电化学阻抗谱课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电化学阻抗谱
电 化 学 阻 抗 谱 (Electrochemical Impedance Spectroscopy,简写为 EIS),早期的电化 学文献中称为交流阻抗(AC Impedance)。 阻抗测量原本是电学中研究线性电路网 络频率响应特性的一种方法,引用到研 究电极过程,成了电化学研究中的一种 实验方法。
电化学阻抗谱
数据处理的途径
阻抗谱的数据处理有两种不同的途径: • 依据已知等效电路模型或数学模型的数据
处理途径 • 从阻纳数据求等效电路的数据处理途径
电化学阻抗谱
阻纳数据的非线性最小二乘法拟合原理
• 一般数据的非线性拟合的最小二乘法 若且G已是知变函量数X和的m具个体参表量达C式1,:C2,…,Cm的非线性函数,
5. 若在右括号后紧接着有 一个左括号与之相邻, 则在右括号中的复合元 件的级别与后面左括号 的复合元件的级别相同。 这两个复合元件是并联 还是串联,决定于这两 个复合元件的CDC是放 在奇数级还是偶数级的 括号中。
电化学阻抗谱
计算等效电路阻纳
根据上述5条规则,可以写出等效电路的电路 描述码(CDC),就可以计算出整个电路的阻 纳。
电化学阻抗谱
拟合过程主要思想如下 :
假设我们能够对于各参量分别初步确定一个近似 值C0k , k = 1, 2, …, m,把它们作为拟合过程的初 始值。令初始值与真值之间的差值 C0k – Ck = k, k = 1, 2, …, m, 于是根据泰勒展开定理可将Gi 围绕C0k , k = 1, 2, …, m 展开,我们假定各初始值C0k与其真值非常 接近,亦即,k非常小 (k = 1, 2, …, m), 因此可 以忽略式中 k 的高次项而将Gi近似地表达为 :
G=G( X,C1,C2,…,Cm ) 个就C2测,是在量…控要值,制根(C变据mn量的这>X数mn的值)个数,:测值使g量为1得,X值将g12,,来这X…些估2,,参定…g量mn,的。X个n估非时参定线,量值性测C代拟到1 入合,n 非线性函数式后计算得到的曲线(拟合曲线)与实 验有测随量机数误据差符,合不得能最从好测。量由值于直测接量计值算g出i (im=个1,参2,…量,,n) 而只能得到它们的最佳估计值。
• 凡由等效元件串联组 成的复合元件,将这 些等效元件的符号并 列表示。例如凡由等 效元件并联组成的复 合元件,用括号内并 列等效元件的符号表 示。如图中的复合等 效元件以符号(RLC) 表示。复合元件,可 以用符号RLC或CLR 表示
电化学阻抗谱
• 凡由等效元件并联 组成的复合元件, 用括号内并列等效 元件的符号表示。 例如图中的复合等 效元件以符号 (RLC)表示。
电化学阻抗谱
电化学阻抗谱的数据处理与解析
• 数据处理的目的与途径 • 阻纳数据的非线性最小二乘法拟合原理 • 从阻纳数据求等效电路的数据处理方法
(Equivcrt) • 依据已知等效电路模型的数据处理方法
(Impcoat) • 依据数学模型的数据处理方法
(Impd)
电化学阻抗谱
数据处理的目的
1.根据测量得到的EIS谱图, 确定EIS的等效 电路或数学模型,与其他的电化学方法相结 合,推测电极系统中包含的动力学过程及其 机理; 2.如果已经建立了一个合理的数学模型或等 效电路,那么就要确定数学模型中有关参数 或等效电路中有关元件的参数值,从而估算 有关过程的动力学参数或有关体系的物理参 数
G G X (C 1 0 ,,C 0 2,C 0 m )+ 1 m C G k• C k
电化学阻抗谱
S n 1(ig -G i)2n 1(ig -G i01 m C G k• C k)2
在各参数为最佳估计值的情况下,S的数值为最小, 这意味着当各参数为最佳估计值时,应满足下列 m个方程式:
