D.二、填空题 7.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为______________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )8.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________解析:由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z . 答案:⎝⎛⎭⎪⎫k π2-π8,0,k ∈Z 9.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x=f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________.解析:∵f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2. 答案:2或-210.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-1,x ∈⎣⎢⎡⎦⎥⎤0,π3的值域为________,并且取最大值时x 的值为________.解析:∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝⎛⎭⎪⎫2x +π3≤1, ∴-1≤2sin ⎝ ⎛⎭⎪⎫2x +π3-1≤1,即值域为[-1,1]; 且当sin ⎝ ⎛⎭⎪⎫2x +π3=1,即x =π12时,y 取最大值. 答案:[-1,1] π12三、解答题11.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z .12.设函数f (x )=sin ⎝⎛⎭⎪⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝ ⎛⎭⎪⎫πx 3-π3-1,所以y =f (x )的最小正周期T =2ππ3=6.由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z ,所以y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤6k -12,6k +52,k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎢⎡⎦⎥⎤2π3,π,sin ⎝ ⎛⎭⎪⎫π3x -π3∈⎣⎢⎡⎦⎥⎤0,32,f (x )∈⎣⎢⎡⎦⎥⎤-1,12, 即当x ∈[0,1]时,函数y =g (x )的最大值为12.第四节函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用对应学生用书P50基础盘查一 y =A sin(ωx +φ)的有关概念 (一)循纲忆知了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.(二)小题查验(人教A 版教材习题改编)函数y =23sin ⎝ ⎛⎭⎪⎫12x -π4的振幅为________,周期为________,初相为________.答案:23 4π -π4基础盘查二 “五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知熟练运用“五点法”作函数y =A sin(ωx +φ)的图象. (二)小题查验(人教A 版教材例题改编)用“五点法”作函数y =2sin ⎝ ⎛⎭⎪⎫13x -π6的图象,试写出相应的五个点坐标.答案:⎝⎛⎭⎪⎫π2,0,(2π,2),⎝ ⎛⎭⎪⎫7π2,0,(5π,-2),⎝ ⎛⎭⎪⎫13π2,0基础盘查三 y =sin x 变换到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题,并能进行图象变换.(二)小题查验1.判断正误(1)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象( )(2)要得到函数y =sin ωx (ω>0)的图象,只需将函数y =sin x 上所有点的横坐标变为原来的ω倍( )(3)将函数y =sin x 图象上各点的纵坐标变为原来的A (A >0)倍,便得到函数y =A sin x 的图象( )(4)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0( )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2( ) 答案:(1)× (2)× (3)√ (4)√ (5)√2.(人教A 版教材例题改编)如图是某简谐运动的图象,则这个简谐运动的函数表达式为________________.答案:y =2sin 5π2x ,x ∈[0,+∞)对应学生用书P50考点一 求函数y =Aωx +φ的解析式(基础送分型考点——自主练透)[必备知识]1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)+b ,求出需要确定的系数A ,ω,φ,b ,得到三角函数的解析式.[题组练透]1.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,||φ<π2的部分图象如图所示,则y =f ⎝⎛⎭⎪⎫x +π6取得最小值时x 的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π6,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k π-π3,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π-π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z解析:选B 根据所给图象,周期T =4×⎝⎛⎭⎪⎫7π12-π3=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过⎝⎛⎭⎪⎫7π12,0,代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f ⎝ ⎛⎭⎪⎫x +π6=sin ⎝⎛⎭⎪⎫2x +π6,当2x +π6=-π2+2k π(k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f ⎝⎛⎭⎪⎫x +π6取得最小值.2.(2015·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝⎛⎭⎪⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2 解析:选D 由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.[类题通法]确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:。
高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质
第三节 三角函数的图象与性质三角函数的图象及性质能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 知识点 正弦函数、余弦函数、正切函数的图象 和性质 函数y =sin xy =cos xy =tan x图 象定义域RR⎩⎨⎧x ⎪⎪ x ≠π2 } +k π,k ∈Z值域[-1,1][-1,1]R单调性递增区间:⎣⎡ 2k π-π2, ⎦⎤2k π+π2(k ∈Z )递减区间:⎣⎡2k π+π2,⎦⎤2k π+3π2(k ∈Z )递增区间: [2k π-π,2k π](k ∈Z ) 递减区间: [2k π,2k π+π] (k ∈Z )递增区间:⎝⎛ k π-π2,⎭⎫k π+π2(k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max=1;x =2k π+π(k ∈Z )时,y min =-1无最值奇偶性 奇函数偶函数 奇函数 对称性对称中心(k π,0),k ∈Z对称中心⎝⎛⎭⎫k π2,0,k∈Z对称中心⎝⎛⎭⎫k π+π2,0,k ∈Z对称轴l :x =k π+π2,k ∈Z对称轴l :x =k π,k ∈无对称轴Z周期性 2π2ππ易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+3k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π6+k π,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z 解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z ) 考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈Z C.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎨⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎡⎦⎤-1,22.答案:⎣⎡⎦⎤-1,22 1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. (3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t 在区间⎝⎛⎭⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54.答案:A2.求函数y =tan ⎝⎛⎭⎫π3-2x 的单调区间. 解:把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π3的最小正周期为________. 解析:∵y ′=sin ⎝⎛⎭⎫2x -π3的最小正周期T ′=π, ∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝⎛⎭⎫2π2ω2+(22)2,ω=π2. 答案:π2探究二 三角函数的奇偶性3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2 B.2π3 C.3π2D.5π3解析:由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( ) A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4. ∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. 答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. (2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cos x .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. (2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53, y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1 =2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x 2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0, ∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, ∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, ∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4上单调递增 B .偶函数且在⎝⎛⎭⎫0,π2上单调递增 C .偶函数且在⎝⎛⎭⎫0,π2上单调递减 D .奇函数且在⎝⎛⎭⎫0,π4上单调递减 解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎫0,π4上单调递减,故选D. 答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π, ∴f (x )=2sin ⎝⎛⎭⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k ∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 答案:⎣⎡⎦⎤-14,34 8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π, ∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时, sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.(2016·长沙模拟)设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z , 得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈ ⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12. B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析:采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) 4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3, 又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。
