开关电源电路组成及常见各模块电路分析.pptx
开关电源各功能电路详解
开关电源各功能电路详解群申请请填写备注:城市+公司名称+姓名一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源原理及各功能电路详解
开关电源原理及各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:开关电源电路方框图二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:输入滤波、整流回路原理图①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源电路组成及常见各模块电路分析
开关电源电路组成及常见各模块电路分析开关电源电路是一种将输入电流转换为高频脉冲的电路,通过变压器进行变换和滤波,最终将电源提供给负载。
它由多个模块组成,包括输入滤波器、整流器、功率变换器、输出滤波器和反馈控制器等。
下面我将对这些模块进行详细分析。
1.输入滤波器:开关电源电路的输入端通常会接入输入电源,因此需要一个输入滤波器来滤除输入电源中的高频噪声和电磁干扰。
输入滤波器通常由电容和电感构成,能够将输入电压平滑成纯直流信号,并提供稳定的电压给后续电路。
2.整流器:整流器的作用是将交流信号转换为直流信号,并提供稳定的电压给功率变换器。
常见的整流器有全波整流和半波整流两种方式。
全波整流使用四个二极管,能够将输入电压的正半周期和负半周期都转换为直流信号,效率更高。
而半波整流只使用两个二极管,仅将输入电压的正半周期转换为直流信号。
3.功率变换器:功率变换器是开关电源电路的核心部分,主要负责将直流信号转换为高频脉冲信号,通过变压器变换和带宽控制,将电源提供给负载。
常见的功率变换器有多种类型,包括单端交错式、反激式、降压升压式等。
这些变换器均具有高效率、可靠性和短路保护等特点。
4.输出滤波器:输出滤波器用于平滑功率变换器输出的高频脉冲信号,并将其转换为稳定的直流电压。
通常由电感和电容构成,能够滤除高频噪声和纹波,提供稳定的输出电压给负载。
5.反馈控制器:反馈控制器用于监测输出电压,并通过控制开关管的开关状态来实现自动调整电路的输出电压。
当输出电压低于设定值时,反馈控制器会调整开关管的开关状态,使电路输出电压回到设定值。
常见的控制方式有PID控制、PWM控制等。
以上是开关电源电路的常见模块。
这些模块通过相互协作,能够将输入电源转换为稳定的高频输出电压,并提供给负载。
开关电源电路具有高效率、小体积、轻量化等优点,在电子设备中得到广泛应用。
开关电源的工作原理和常见故障分析及维修
开关电源的工作原理和常见故障分析及维修开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。
辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。
开关电源的电路组成方框图如下:高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或者上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或者变窄的驱动脉冲送到开关功率管的栅极(G 极),使变换电路产生的高频脉冲方波也随之变宽或者变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部份工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部份和保护部份。
下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。
一.保险丝熔断普通情况下,保险丝熔断说明开关电源的内部电路存在短路或者过流的故障。
由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。
电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。
重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。
检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。
开关电源各功能电路详解
开关电源各功能电路详解一、开关电源的电路组成二、输入电路的原理及常见电路三、功率变换电路四、输出整流滤波电路五、稳压环路原理六、短路保护电路七、输出端限流保护八、输出过压保护电路的原理九、功率因数校正电路(PFC)一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
开关电源电路组成及各部分详解
开关电源各功能电路详解一、开关电源的电路组成二、输入电路的原理及常见电路三、功率变换电路四、输出整流滤波电路五、稳压环路原理六、短路保护电路七、输出端限流保护八、输出过压保护电路的原理九、功率因数校正电路(PFC)一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
《开关电源详解》课件
开关电源的电路分析
01
02
03
04
开关管
是开关电源的核心元件,负责 控制电流的通断。
整流二极管
负责将交流电转换为直流电。
滤波电容
用于平滑输出电压,减小纹波 。
电阻、电感等元件
用于实现电压和电流的调节。
开关电源的波形分析
输入波形
Байду номын сангаас输出波形
开关管波形
整流二极管波形
表示输入电压和电流的 波形。
表示输出电压和电流的 波形。
04
开关电源的测试与调试
开关电源的测试项目与设备
测试项目
输入电压范围、输出电压范围、效率 、功率因数、纹波电压等。
测试设备
万用表、示波器、功率计、效率计、 频谱分析仪等。
开关电源的调试步骤与方法
调试步骤 检查电路板焊接和元件安装是否正确;
测量输入和输出电压是否符合设计要求;
开关电源的调试步骤与方法
开关电源的可靠性设计
可靠性设计是保证开关电源长期稳定运行的关键,包括元件应力分析、冗余设计 、故障诊断和预防性维护等。
元件应力分析需要考虑元件的工作电压、电流和温度等参数,避免过应力导致元 件损坏。冗余设计可以在部分元件失效时保证电源的正常工作。故障诊断和预防 性维护可以及时发现并处理潜在问题,提高电源的可靠性。
每种拓扑结构都有其特点和应用范围,选择合适的拓扑结构可以提高电源的效率、 可靠性和性能。
拓扑结构的选取需要考虑输入输出电压、功率等级、效率和可靠性要求等因素。
开关电源的元件选择与计算
元件选择是开关电源设计中的 重要环节,包括电感器、变压 器、电容器的选择和计算。
电感器和变压器的磁芯材料、 线圈匝数和绝缘层等参数需要 根据电源的特性和要求进行选 择和计算。
开关电源电路组成及各部分详解
一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:12①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净3的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源各功能电路详解
开关电源各功能电路详解一、开关电源的电路组成二、输入电路的原理及常见电路三、功率变换电路四、输出整流滤波电路五、稳压环路原理六、短路保护电路七、输出端限流保护八、输出过压保护电路的原理九、功率因数校正电路(PFC)一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
开关电源电路详解图
开关电源电路详解图————————————————————————————————作者:————————————————————————————————日期:开关电源电路详解图一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
开关电源的结构和基本原理 ppt课件
图2pp.t6课件非隔离式的DC→DC变换电路 35
调整输出电压的方法:
Vi
Vk
Vo
t
t
t
ton T
Vi
K
电压
Vk 变换器
Vo
RL
占空比
VO =
ton T
·Vi =D·Vi
ppt课件
36
• 只要改变开关脉冲的“占空比”,就可以 改变输出电压的高低。
38
+290V VT
IQ D
L
+
IL
-
C
RL
IC IR
图2.5 (b)开关管饱和时的等效电路
• 开关管饱和导通时,290V电源通过开关管Q,电 感L和负载RL形成电流回路,同时向电容器C充电, 在电感L和电容C中同时储能。
• 二极管D处于反向截止状态。
• 由于电感L中突然出现电流,将在L两端产生左正 右负的自感电动势,负载两端电压等于290V电源 电压与L两端自感电动势之差。
图1-4 晶体管串联式开关稳压电源
ppt课件
8
随着电力电子技术的发展,大功率开关晶体管、快恢 复二极管及其它元器件的电压得到很大的提高,这为取消 稳压电源中的工频变压器,发展高频开关电源创造了条件。
它使电源在小型化、轻量化、高效率等方面又迈进了 一步。
图1-5 无工频变压器的开关电源原理框图
ppt课件
9
常见开关电源图片
A:一次电源产品的图片(AC/DC)
ppt课件
10
B:工业电源产品的图片—标准产品(AC/DC)
开关电源原理
开关电源原理
一、开关电源的电路构成:
开关电源的首要电路是由输入电磁搅扰滤波器(EMI)、整流滤波电路、功率改换电路、PWM操控器电路、输出整流滤波电路构成。
辅佐电路有输入过欠压维护电路、输出过欠压维护电路、输出过流维护电路、输出短路维护电路等。
开关电源的电路构成方框图如下:
二、输入电路的原理及多见电路:
1、AC输入整流滤波电路原理:
①防雷电路:当有雷击,发作高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1构成的电路进行维护。
当加在压敏电阻两头的电压跨过其作业电压时,其阻值下降,使高压能量耗费在压敏电阻上,若电流过大,F1、F2、F3会焚毁维护后级电路。
②输入滤波电路:C1、L1、C2、C3构成的双pi;型滤波网络首要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源搅扰,一起也防止电源本身发作的高频杂波对电网搅扰。
当电源翻开霎时刻刻刻,要对C5充电,因为霎时刻刻刻电流大,加RT1(热敏电阻)就能有用的防止浪涌电流。
因瞬时能量全耗费在RT1电阻上,
必守时刻后温度添加后RT1阻值减小(RT1是负温系数元件),这时它耗费的能量十分小,后级电路可正常作业。
③整流滤波电路:沟通电压经BRG1整流后,经C5滤波后得到较为纯真的直流电压。
若C5容骤变小,输出的沟通纹波将增大。
开关电源各模块原理实图讲解
开关电源原理一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWMF3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
三、功率变换电路:1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。
也称为表面场效应器件。
由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。
2、常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。
在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。
从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。
当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开
器
电路关Βιβλιοθήκη 地地2一寸光阴不可轻 定输出的目的.