2016届高考数学(理)(人教A版)总复习课时演练 第3章 第2节 导数在研究函数中的应用
第三章 第二节1.(2014·厦门质检)函数y =(3-x 2)e x的单调递增区间是( )A .(-∞,0)B .(0,+∞)C .(-∞,-3)和(1,+∞)D .(-3,1)解析:选D y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3), 由y ′>0得x 2+2x -3<0解得-3<x <1,∴函数y =(3-x 2)e x 的单调递增区间是(-3,1).故选D.2.(2014·青岛检测)函数f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是( )A .1+1eB .1C .e +1D .e -1解析:选D f ′(x )=e x -1,令f ′(x )=0,得x =0,令f ′(x )>0得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上递减,在(0,1)上递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e <12+2-e <0,∴f (1)>f (-1).故选D.3.(2014·温州十校联合体联考)已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0), f (2 014)>e 2 014f (0)B .f (1)>e f (0),f (2 014)>e 2 014f (0)C .f (1)>e f (0),f (2 014)<e 2 014f (0)D .f (1)<e f (0),f (2 014)<e 2 014f (0) 解析:选D 令g (x )=f (x )ex ,则g ′(x )=⎝⎛⎭⎫f (x )e x ′=f ′(x )e x -f (x )e xe 2x =f ′(x )-f (x )e x<0,所以函数g (x )=f (x )e x 是单调减函数,所以g (1)<g (0),g (2 014)<g (0),即f (1)e 1<f (0)1,f (2 014)e 2 014<f (0)1,故f (1)<e f (0), f (2 014)<e 2014f (0).4.(2014·辽宁五校联考)函数f (x )=x 3-bx 2+1有且仅有两个不同零点,则b 的值为( )A .342B .322C .3232D .不确定解析:选C f ′(x )=3x 2-2bx =x (3x -2b ),由f ′(x )=0,得x =0,x =2b3.当曲线f (x )与x 轴相切时,f (x )有且只有两个不同零点,因为f (0)=1≠0,所以f ⎝⎛⎭⎫2b 3=0,解得b =3232.故选C.5.(2012·重庆高考)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:选D 由图可得函数y =(1-x )f ′(x )的零点为-2,1,2,则当x <1时,1-x >0,此时在(-∞,-2)上f (x )>0,f ′(x )>0,在(-2,1)上f (x )<0,f ′(x )<0;当x >1时,1-x <0,此时在(1,2)上f (x )>0,f ′(x )<0,在(2,+∞)上f (x )<0,f ′(x )>0.所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数,因此f (x )有极大值f (-2),极小值f (2),故选D.6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:选D ∵f ′(x )=12x 2-2ax -2b , ∴Δ=4a 2+96b >0,又x =1是极值点, ∴f ′(1)=12-2a -2b =0,即a +b =6, ∴ab ≤(a +b )24=9,当且仅当a =b 时等号成立,∴ab 的最大值为9,故选D.7.(2014·南京模拟)若f (x )=-12(x -2)2+b ln x 在(1,+∞)上是减函数,则b 的取值范围是________.解析:(-∞,-1] 由题意可知f ′(x )=-(x -2)+bx ≤0在(1,+∞)上恒成立,即b ≤x (x-2)在x ∈(1,+∞)上恒成立,由于φ(x )=x (x -2)=x 2-2x (x ∈(1,+∞))的值域是(-1,+∞),故只要b ≤-1即可,故所求范围为(-∞,-1].8.已知函数f (x )=x sin x ,x ∈R ,则f (-4),f ⎝⎛⎭⎫4π3,f ⎝⎛⎭⎫-5π4的大小关系为________(用“<”连接).解析:f ⎝⎛⎭⎫4π3<f (-4)<f ⎝⎛⎭⎫-5π4 ∵f ′(x )=sin x +x cos x ,当x ∈⎣⎡⎦⎤5π4,4π3时,sin x <0,cos x <0,∴f ′(x )=sin x +x cos x <0,则函数f (x )在区间⎣⎡⎦⎤5π4,4π3上为减函数,∵5π4<4<4π3,∴f ⎝⎛⎭⎫4π3<f (4)<f ⎝⎛⎭⎫5π4,又函数f (x )为偶函数,∴f ⎝⎛⎭⎫4π3<f (-4)<f ⎝⎛⎭⎫-5π4. 9.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:⎝⎛⎭⎫22,+∞ f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数递减;当x >a 或x <-a 时f ′(x )>0,函数递增.∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0,解得a >22.故a 的取值范围为⎝⎛⎭⎫22,+∞. 10.(2014·武汉调研)已知函数f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,它们在同一坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________(用“<”连接). 解析:1,h (0)<h (1)<h (-1) 由图象可得f ′(x )=x ,所以f (x )=12x 2+c ,又f (1)=12+c=1,解得c =12,所以f (x )=12x 2+12,故f (-1)=12+12=1.又g ′(x )=x 2,所以g (x )=13x 3+c ,则h (x )=f (x )-g (x )=12x 2+c 1-13x 3-c 2,所以h (0)=c 1-c 2<h (1)=16+c 1-c 2<h (-1)=56+c 1-c 2,故h (0)<h (1)<h (-1).11.(2012·北京高考)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线, 所以f (1)=g (1),且f ′(1)=g ′(1). 即a +1=1+b ,且2a =3+b . 解得a =3,b =3. (2)记h (x )=f (x )+g (x ),当a =3,b =-9时,h (x )=x 3+3x 2-9x +1,h ′(x )=3x 2+6x -9. 令h ′(x )=0,得x 1=-3,x 2=1. h (x )与h ′(x )在(-∞,2]上的情况如下:x (-∞,-3)-3 (-3,1) 1 (1,2) 2 h ′(x ) + 0 - 0 + h (x )28-43由此可知:当k ≤-3时,函数h (x )在区间[k,2]上的最大值为h (-3)=28; 当-3<k <2时,函数h (x )在区间[k,2]上的最大值小于28. 因此,k 的取值范围是(-∞,-3].12.(2014·武汉调研)设函数f (x )=x 2-2x +1+a ln x 有两个极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围; (2)求证:f (x 2)>1-2ln 24.(1)解:由题设知,f (x )的定义域为(0,+∞).求导数得f ′(x )=2x -2+a x =2x 2-2x +ax.∵f (x )有两个极值点x 1,x 2,∴f ′(x )=0有两个不同的根x 1,x 2,故2x 2-2x +a =0的判别式Δ=4-8a >0,即a <12.又x 1+x 2=1,x 1x 2=a2>0,所以a >0,所以a 的取值范围为⎝⎛⎭⎫0,12. (2)证明:∵0<x 1<x 2,且x 1+x 2=1, ∴12<x 2<1,a =2x 2-2x 22, ∴f (x 2)=x 22-2x 2+1+(2x 2-2x 22)ln x 2.令g (t )=t 2-2t +1+(2t -2t 2)ln t ,其中12<t <1,则g ′(t )=2(1-2t )ln t .当t ∈⎝⎛⎭⎫12,1时,g ′(t )>0,∴g (t )在⎝⎛⎭⎫12,1上是增函数, ∴g (t )>g ⎝⎛⎭⎫12=1-2ln 24, 故f (x 2)=g (x 2)>1-2ln 24.13.(2014·青岛检测)已知函数f (x )=a (x 2+1)+ln x . (1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3]时,恒有ma -f (x )>a 2成立,求实数m 的取值范围.解:(1)f ′(x )=2ax +1x =2ax 2+1x(x >0),①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数; ②当a <0时,当0<x < -12a时,f ′(x )>0, 则f (x )在⎝⎛⎭⎫0,-12a 上是增函数; 当x > -12a 时,f ′(x )<0,则f (x )在⎝⎛⎭⎫-12a ,+∞上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数;当a <0时,f (x )在⎝⎛⎭⎫0,-12a 上是增函数,f (x )在⎝⎛⎭⎫-12a ,+∞上是减函数.(2)由题意知对任意a ∈(-4,-2)及x ∈[1,3]时, 恒有ma -f (x )>a 2成立,等价于ma -a 2>f (x )max , ∵a ∈(-4,-2),∴24< -12a <12<1, 由(1)知,当a ∈(-4,-2)时,f (x )在[1,3]上是减函数, ∴f (x )max =f (1)=2a .∴ma -a 2>2a ,即m <a +2, ∵a ∈(-4,-2),∴-2<a +2<0, ∴实数m 的取值范围为m ≤-2.14.(2011·江西高考)设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.解:(1)f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a . 令29+2a >0,得a >-19. 所以当a >-19时,f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间, 即f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间时,a 的取值范围为⎝⎛⎭⎫-19,+∞. (2)令f ′(x )=0, 得两根x 1=1-1+8a 2,x 2=1+1+8a2, 所以f ′(x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 当0<a <2时,有x 1<1<x 2<4, 所以f (x )在[1,4]上的最大值为f (x 2), 又f (4)-f (1)=-272+6a <0,即f (4)<f (1).所以f (x )在[1,4]上的最小值为f (4)=8a -403=-163,得a =1,x 2=2.从而f (x )在[1,4]上的最大值为f (2)=103.1.(2014·聊城质检)若函数y =e (a -1)x +4x (x ∈R )有大于零的极值点,则实数a 的取值范围是( )A .(-3,+∞)B .(-∞,-3)C .⎝⎛⎭⎫-13,+∞ D .(-∞,-13)解析:选B 因为函数y =e (a -1)x +4x ,所以y ′=(a -1)e (a -1)x +4,若a ≥1,则y ′≥0,所以函数y =e (a -1)x +4x 在R 上单调递增,故函数y 在R 上无极值点,故a <1,函数y =e (a-1)x +4x在R 上有极值点,从而函数的零点为x 0=1a -1ln 4-a +1.因为函数y =e (a -1)x +4x (x ∈R )有大于零的极值点,故1a -1ln 4-a +1>0,得到a <-3,选B.2.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值为( )A .-13B .-15C .10D .15解析:选A 求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3. 由此可得f (x )=-x 3+3x 2-4, f ′(x )=-3x 2+6x ,易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时,f ′(n )min =f ′ (-1)=-9. 故f (m )+f ′(n )的最小值为-13.故选A.3.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.解析:(0,1)∪(2,3) 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或者t <3<t +1,得0<t <1或者2<t <3.4.已知函数f (x )=x 3+ax 2+x +2(a >0)的极大值点和极小值点都在区间(-1,1)内,则实数a 的取值范围是________.解析:(3,2) 由题意可知f ′(x )=0的两个不同解都在区间(-1,1)内.因为f ′(x )=3x 2+2ax +1,所以根据导函数图象可得⎩⎪⎨⎪⎧Δ=(2a )2-4×3×1>0,-1<-2a6<1,f ′(-1)=3-2a +1>0,f ′(1)=3+2a +1>0,又a >0,解得3<a <2.5.(2014·太原模拟)已知函数f (x )=ax +ln x (a ∈R ).(1)求f (x )的单调区间;(2)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.解:(1)由题知f ′(x )=a +1x =ax +1x(x >0).①当a ≥0时,由于x >0,所以ax +1>0,f ′(x )>0, 所以f (x )的单调递增区间为(0,+∞); ②当a <0时,由f ′(x )=0,得x =-1a.从而易知,在区间⎝⎛⎭⎫0,-1a 上f ′(x )>0,在区间⎝⎛⎭⎫-1a ,+∞上f ′(x )<0,所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,-1a ,单调递减区间为⎝⎛⎭⎫-1a ,+∞. (2)由题知,原问题可转化为当f (x )max <g (x )max 时,a 的取值范围问题. 易知g (x )max =2.由(1)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意. 当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,则有f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a =-1-ln(-a ), 所以2>-1-ln(-a ),解得a <-1e 3.综上可得,实数a 的取值范围为⎝⎛⎭⎫-∞,-1e 3.。
高考数学一轮复习第三章三角函数解三角形考前增分微课2解三角形的综合应用课件理新人教A版
“=”,故cosC的最小值是
6- 4
2。
答案
6- 2 4
2.求边的最值 【例4】 (2019·石家庄市一模)如图,四边形ABCD的对角线交点位于 四边形的内部,AB=BC=1,AC=CD,AC⊥CD,当∠ABC变化时,BD的 最大值为________。
解析 设∠ACB=θ0<θ<2π,则∠ABC=π-2θ,∠DCB=θ+π2,由余 弦定理可知,AC2=AB2+BC2-2AB·BCcos∠ABC,即AC=DC=
考前增分微课(二) 三角函数与三角形中的最值问题
纵观近几年的高考试题和高考模拟试题,不难发现在三角函数和三角 形中求最值问题成为其中一个亮点,本文从求三角函数的最值、三角形中 的最值两个方面举例说明,希望对高考备考有所帮助。
类型一 三角函数的最值 1.可化为“y=Asin(ωx+φ)+B”型的最值问题 【例1】 (2018·北京高考)已知函数f(x)=sin2x+ 3sinxcosx。 (1)求f(x)的最小正周期; (2)若f(x)在区间-π3,m上的最大值为32,求m的最小值。
化为y=Asin(ωx+φ)+B的形式求最值时,特别注意自变量的取值范围 对最大值、最小值的影响,可通过比较闭区间端点的取值与最高点、最低 点的取值来确定函数的最值。
【变式训练】 函数f(x)=3sinx+4cosx,x∈[0,π]的值域为 ________。
解析 f(x)=3sinx+4cosx=5 35sinx+45cosx =5sin(x+φ),其中cosφ= 35,sinφ=45 ,0<φ<π2 。因为0≤x≤π,所以φ≤x+φ≤π+φ。所以当x+φ= π2 时,f(x)max=5;当x+φ=π+φ时,f(x)min=5sin(π+φ)=-5sinφ=-4。所 以f(x)的值域为[-4,5]。
【优化探究】2016届高考数学理科(人教A版)一轮复习课件_第三章_三角函数、解三角形3-3
π 1.(2014 年高考陕西卷)函数 f(x)=cos 2x+4 的最小正周期是( π A.2 C.2π B.π D.4π
)
2π 解析:由周期公式 T= 2 =π.
答案:B
π 2.函数 y=2sin 3-2x 的单调递增区间为(
)
π 5 A. kπ-12,kπ+12π ,k∈Z 5 11 B. kπ+12π,kπ+12π ,k∈Z π π C. kπ-3,kπ+6 ,k∈Z π 2 D. kπ+6,kπ+3π ,k∈Z
答案
π π (1)xx≠kπ+4 且x≠kπ+2,k∈Z
π 5π (2) 2kπ+4,2kπ+ 4 (k∈Z)
7 (3)8 2
规律方法
(1)求三角函数的定义域实际上是解简单的三角不等式,
常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:
π π (1)y=sin ωx-4;(2)y=sin4-ωx .
3.三角函数中奇函数一般可化为 y=Asin ωx 或 y=Atan 函数一般可化为 y=Acos ωx+b 的形式.
ωx,而偶
2π 4.函数 y=Asin(ωx+φ)和 y=Acos(ωx+φ)的最小正周期为|ω|,y= π tan(ωx+φ)的最小正周期为|ω|.
π 5.正弦函数 y=sin x 的对称中心为(kπ,0),k∈Z,对称轴为 x=2+ π kπ(k∈Z);余弦函数 y=cos x 的对称中心为 kπ+2,0 ,k∈Z,对称轴为 kπ x=kπ(k∈Z);正切函数 y=tan x 只有对称中心 2 ,0 ,k∈Z.
2016版高考数学 第三章 三角函数、解三角形专题演练 理(含两年高考一年模拟)
1.(2015²福建)若sin α=-13,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5122.(2015²新课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32 C .-12 D.123.(2015²重庆)若tan α=2tan π5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( )A .1B .2C .3D .44.(2014²新课标全国Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π25.(2015²四川)sin 15°+sin 75°的值是________.6.(2015²四川)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 7.(2015²江苏)已知tan α=-2,tan(α+β)=17,则tan β的值为________.8.(2015²广东)已知tan α=2. (1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.9.(2014²江西)已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝ ⎛⎭⎪⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值.(2)若f ⎝ ⎛⎭⎪⎫a 4=-25,a ∈(π2,π),求sin ⎝ ⎛⎭⎪⎫a +π3的值.10.(2014²四川)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.1.(2015²蚌埠市模拟)设a =tan 130°,b =cos(cos 0°),c =⎝⎛⎭⎪⎫x 2+12,则a ,b ,c 的大小关系是( )A .c >a >bB .c >b >aC .a >b >cD .b >c >a2.(2015²辽宁丹东模拟)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A.43B.34 C .-34 D .±343.(2015²河北正定模拟)已知角α的终边经过点P (m ,4),且cos α=-35,则m =( )A .-3B .-92 C.92D .34.(2015²甘肃模拟)定义行列式运算:⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3.若将函数f (x )=⎪⎪⎪⎪⎪⎪-sin x cos x 1 -3的图象向左平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A.π6 B.π3 C.2π3 D.5π65.(2015²福建宁德模拟)已知函数f (x )=23sin(π-x )²cos x -1+2cos 2x ,其中x ∈R ,则下列结论中正确的是( )A .f (x )的一条对称轴是x =π2B .f (x )在⎣⎢⎡⎦⎥⎤-π3,π6上单调递增 C .f (x )是最小正周期为π的奇函数D .将函数y =2sin 2x 的图象左移π6个单位得到函数f (x )的图象6.(2015²江西师大模拟)已知α∈⎝ ⎛⎭⎪⎫0,π2且tan ⎝ ⎛⎭⎪⎫α+π4=3,则lg(sin α+2cos α)-lg(3sin α+cos α)=________.7.(2015²东北三省三校模拟)已知函数y =sin(πx +φ)-2cos(πx +φ)(0<φ<π)的图象关于直线x =1对称,则sin 2φ=________.8.(2015²江苏启东模拟)设常数a 使方程sin x +3cos x =a 在闭区间[0,2π]上恰有三个解x 1,x 2,x 3,则x 1+x 2+x 3=________.9.(2015²北京四中模拟)设f (x )=a sin 2x +b cos 2x ,其中a ,b ∈R ,ab ≠0.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对一切x ∈R 恒成立,则以下结论正确的是________(写出所有正确结论的编号).①f ⎝⎛⎭⎪⎫11π12=0;②⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫7π12≥⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π5;③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z );⑤经过点(a ,b )的所有直线均与函数f (x )的图象相交.10.(2015²江苏启东模拟)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫π6x +π3(0≤x ≤5),点A ,B 分别是函数y =f (x )图象上的最高点和最低点. (1)求点A ,B 的坐标以及OA →²OB →的值;(2)设点A ,B 分别在角α,β(α,β∈[0,2π])的终边上,求sin ⎝ ⎛⎭⎪⎫α2-2β的值.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( ) A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 2.(2015²陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .103.(2015²四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2 B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x4.(2014²山东)函数y =x cos x +sin x 的图象大致为( )5.(2014²新课标全国Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③6.(2014²福建)将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图象关于直线x =π2对称D .y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π2,0对称 7.(2014²江西)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)若a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.1.(2015²湖南常德模拟)若函数f (x )=2sin(ωx +φ)(ω≠0)的图象关于直线x =π6对称,则f ⎝ ⎛⎭⎪⎫π6的值为( ) A .0 B .3 C .-2 D .2或-22.(2015²朝阳区模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象为C ,下面结论中正确的是( )A .函数f (x )的最小正周期是2πB .图象C 关于点⎝ ⎛⎭⎪⎫π6,0对称C .图象C 可由函数g (x )=sin 2x 的图象向右平移π3个单位得到D .