3 PWM 开关电源的组成模块
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功 率变换电路、PWM 控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压 保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
1. 输入电路的原理及常见电路 1. AC 输入整流滤波电路原理
3.2.2 DC 输入滤波电路原理
3
一 寸 光 阴 不 可轻
① 输入滤波电路:C1、L1、C2 组成的双 π 型滤波网络主要是对输入电源的电 磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频 杂波对电网干扰。C3、C4 为安规电容,L2、L3 为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7 组成抗浪涌电路。在 起机的瞬间,由于 C6 的存在 Q2 不导通,电流经 RT1 构成回路。当 C6 上的电压 充至 Z1 的稳压值时 Q2 导通。如果 C8 漏电或后级电路短路现象,在起机的瞬间 电流在 RT1 上产生的压降增大,Q1 导通使 Q2 没有栅极电压不导通,RT1 将会在 很短的时间烧毁,以保护后级电路。
与线性电源相比,PWM 开关电源更为有效的工作过程是通过“斩波”,即把 输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比 是开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过 变压器来生高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组 数。最后这些交流波形经过整流滤波后就得到直流输出电压。
正激式变换器的优点式:输出电压的纹波峰峰值比升压式变换器低,同时可 以输出比较高的功率,正激式变换器可以提供数千瓦的功率。
升压式变换器中峰值电流较高,因此只适合功率不大于 150W 的应用场合, 在所有拓扑中,这类变换器所用的元器件最小,因而在中小功率的应用场合中和 流行。
开关电源的工作原理是: 第一 交流电源输入经整流滤波成直流; 第二 通过高频 PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变 压器初级上;
① 防雷电路:当有雷击,产生高压经电网导入电源时,由 MOV1、MOV2、MOV3: F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工 作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、 F3 会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3 组成的双 π 型滤波网络主要是对输入电源 的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的 高频杂波对电网干扰。当电源开启瞬间,要对 C5 充电,由于瞬间电流大,加 RT1 (热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在 RT1 电阻上,一定 时间后温度升高后 RT1 阻值减小(RT1 是负温系数元件),这时它消耗的能量非 常小,后级电路可正常工作。 ③ 整流滤波电路:交流电压经 BRG1 整流后,经 C5 滤波后得到较为纯净的直流 电压。若 C5 容量变小,输出的交流纹波将增大。
控制器的主要目的式保持输出电压稳定,其工作过程与线性形式的控制器很
1
一寸光阴不可轻
类似。也就是说控制器的功能模块电压参考和误差放大器,可以设计成与线性调 节器相同。它们的不同之处在于,误差放大器的输出(误差电压)在驱动功率 管 之前要经过一个电压脉冲转换单元。
开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部 分的布置差别很少,但是工作过程相差很大,在特定的场合下个有优点。
2 开关电源的基本原理
1. PWM 开关电源的基本原理
开关电源的工作过程相当容易理解。在线性电源中,让功率晶体管工作在线 性模式,与线性电源不同的是,PWM 开关电源是让功率晶体管工作在导通和关断 状态。在这两种状态中,加在功率晶体管上的伏安乘积总是很小的(在导通时, 电压低,电流大;关断时,电压高,电流小)。功率器件上的伏安乘积就是功率 半导体器件上所产生的损耗。
第三 开关变压器次级感应出高频电压,经整流滤波供给负载; 第四 输出部分通过一定的电路反馈给控制电路,控制 PWM 占空比,以达到稳
输
入
PFI 滤波
器和浪
涌抑制
器
Vin(DC)
输入 整流 和滤 波
变压器
Vout(DC)
整流 与滤 波
保护 电路
输出
VCC
保
反馈
护
网络
抑
启动、IC
功
驱动
控
制
供电和
率
制
驱动电
3.2 功率变换电路
1、 MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是 MOSFET(MOS 管), 是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅 极处于不导电状态,所以输入电阻可以大大提高,最高可达 105 欧姆,MOS 管是 利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的 大小。 2、 常见的原理图:
一寸光阴不可轻
1.1 课题背景
1.1 开关电源的发展历史
开关稳压电源(以下简称开关电源)取代晶体管线性稳压电源(以下简称线 性电源)已有 30 多年历史,最早出现的是串联型开关电源,其主电路拓扑与线 性电源相仿,但功率晶体管了作于开关状态后,脉宽调制(PWM)控制技术有了 发展,用以控制开关变换器,得到 PWM 开关电源,它的特点是用 20kHz 脉冲频率 或脉冲宽度调制—PWM 开关电源效率可达 65~70%,而线性电源的效率只有 30~40%。在发生世界性能源危机的年代,引起了人们的广泛关往。线性电源工 作于工频,因此用工作频率为 20kHZ 的 PWM 开关电源替代,可大幅度节约能源, 在电源技术发展史上誉为 20kHZ 革命。 随着 ULSI 芯片尺寸不断减小,电源的尺 寸与微处理器相比要大得多;航天,潜艇,军用开关电源以及用电池的便携式电 子设备(如手提计算机,移动电话等)更需要小型化,轻量化的电源。因此对开 关电源提出了小型轻量要求,包括磁性元件和电容的体积重量要小。此外要求开 关电源效率要更高,性能更好,可靠性更高等。