函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,π2上是增函数 3.(2015²河北正定模拟)设函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期为π,则( )A .f (x )的图象过点⎝ ⎛⎭⎪⎫0,12 B .f (x )在⎣⎢⎡⎦⎥⎤π12,2π3上是减函数C .f (x )的一个对称中心是⎝⎛⎭⎪⎫5π12,0D .将f (x )的图象向右平移|φ|个单位得到y =2sin ωx 的图象 4.(2015²广东江门模拟)函数f (x )=sin(x +φ)在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,常数φ的值可能是( )A .0 B.π2 C .π D.3π25.(2015²辽宁丹东模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2,且其图象关于y 轴对称,则函数y =f (x )的一个单调递减区间是( )A.⎝ ⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫π2,πC.⎝ ⎛⎭⎪⎫-π2,-π4D.⎝ ⎛⎭⎪⎫3π2,2π6.(2015²安徽淮南模拟)将函数y =cos x 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π4个单位,所得函数图象的一条对称轴方程是( )A .x =πB .x =π2C .x =π3D .x =π47.(2015²江苏泰州模拟)函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6的最小正周期为________.8.(2015²福建龙岩模拟)某同学用“五点法”画函数f (x )=A sin(ωx +φ)在某一个周期的图象时,列表并填入的部分数据如下表:(1)123(2)将函数f (x )的图象向左平移π个单位,可得到函数g (x )的图象,求函数y =f (x )²g (x )在区间⎝⎛⎭⎪⎫0,5π3的最小值.13a =2b ,则2sin 2B -sin 2Asin 2A的值为( ) A .-19 B.13 C .1 D.722.(2014²广东)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sinA ≤sinB ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件3.(2014²新课标全国Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .14.(2014²湖北)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知A =π6,a =1,b =3,则B =________.5.(2015²福建)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________. 6.(2015²广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.7.(2015²湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.8.(2014²广东)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .已知b cos C +c cosB =2b ,则ab=________.9.(2014²四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)10.(2014²天津)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为________.11.(2014²新课标全国Ⅰ)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.12.(2014²安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎪⎫A +π4的值.1.(2015²大兴区模拟)在△ABC 中,a =2,b =3,B =3,则A 等于( )A.π6 B.π4 C.3π4 D.π4或3π42.(2015²宿州市模拟)在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.35B.53C.58D.853.(2015²宣城市模拟)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3 D. 34.(2015²皖江名校模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a b =b +3ca,sin C =23sin B ,则tan A =( )A. 3 B .1 C.33D .- 3 5.(2015²江西师大模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sin B sin A =1-cos Bcos A ,若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,则平面四边形OACB 面积的最大值是( )A.8+534 B.4+534C .3 D.4+526.(2015²东城区模拟)在△ABC 中,a =3,b =13,B =60°,则c =________;△ABC 的面积为________.7.(2015²广东茂名模拟)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =3,C =120°,△ABC 的面积S =1534,则c 为________.8.(2014²江苏扬州模拟)如图,在△ABC 中,已知AB =4,AC =3,∠BAC =60°,点D ,E 分别是边AB ,AC 上的点,且DE =2,则S 四边形BCEDS △ABC的最小值等于________. 9.(2015²泰州市模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若∠B =∠C 且7a 2+b 2+c 2=43,则△ABC 面积的最大值为________.10.(2015²甘肃模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b cos C =3a cosB -c cos B .(1)求cos B 的值;(2)若BA →²BC →=2,且b =22,求a 和c 的值.第三章 三角函数、解三角形考点10 同角三角函数的基本关系、诱导公式、三角恒等变换【两年高考真题演练】1.D [∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.] 2.D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.]3.C [cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin α²cos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.]4.B [由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sinβcos α,所以sin(α-β)=cos α,又cos α=sin(π2-α),所以sin(α-β)=sin(π2-α),又因为α∈(0,π2),β∈(0,π2),所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选B.]5.62 [sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62.] 6.-1 [sin α+2cos α=0,∴sin α=-2cos α,∴tan α=-2, 又∵2sin αcos α-cos 2α=2sin α²cos α-cos 2x sin 2α+cos 2α=2tan α-1tan 2α+1, ∴原式=2³(-2)-1(-2)2+1=-1.] 7.3 [∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.]8.解 (1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=tan α+11-tan α=2+11-2=-3;(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin α+sin αcos α-2cos α=2tan αtan 2α+tan α-2=2³222+2-2=1.9.解 (1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ²(a +2cos 2x ),由f ⎝ ⎛⎭⎪⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x ,因为f ⎝ ⎛⎭⎪⎫a 4=-12sin α=-25, 即sin α=45,又a ∈⎝ ⎛⎭⎪⎫π2,π,从而cos a =-35,所以有sin ⎝ ⎛⎭⎪⎫a +π3=sin a cos π3+cos a sin π3=4-3310.10.解 (1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,有sin ⎝⎛⎭⎪⎫α+π4=45cos(α+π4)(cos 2 α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k ,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 【一年模拟试题精练】1.B [a =tan 130°<0,b =cos(cos 00)=cos 1,∴0<b <1;c =1,故选B.] 2.B [因为cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,所以sin α=-35,cos α=-45,∴tan α=34,故选B.]3.A [cos α=m16+m2=-35,∴m =-3,故选A.] 4.A [f (x )=⎪⎪⎪⎪⎪⎪-sin x cos x 1 -3=3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6向左平移m (m >0)个单位后,所得图象对应的函数f (x )=2sin(x -π6+m )为奇函数,所以m 的最小值是π6,故选A.]5.B [因为f (x )=23sin(π-x )²cos x -1+2cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6,可以排除A ,C ,D ,故选B.]6.0 [由tan ⎝ ⎛⎭⎪⎫α+π4=3得1+tan α1-tan α=3,cos α+sin αcos α-sin α=3有cos α=2sin α,lg(sin α+2cos α)-lg(3sin α+cos α)=lg 1=0.]7.-45 [因为y =sin(πx +φ)-2cos(πx +φ)的图象关于直线x =1对称,所以f (1+x )=f (1-x ),所以得到tan φ=-12,则sin φ=55,cos φ=-255,所以sin 2φ=-45.]8.7π3 [sin x +3cos x =2⎝ ⎛⎭⎪⎫12sin x +32cos x =2sin ⎝ ⎛⎭⎪⎫x +π3=a ,直线与三角函数图象的交点,在[0,2π]上,当a =3时,直线与三角函数图象恰有三个交点,令sin ⎝⎛⎭⎪⎫x +π3=32⇒x +π3=2k π+ π3或x -π3=k π-2π3(k ∈Z ),即x =2k π或x =2k π+π3(k ∈Z ),∴此时x 1=0,x 2=π3,x 3=2π,∴x 1+x 2+x 3=7π3.] 9.①③⑤ [f (x )=a 2+b 2sin(2x +θ),θ为参数.因为f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6,所以x =π6是三角函数的对称轴,且周期为T =2πω=2π2=π,所以2³π6+θ=π2+k π,k ∈Z ,所θ=π6+k π,k ∈Z ,所以f (x )=a 2+b 2sin(2x +π6+k π)=±a 2+b 2sin(2x +π6).①f ⎝⎛⎭⎪⎫11π12=±a 2+b 2sin ⎝ ⎛⎭⎪⎫2³11π12+π6=±a 2+b 2sin 2π=0,所以正确.②⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫7π12=⎪⎪⎪⎪⎪⎪±a 2+b 2sin ⎝ ⎛⎭⎪⎫4π3=32a 2+b 2, ⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π5=⎪⎪⎪⎪⎪⎪±a 2+b 2sin ⎝ ⎛⎭⎪⎫2π5+π6=a 2+b 2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫17π30, 因为sin 17π30>sin 2π3=32,所以|f (π5)|>32a 2+b 2,所以⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π5>⎪⎪⎪⎪⎪⎪7π12,所以②错误.③函数既不是奇函数也不是偶函数,所以③正确.因为f (x )=a 2+b 2sin(2x +π6+kπ)=±a 2+b 2sin ⎝⎛⎭⎪⎫2x +π6,所以单调性需要分类讨论,所以④不正确.假设使经过点(a ,b )的直线与函数f (x )的图象不相交,则此直线须与横轴平行,有|b |>a 2+b 2,即b 2>a 2+b 2,所以矛盾,故不存在经过点(a ,b )的直线于函数f (x )的图象不相交故⑤正确.所以正确的是①③⑤.]10.解 (1)∵0≤x ≤5, ∴π3≤π6x +π3≤7π6 ∴-1≤cos ⎝⎛⎭⎪⎫π6x +π3≤12,当π6x +π3=π3,即x =0时,f (x )取得最大值1, 当π6x +π3=π即x =4时,f (x )取得最小值-2. 因此,所求的坐标为A (0,1),B (4,-2). 则OA →=(0,1),OB →=(4,-2),∴OA →²OB →=-2; (2)∵点A (0,1),B (4,-2).分别在角α,β(α,β∈[0,2π])的终边上, 则α=π2,sin β=-55,cos β=255,则sin 2β=2sin βcos β=2³⎝ ⎛⎭⎪⎫-55³255=-45, cos 2β=2cos 2β-1=2³⎝ ⎛⎭⎪⎫2552-1=35,∴sin ⎝ ⎛⎭⎪⎫α2-2β=sin ⎝ ⎛⎭⎪⎫π4-2β=22⎝ ⎛⎭⎪⎫35+45=7210.考点11 三角函数的图象与性质【两年高考真题演练】1.D [由图象知T 2=54-14=1,∴T =2.由选项知D 正确.]2.C [由题干图易得y min =k -3=2,则k =5.∴y max =k +3=8.]3.A [A 选项:y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,T =π,且关于原点对称,故选A.] 4.D [因f (-x )=-x ²cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈⎝⎛⎭⎪⎫0,π2,y >0,排除C ,而x =π时,y =-π,排除A ,故选D.]5.A [①y =cos|2x |,最小正周期为π;②y =|cos x |,最小正周期为π;③y =cos ⎝ ⎛⎭⎪⎫2x +π6,最小正周期为π;④y =tan ⎝ ⎛⎭⎪⎫2x -π4,最小正周期为π2,所以最小正周期为π的所有函数为①②③,故选A.]6.D [函数y =sin x 的图象向左平移π2个单位后,得到函数f (x )=sin ⎝⎛⎭⎪⎫x +π2=cosx 的图象,f (x )=cos x 为偶函数,排除A ;f (x )=cos x 的周期为2π,排除B ;因为f ⎝ ⎛⎭⎪⎫π2=cos π2=0,所以f (x )=cos x 不关于直线x =π2对称,排除C ;故选D.]7.解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x , 因为x ∈[0,π],从而π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0f (π)=1得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=02a sin 2θ-sin θ-a =1, 又θ∈⎝ ⎛⎭⎪⎫-π2,π2知cos θ≠0,解得⎩⎪⎨⎪⎧a =-1θ=-π6.【一年模拟试题精练】1.D [利用排除法,因为f (x )=2sin(ωx +φ)(ω≠0)的图象关于直线x =π6对称,所以f ⎝ ⎛⎭⎪⎫π6=±2,故选D.] 2.B [函数f (x )的最小正周期是π,故A 错误;图象C 可由函数g (x )=sin 2x 的图象向右平移π6个单位得到故C 错;函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12上是增函数,故D 错;故选B.]3.C [因为设函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期为π,所以φ=π6,ω=2,所以f (x )=2sin(2x +π6)(ω>0,-π2<φ<π2),因为f ⎝⎛⎭⎪⎫5π12=0,所以f (x )的一个对称中心是⎝ ⎛⎭⎪⎫5π12,0,故选C.]4.D [当φ=3π2时,f (x )=-cos x 在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,故选D.]5.C [因为f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3的图象关于y 轴对称,所以θ=-π6,所以f (x )=-2cos 12x 在⎝ ⎛⎭⎪⎫-π2,-π4递减,故选C.]6.D [由题意知f (x )=cos ⎝ ⎛⎭⎪⎫12x -π8,而f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫12²π4-π8=1,故选D.]7.2π3 [T =2πω=2π3.] 8.解 (1)由2π3ω+φ=0,8π3ω+φ=π可得:ω=12,φ=-π3.由12x 1-π3=π2;12x 2-π3=3π2;12x 3-π3=2π可得: x 1=5π3,x 2=11π3,x 3=14π3. 又∵A sin ⎝ ⎛⎭⎪⎫12³5π3-π3=2,∴A =2.∴f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3. (2)由f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3的图象向左平移π个单位,得g (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3+π2=2cos ⎝ ⎛⎭⎪⎫x 2-π3的图象, ∴y =f (x )²g (x )=2³2sin ⎝ ⎛⎭⎪⎫x 2-π3²cos ⎝ ⎛⎭⎪⎫x 2-π3=2sin ⎝⎛⎭⎪⎫x -2π3∵x ∈⎝ ⎛⎭⎪⎫0,5π3时,x -2π3∈⎝ ⎛⎭⎪⎫-2π3,π ∴当x -2π3=-π2时,即x =π6时,y min =-2.考点12 解三角形【两年高考真题演练】1.D [由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2³⎝ ⎛⎭⎪⎫322-1=72.] 2.A [由正弦定理,得a sin A =bsin B ,故a ≤b ⇔sin A ≤sin B ,选A.]3.B [S △ABC =12AB ²BC sin B =12³1³2sin B =12,∴sin B =22,若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ²BC cos B =1+2-2³1³2³(-22)=5,∴AC = 5.故选B.]4.π3或2π3 [由正弦定理a sin A =b sin B 得sin B =b sin A a =32, 又B ∈⎝⎛⎭⎪⎫π6,5π6,所以B =π3或2π3.]5.7 [S =12AB ²AC ²sin A ,∴sin A =32,在锐角三角形中A =π3,由余弦定理得BC=AB 2+AC 2-2AB ²AC ²cos A =7.]6.1 [因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,所以B =π6,A=π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=bsinπ6,解得b =1.]7.100 6 [在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°,由正弦定理得BCsin ∠BAC=ABsin ∠ACB,即BCsin 30°=600sin 45°,所以BC =300 2.在△BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002²tan 30°=100 6.]8.2 [由正弦定理可得sin B cos C +sin C cos B =2sin B , sin(B +C )=2sin B ,sin A =2sin B ,∴a =2b ,则ab=2.] 9.6010.-14 [由已知及正弦定理,得2b =3c ,因为b -c =14a ,不妨设b =3,c =2,所以a =4,所以cos A =b 2+c 2-a 22bc =-14.]11. 3 [因为a =2,所以(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(sin A -sin B )=(c -b )sin C ,由正弦定理可得(a +b )(a -b )=(c -b )c ,即b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,故A =π3,又cos A =12=b 2+c 2-42bc≥2bc -42bc ,所以bc ≤4,当且仅当b =c 时取等号,由三角形面积公式知S △ABC =12bc sin A =12bc ²32=34bc ≤3,故△ABC 面积的最大值为 3.] 12.解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ²a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13. 由于0<A <π,所以sin A =1-cos 2A =1-19=223. 故sin(A +π4)=sin A cos π4+cos A sin π4=223³22+⎝ ⎛⎭⎪⎫-13³22=4-26. 【一年模拟试题精练】1.B [因为b >a ,有正弦定理得到sin A =22,∴A =π4,故选B.] 2.A [根据余弦定理cos A =AB 2+AC 2-BC 22²AB ²AC =25+AC 2-492²5²AC =-12. ∴AC =3或AC =-8(排除),根据正弦定理AC sin B =AB sin C ,即或3sin B =5sin C , ∴sin B sin C =35, 故答案为35,故选A.] 3.C 4.C [因为a b =b +3c a ,sin C =23sin B ,所以c =23b ,a 2=7b 2,由余弦定理得到cos A =32,∴tan A =33,故选C.] 5.A [由已知得sin(A +B )=sin A ⇒sin C =sin A ⇒c =a ,又b =c ,∴等边三角形ABC ,∴AB 2=5-4cos θ,S OACB =12³1³2sin θ+34AB 2=sin θ-3cos θ+534=2sin ⎝⎛⎭⎪⎫θ-π3+543≤2+543=8+534选A.]6.4 3 3 [由余弦定理得到b 2=a 2+c 2-2ac cos B ,所以c 2-3c -4=0,所以c =4;S △ABC =12ac sin B =12²3²4²32=3 3.] 7.7 [∵a =3,C =120°,△ABC 的面积S =1534, ∴1534=12ab sin C =12³3b sin 120°,解得b =5. 由余弦定理可得:c 2=a 2+b 2-2ab cos C =32+52-2³3³5³cos 120°=49.解得c =7.故答案为:7.]8.23[设AD =x ,AE =y (0<x ≤4,0<y ≤3),则因为DE 2=x 2+y 2-2xy cos 60°, 所以x 2+y 2-xy =4 ,从而4≥2xy -xy =xy ,当且仅当x =y =2时等号成立,所以S 四边形BCED S △ABC =1-S △ADE S △ABC =1-12xy sin 60°12³3³4sin 60°=1-xy 12≥1-412=23.] 9.55 [由∠B =∠C 得b =c ,代入7a 2+b 2+c 2=43得, 7a 2+2b 2=43,即2b 2=43-7a 2,由余弦定理得,cos C =a 2+b 2-c 22ab =a 2b, 所以sin C =1-cos 2C =4b 2-a 22b =83-15a 22b , 则△ABC 的面积S =12ab sin C =12ab ³83-15a 22b =14a 83-15a 2 =14a 2(83-15a 2)=14³11515a 2(83-15a 2)≤14³115³15a 2+83-15a 22 =14³115³43=55,当且仅当15a 2=83-15a 2取等号,此时a 2=4315, 所以△ABC 的面积的最大值为55, 故答案为:55.] 10.解 (1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,则2R sin B cos C =6R sin A cos B -2R sin C cos B ,故sin B cos C =3sin A cos B -sin C cos B , 可得sin B cos C +sin C cos B =3sin A cos B , 即sin(B +C )=3sin A cos B ,可得sin A =3sin A cos B .又sin A ≠0, 因此cos B =13.(2)由BA →²BC →=2,可得ac cos B =2, 又cos B =13,故ac =6,由b 2=a 2+c 2-2ac cos B ,可得a 2+c 2=12,所以(a -c )2=0,即a =c ,所以a =c = 6.。
【优化探究】2016高考数学理科(人教A版)一轮复习课件_第三章_三角函数、解三角形3-8
最新考纲展示
正弦定理和余弦定理的应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几
何计算有关的实际问题.
实际应用中的常用术语
1.仰角与俯角是相对水平线而言的,而方位角是相对于正北方向
而言的.
2.利用方位角或方向角和目标与观测点的距离即可唯一确定一点 的位置.
3.解三角形应用题的两种情形:
(2)在 Rt△BCD 中,∠BCD=30° , 又因为∠DBE=15° ,所以∠CBE=105° , 所以∠CEB=45° . EB BC 在△BCE 中,由正弦定理可知sin 30° =sin 45° , BCsin 30° 所以 EB= sin 45° =50 6米,即此时客车距楼房 50 6米.
答案 150ຫໍສະໝຸດ 规律方法(1)在测量高度时,要准确理解仰角、俯角的概念,仰
角和俯角都是在同一铅垂面内,视线与水平线的夹角. (2)分清已知条件与所求,画出示意图;明确在哪个三角形内运用 正、余弦定理,有序地解相关的三角形.
2.(2015 年宁波模拟)某大学的大门蔚为壮观,有个学生想搞清楚门 洞拱顶 D 到其正上方 A 点的距离,他站在地面 C 处,利用皮尺量得 BC =9 米,利用测角仪测得仰角∠ACB=45° ,测得仰角∠BCD 后通过计算 26 得到 sin∠ACD= 26 ,则 AD 的距离为________米.
东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏
西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)
(1)如果此高速路段限速80千米/小时,试问该客车是否超速? (2) 又经过一段时间后,客车到达楼房的正西方向 E处,问此时客 车距离楼房多远?
解析: (1)在 Rt△ABC 中, ∠BAC=60° ,AB=100 米, 则 BC=100 3 米, 在 Rt△ABD 中,∠BAD=45° ,AB=100 米,则 BD=100 米, 在△BCD 中,∠DBC=75° +15° =90° , 则 DC= BD2+BC2=200 米, CD 所以客车的速度 v= 10 =1 200 米/分=72 千米/小时, 所以该客车没 60 有超速.
2016届高考数学理新课标A版一轮总复习课件 第3章 三角函数、解三角形-2
第24页
返回导航
第三章 第二节 第二十四页,编辑于星期五:二十一点 十九分。
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
解析:(1)由s3icnoαs+α-3csoinsαα=5,得t3a-nαt+anα3=5, 即tanα=2. 所以sin2α-sinαcosα=sinsi2nα2-α+sincoαsc2oαsα=tatna2nα2-α+ta1nα=25,故选A.
开卷速查
第2页
返回导航
第三章 第二节 第二页,编辑于星期五:二十一点 十九分。
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
1.理解同角三角函数的基本关系式:sin2x+cos2x= 考 纲 1,csoinsxx=tanx. 导 2.能利用单位圆中的三角函数线推导出π2±α,π±α的 学
正弦、余弦、正切的诱导公式.
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
sin2α+cos2α (2)cos2α-1 sin2α=scions22αα+-csoins22αα=cos2cαo-s2αsin2α=t1a-n2tαa+n2α1.
cos2α ∵tanα=-43,
∴cos2α-1 sin2α=t1a-n2tαa+n2α1=1--43-2+4312=-275.
答案:C
第14页
返回导航
第三章 第二节 第十四页,编辑于星期五:二十一点 十九分。
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
4.cos-147π-sin-147π=__________.
解析:cos-147π-sin-147π=cos147π+sin174π=cos4π+π4+ sin4π+π4=cosπ4+sinπ4
2016届高考数学(理)(人教A版)总复习课时演练 第4章 第1节 任意角、弧度制及任意角的三角函数
第四章 第一节1.(2014·临川一中调研)sin 29π6+cos ⎝⎛⎭⎫-29π3-tan 25π4=( ) A .0 B .12C .1D .-12解析:选A 原式=sin ⎝⎛⎭⎫ 4π+ 5π6+ cos ⎝⎛⎭⎫ -10π+ π3 -tan ⎝⎛⎭⎫6π+π4=sin 5π6+cos π3-tan π4=sin ⎝⎛⎭⎫π-π6+12-1=sin π6-12=12-12=0,故选A. 2.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 由条件知S =12|α|r 2,即2=12×4×r 2∴r =1,∴l =4,故扇形周长为6,故选C.3.给出下列各函数值:①sin(-1 000°);②cos(-2 200°); ③tan (-10);④sin 7π10cos πtan17π9,其中符号为负的是( )A .①B .②C .③D .④解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°)= cos(-40°)=cos 40°>0;tan (-10)=tan (3π-10)<0; sin7π10cos πtan 17π9=-sin 7π10tan 17π9,因为sin 7π10>0,tan 17π9<0,所以sin 7π10cos πtan17π9>0.综上选C. 4.若sin θ·cos θ>0,且cos θ·tan θ<0,则角θ是( ) A .第二或第三象限角 B .第一或第四象限角 C .第二象限角D .第三象限角解析:选D 因为sin θ·cos θ>0,所以角θ是第一或第三象限角;又cos θ·tan θ<0,所以角θ是第三或第四象限角.所以角θ是第三象限角,故选D.5.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B .32C .-12D .12解析:选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z )又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12,选D.6.若角α的终边上有一点P (-4,a ),且sin α·cos α=34,则a 的值为( ) A .43B .±4 3C .-43或-433D . 3解析:选C 依题意可知角α的终边在第三象限,点P (-4,a )在其终边上且sin α·cos α=34,得-4a a 2+16=34,即3a 2+16a +163=0,解得a =-43或-433,故选C. 7.(2014·长沙质检)已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4 B .3π4C.5π4D .7π4解析:选D 由sin 3π4>0,cos 3π4<0知角θ是第四象限的角.∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4,故选D.8.(2014·昆明模拟)设α,β都是第二象限的角,若sin α>sin β,则( ) A .tan α>tan β B .α>β C .cos α>cos βD .α<β解析:选C 考虑到终边相同的角的周期性变化,可排除B 、D.取α,β分别为120°,150°,可排除A.故选C.9.与-1 778°终边相同且绝对值最小的角是________. 解析:22° -1 778°=22°-5×360°.10.设MP 和OM 分别是角17π18的正弦线和余弦线,则给出的以下不等式:①MP <OM <0; ②OM <0<MP ; ③OM <MP <0; ④MP <0<OM . 其中正确的是________.解析:② sin17π18=MP >0,cos 17π18=OM <0. 11.扇形的中心角为120°,则此扇形的面积与其内切圆的面积之比为________. 解析:7+439 设内切圆的半径为r ,扇形半径为R ,则(R -r )sin 60°=r ,∴R =⎝⎛⎭⎫1+23r , ∴S 扇形S 圆=12·2π3R 2πr 2=13⎝⎛⎭⎫R r 2=13⎝⎛⎭⎫1+232=7+439. 12.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:-35 因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.13.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π),则α的取值范围是________.解析:⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 由已知得⎩⎪⎨⎪⎧sin α>cos α,tan α>0,∴π4+2k π<α<π2+2k π或π+2k π<α<5π4+2k π,k ∈Z . ∵0≤α<2π,∴π4<α<π2或π<α<5π4.1.(2014·重庆巴蜀中学月考)若α是第三象限角,则y =sin α2sin α2+cosα2cosα2的值为( )A .0B .2C .-2D .2或-2解析:选A 由于α是第三象限角,所以α2是第二或第四象限角,当α2是第二象限角时,y =sin α2sin α2+-cosα2cosα2=1-1=0;当α2是第四象限角时,y =-sin α2sin α2+cosα2cosα2=-1+1=0,故选A. 2.在直角坐标平面内,已知函数f (x )=log a (x +2)+3(a >0且a ≠1)的图象恒过定点P ,若角θ的终边过点P ,则cos 2θ+2sin θcos θ的值等于( )A .-12B .12C.710D .-710解析:选A 因为函数y =log a x 的图象恒过定点(1,0),所以f (x )的图象恒过定点P (-1,3),由三角函数的定义知sin θ=310=31010,cos θ=-110=-1010,则cos 2θ+2sin θcos θ=110+2×31010×⎝⎛⎭⎫-1010=110-610=-12,故选A.3.记a =sin (cos 210°),b =sin (sin 210°),c =cos (sin 210°),d =cos (cos 210°),则a ,b ,c ,d 中最大的是( )A .aB .bC .cD .d解析:选C 注意到210°=180°+30°,因此sin 210°=-sin 30°=-12,cos 210°=-cos 30°=-32,-π2<-32<0,- π2<-12<0,0<12<32<π2,cos 12>cos 32>0,a =sin ⎝⎛⎭⎫-32=-sin 32<0,b =sin ⎝⎛⎭⎫-12=-sin 12<0,c =cos ⎝⎛⎭⎫-12=cos 12>d =cos ⎝⎛⎭⎫-32=cos 32>0,因此选C.4.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·cos β+tan α·tan β的值.解:由题意知点P 的坐标为(a ,-2a ),点Q 的坐标为(2a ,a ). 所以sin α=-2aa 2+(-2a )2=-25,cos α=a a 2+(-2a )2=15, tan α=-2aa =-2,sin β=a (2a )2+a 2=15, cos β=2a (2a )2+a 2=25,tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β =-25×15+15×25+(-2)×12=-1.5.如图所示,A ,B 是单位圆O 上的点,且B 点在第二象限,C 点是圆与x 轴正半轴的交点,A 点的坐标为⎝⎛⎭⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解:(1)因为A 点的坐标为⎝⎛⎭⎫35,45,根据三角函数的定义,知sin ∠COA =45. (2)因为△AOB 为正三角形,所以∠AOB =60°. 又sin ∠COA =45,cos ∠COA =35,所以cos ∠COB = cos (∠COA +60°)=cos ∠COA cos 60°-sin ∠COA sin 60° =35×12-45×32=3-4310.。
【优化探究】2016届高考数学理科(人教A版)一轮复习课件_第三章_三角函数、解三角形3-2
2
2
sin α π tan α=cos α(α≠kπ+2,k∈Z)
二、诱导公式
1.利用 sin2α+cos2α=1 可以实现角 α 的正弦与余弦的互化,利用 sin α cos α=tan α 可以实现角 α 的弦切互化.
2.应用公式时注意方程思想的应用,对于sin α+cos α,sin α-
3 α=-4.
答案:D
2.sin2(π+α)-cos(π+α)·cos(-α)+1的值为( A .1 C.0 答案:D B.2sin2α D.2
)
解析:原式=(-sin α)2-(-cos α)·cos α+1=sin2α+cos2α+1=2.
π sin 2+θ -cosπ-θ 3.已知 tan θ=2,则 =________. π sin 2-θ -sinπ-θ
(2)将任意角的三角函数化为锐角三角函数的流程:
k 6.三角函数诱导公式 f 2π+α (k∈Z)的本质: k 三角函数诱导公式 f 2π+α (k∈Z)的本质是“奇变偶不变,符号看象
限”
对诱导公式口诀“奇变偶不变,符号看象限”含义的理解:诱导公 π 式的左边为2· k+α(k∈Z)的正弦或余弦函数,当 k 为奇数时,右边的函数 名称正余互变,当 k 为偶数时,右边的函数名称不改变,这就是 “奇变 偶不变”的含义;再就是将 α 看成锐角(可能并不是锐角,也可能是大于 π 锐角或小于锐角,还有可能是任意角),然后分析2· k+α(k∈Z)为第几象 限的角, 再判断公式左边这个三角函数(原函数)在此象限是正还是负, 也生共研)
cos α,sin αcos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α可以 知一求二. 3 .注意公式的逆用及变形应用: 1 = sin2α + cos2α , sin2α = 1 - cos2α,cos2α=1-sin2α.
2016年高考数学大一轮(人教A新课标)精讲课件:第3章 三角函数、解三角形 4
(2)已知函数 f(x)=Atan(ωx+ φ)(ω>0,|φ|<π2),y=f(x)
人教A数学 第二十七页,编辑于星期五:二十三点 二十二
分。
第三章
2016年新课标高考·大一轮复习讲义
整合·主干知识
整合·主干知识
聚焦·热点题型
提升·学科素养
(2)令 X=2x+π3,则 y=2sin2x+π3=2sin X. 列表,并描点画出图象:
x
-π6
π 12
π 7π 5π 3 12 6
X y=sin X
0
π 2
π
3π 2
2π
0 1 0 -1 0
y=2sin2x+π3 0
2
0 -2 0
提能·课时冲关
人教A数学 第十九页,编辑于星期五:二十三点 二十二分。
第三章
2016年新课标高考·大一轮复习讲义
整合·主干知识
聚焦·热点题型
提升·学科素养
提能·课时冲关
Ⅰ.了解函数y=Asin(ωx+φ)的物理意义,能画出函数y= Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影 响. Ⅱ.了解三角函数是描述周期变化现象的重要函数模型, 会用三角函数解决一些简单的实际问题.
提升·学科素养
提能·课时冲关
5.把函数 y=sin5x-π2的图象向右平移π4个单位,再把所 得函数图象上各点的横坐标缩短为原来的12,所得的函数解析
式为________. 解析:将原函数的图象向右平移π4个单位,得到函数 y=
sin5x-π4-π2=sin5x-74π的图象;再把所得函数图象上各点
人教A数学 第二十一页,编辑于星期五:二十三点 二十二
分。
2016高考数学(理)一轮全程复习构想课件:三角函数、解三角形-1
第一页,编辑于星期六:点 四十八分。
第一节 任意角和弧度制及任意角的三角函数
第二页,编辑于星期六:点 四十八分。
考纲导学 1.了解任意角的概念. 2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角三角函数(正弦、余弦、正切)的定义.
第三页,编辑于星期六:点 四十八分。
|α|·R=sin2 1.故选C.
答案:C
第三十六页,编辑于星期六:点 四十八分。
考点三 已知角α所在象限,判断αn所在象限的问题 例3 若α是第二象限的角,试分别确定α2,α3的终边所在位置.
第三十七页,编辑于星期六:点 四十八分。
解析:(1)∵k·180°+45°<α2<k·180°+90°(k∈Z), 当k=2n(n∈Z)时,n·360°+45°<α2<n·360°+90°; 当k=2n+1(n∈Z)时, n·360°+225°<α2<n·360°+270°. ∴α2是第一或第三象限的角.
(2)θ=k·360°+168°,k∈Z,θ3=k·120°+56°,k∈Z. 依题意得0≤k·120°+56°<360°,当k=0,1,2时, k·120°+56°在[0°,360°)内,所以θ3=56°,176°,296°.
第三十页,编辑于星期六:点 四十八分。
考点二 弧长与扇形面积 例2 (1)一个半径为r的扇形,若它的周长等于弧所在的半圆的长, 那么扇形的圆心角是多少弧度?是多少度?扇形的面积是多少? (2)一扇形的周长为20 cm,当扇形的圆心角α等于多少弧度 时,这个扇形的面积最大?
第二十页,编辑于星期六:点 四十八分。
第二十一页,编辑于星期六:点 四十八分。
1.对角概念的理解要准确 (1)不少同学往往容易把“小于90°的角”等同于“锐角”,把 “0°~90°的角”等同于“第一象限的角”.其实锐角的集合是 {α|0°<α<90°},第一象限角的集合为{α|k·360°<α<k·360°+ 90°,k∈Z}. (2)终边相同的角不一定相等,相等的角终边一定相同,终边 相同的角的同一三角函数值相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 专题三1.已知向量a =(cos α,-2),b =(sin α,1),且a ∥b , 则tan ⎝⎛⎭⎫α-π4等于( ) A .3 B .-3 C.13D .-13解析:选B ∵a =(cos α,-2),b =(sin α,1), 且a ∥b ,∴cos α-(-2)sin α=0, 即cos α+2sin α=0,∴tan α=-12,∴tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=-12-11-12=-3,故选B. 2.(2014·广东模拟)设向量a =(a 1,a 2),b =(b 1,b 2),定义一运算:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2),已知m =⎝⎛⎭⎫12,2,n =(x 1,sin x 1).点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗n (其中O 为坐标原点),则y =f (x )的最大值及最小正周期分别是( )A.12,π B.12,4π C .2,πD .2,4π解析:选C 根据新定义得OQ →=m ⊗n =⎝⎛⎭⎫12x 1,2sin x 1, ∴Q ⎝⎛⎭⎫12x 1,2sin x 1,而点Q 在y =f (x )的图象上运动, ∴⎩⎪⎨⎪⎧x =12x 1,y =2sin x 1消去x 1得y =2sin 2x ,即f (x )=2sin 2x , ∴函数的最小正周期T =2π2=π,f (x )max =2,故选C.3.(2014·郑州外国语学校模拟)已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且m ·n=-1,若向量n 与向量q =(1,0)的夹角为π2,向量p =⎝⎛⎭⎫cos A ,2cos 2C 2,角A ,B ,C 为△ABC 的内角,且B =π3,则|n +p |的取值范围为( )A.⎣⎡⎭⎫12,32 B.⎣⎡⎭⎫22,52 C.⎣⎡⎭⎫12,52 D.⎣⎡⎭⎫22,32 解析:选B 设n =(x ,y ),由题意得x +y =-1及x 2+y 2=1,得n =(-1,0)或n = (0,-1),由向量n 与向量q =(1,0)的夹角为π2知,n =(0,-1),由B =π3得,A +C =2π3.因此,|n +p |2=cos 2 A +⎝⎛⎭⎫2cos 2C 2-12=cos 2A +cos 2C =1+12cos ⎝⎛⎭⎫2A +π3. 由0<A <2π3,π3<2A +π3<5π3得12≤1+12cos ⎝⎛⎭⎫2A +π3<54,故|n +p |的取值范围为⎣⎡⎭⎫22,52.故选B.4.在△ABC 中,若(CA →+CB →)·AB →=35|AB →|2,则tan A tan B 的值为( )A .2B .4 C.3D .2 3解析:选B 设△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,由(CA →+CB →)·AB →=35|AB→|2,得CA →·AB →+CB →·AB →=35|AB →|2,即bc cos(π-A )+ac cos B =35c 2,所以a cos B -b cos A =35c .由正弦定理,得sin A cos B -cos A sin B=35sin C =35sin(A +B )=35(sin A cos B +cos A sin B ) 即sin A cos B =4cos A sin B ,所以tan A tan B=4.故选B.5.在直角坐标系xOy 中,已知点A (-1,2),B (2cos x ,-2cos 2x ),C (cos x,1),其中x ∈[0,π],若AB →⊥OC →,则x 的值为________.解析:π3或π2 AB →=(2cos x +1,-2cos 2x -2),由AB →⊥OC →得AB →·OC →=(2cos x +1)·cos x-(2cos 2x +2)=0,整理得cos x (1-2cos x )=0,∴cos x =0或cos x =12,又x ∈[0,π],所以x =π3或x =π2.6.△ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c ,设向量m =(3c -b ,a -b ),n =(3a +3b ,c ),m ∥n ,则cos A =________.解析:16∵m ∥n ,∴(3c -b )·c =(a -b )(3a +3b ),即bc =3(b 2+c 2-a 2), ∴b 2+c 2-a 2bc =13,∴cos A =b 2+c 2-a 22bc =16.7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.则△ABC 的面积为________.解析:2 ∵cos A =2cos 2A 2-1=2×⎝⎛⎭⎫2552-1=35,而AB →·AC →=|AB →|·|AC →|·cos A =35bc =3,∴bc =5.又A ∈(0,π),∴sin A =45,∴△ABC 的面积S △ABC =12bc sin A =12×5×45=2.8.如图,在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB =3,P 是BC 上的一个动点,当PD →·P A →取得最小值时,tan ∠DP A 的值为______.解析:1235如图,以A 为原点,建立平面直角坐标系xAy ,则A (0,0),B (3,0),C (3,2),D (0,1),设∠CPD =α,∠BP A =β,P (3,y )(0≤y ≤2).∴PD →=(-3,1-y ), P A →=(-3,-y ), ∴PD →·P A →=y 2-y +9=⎝⎛⎭⎫y -122+354, ∴当y =12时,PD →·P A →取得最小值,此时P ⎝⎛⎭⎫3,12,易知|DP →|=|AP →|,α=β. 在△ABP 中,tan β=312=6,∴tan ∠DP A =-tan(α+β)=2tan βtan 2β-1=1235.9.已知向量a =(-2,sin θ)与b =(cos θ,1)互相垂直,其中θ∈⎝⎛⎭⎫π2,π. (1)求sin θ和cos θ的值; (2)若sin(θ-φ)=1010,π2<φ<π,求cos φ的值. 解:(1)∵a 与b 互相垂直,∴a ·b =-2cos θ+sin θ=0,即sin θ=2cos θ, 又sin 2 θ+cos 2 θ=1所以sin 2 θ=45,cos 2 θ=15,又∵θ∈⎝⎛⎭⎫π2,π,∴sin θ=255,cos θ=-55. (2)∵π2<φ<π,∴-π2<θ-φ<π2,∵sin(θ-φ)=1010,∴cos(θ-φ)=31010, ∴cos φ=cos[θ-(θ-φ)]=cos θcos (θ-φ)+sin θsin (θ-φ)=-210. 10.(2013·四川高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cosB -sin(A -B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影. 解:(1)由cos(A -B )cos B -sin(A -B )sin(A +C ) =-35,得cos(A -B )cos B -sin (A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.又0<A <π,则sin A =45.(2)由正弦定理,得a sin A =b sin B, 所以sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4.由余弦定理,得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 整理得c 2+6c -7=0. 解得c =1或c =-7(舍去).故向量BA → 在BC →方向上的投影为|BA →|cos B =22.11.已知向量a =(1+sin 2x ,sin x -cos x ),b =(1,sin x + cos x ),函数f (x )=a ·b .(1)求f (x )的最大值及相应的x 的值; (2)若f (θ)=85,求cos 2⎝⎛⎭⎫π4-2θ的值. 解:(1)因为a =(1+sin 2x ,sin x -cos x ),b =(1,sin x +cos x ),所以f (x )=a ·b =1+sin 2x +sin 2 x -cos 2 x =1+sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4+1.所以2x -π4=2k π+π2(k ∈Z ),即x =k π+38π(k ∈Z )时,f (x )取得最大值2+1.(2)由f (θ)=1+sin 2θ-cos 2θ=85,得sin 2θ-cos 2θ=35,两边平方,得1-sin 4θ=925,即sin 4θ=1625.因此cos 2⎝⎛⎭⎫π4-2θ=cos ⎝⎛⎭⎫π2-4θ=sin 4θ=1625. 12.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎫0≤θ≤π2. (1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值为4时,求OA →·OC →. 解:(1)AB →=(n -8,t ),∵AB →⊥a ,∴8-n +2t =0. 又|AB →|=5|OA →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8. ∴OB →=(24,8)或OB →=(-8,-8). (2)AC →=(k sin θ-8,t ),∵向量AC →与a 共线,∴t =-2k sin θ+16,t sin θ=(-2k sin θ+16)sin θ=-2k (sin θ-4k )2+32k, ∵k >4,∴1>4k>0,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8,此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32.13.(2014·哈尔滨统考)已知锐角△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,定义向量m =(2sin B ,3),n =⎝⎛⎭⎫2cos 2B2-1,cos 2B ,且m ⊥n . (1)求函数f (x )=sin 2x cos B -cos 2x sin B 的单调递增区间及对称中心; (2)如果b =4,求△ABC 的面积的最大值.解:(1)∵m =(2sin B ,3),n =⎝⎛⎭⎫2cos 2B2-1,cos 2B ,m ⊥n , ∴2sin B ⎝⎛⎭⎫2cos 2B2-1+3cos 2B =0,即sin 2B =-3cos 2B , ∴tan 2B =-3,又B 为锐角,∴2B ∈(0,π), ∴2B =2π3,B =π3,∴f (x )=sin 2x cos B -cos 2x sin B =sin ⎝⎛⎭⎫2x -π3. 令-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),解得k π-π12≤x ≤k π+5π12(k ∈Z ),∴函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ), 又由2x -π3=k π(k ∈Z ),得x =π6+k π2(k ∈Z ),∴函数f (x )的对称中心是点⎝⎛⎭⎫π6+k π2,0(k ∈Z ). (2)由(1)知B =π3,b =4, 由余弦定理得:16=a 2+c 2-ac .∵a 2+c 2≥2ac ,∴ac ≤16(当且仅当a =c =4时等号成立), ∴S △ABC =12ac sin B ≤43(当且仅当a =c =4时等号成立),∴△ABC 的面积的最大值为4 3.。