G 0,k1,2,...m , Ck
电化学阻抗谱
可以写成一个由m个线性代数方程所组成的方程组
从方程组 可以解出 1 , 2 , .... , m 的值,将其代 入下式,即可求得Ck 的估算值: Ck = C0k + k, k = 1, 2, …, m, 计算得到的参数估计值Ck比C0k 更接近于真值。在 这种情况下可以用由上式 求出的Ck作为新的初始 值C0k,重复上面的计算,求出新的Ck 估算值 这样的拟合过程就称为是“均匀收敛”的拟合过 程。
电化学阻抗谱
现在用C1,C2,…,Cm表示这m个参量的估计值, 将它们代入到式 (8.2.1) 中,就可以计算出相应于 Xi的Gi 的数值。gi - Gi 表示测量值与计算值之 间的差值。在C1,C2,…,Cm为最佳估计值时, 测量值与估计值之差的平方和S的数值应该最小。 S 就称为目标函数:
S =Σ (gi - Gi )2 由统计分析的原理可知,这样求得的估计值C1, C2,…,Cm为无偏估计值。求各参量最佳估计值 的过程就是拟合过程
4.奇数级的括号表示并联组成的复合元件,偶数级的括 号则表示串联组成的复合元件。把0算作偶数,这一规 则可推广到第0级,即没有括号的那一级。例如,图.3 所表示的等效电路,可以看成是一个第0级的复合元件
电化学阻抗谱
整个等效电路CDC表示为
(C((Q(R(RQ)))(C(RQ))))
第(5)条规则:
电化学阻抗谱
阻纳是一个频响函数,是一个当扰动与响应都是电信号 而且两者分别为电流信号和电压信号时频响函数。
由阻纳的定义可知,对于一个稳定的线性系统,当响 与扰动之间存在唯一的因果性时,GZ与GY 都决定于系 统的内部结构,都反映该系统的频响特性,故在GZ与 GY之间存在唯一的对应关系:Gz = 1/ Gy G是一个随频率变化的矢量,用变量为频率f或其角频
电化学阻抗谱
按规则(1)将这一等效电路表示为:
R CE-1 按规则(2),CE-1可以表示为(Q CE-2)。因 此整个电路可进一步表示为:
R(Q CE-2) 将复合元件CE-2表示成(Q(W CE-3))。整个等效电 路就表示成:
R(Q(W CE-3)) 剩下的就是将简单的复合元件CE-3表示出来。应 表示为(RC)。于是电路可以用如下的CDC表示:
• 线性条件。当一个状态变量的变化足够小,才 能将电极过程速度的变化与该状态变量的关系 作线性近似处理。
• 稳定性条件。对电极系统的扰动停止后,电极 系统能回复到原先的状态,往往与电极系统的 内部结构亦即电极过程的动力学特征有关。
电化学阻抗谱
因果性条件
• 当用一个正弦波的电位信号对电极系统进行 扰动,因果性条件要求电极系统只对该电位 信号进行响应。这就要求控制电极过程的电 极电位以及其它状态变量都必须随扰动信 号——正弦波的电位波动而变化。控制电极 过程的状态变量则往往不止一个,有些状态 变量对环境中其他因素的变化又比较敏感, 要满足因果性条件必须在阻抗测量中十分注 意对环境因素的控制。
电化学阻抗谱
从阻纳数据求等效电路的数据处理方法
电路描述码
我们对电学元件、等效元件,已经用符号 RC、RL或RQ表示了R与C、L或Q串联组 成的复合元件,用符号 (RC) 、(RL) 或 (RQ)表示了R与C、L或Q并联组成的复合 元件。现在将这种表示方法推广成为描述 整个复杂等效电路的方法, 即形成电路 描述码 (Circuit Description Code, 简写为 CDC)。规则如下:电化学阻抗谱
电化学阻抗谱
线性条件
• 由于电极过程的动力学特点,电极过程速度随状态变量的变 化与状态变量之间一般都不服从线性规律。只有当一个状态 变量的变化足够小,才能将电极过程速度的变化与该状态变 量的关系作线性近似处理。故为了使在电极系统的阻抗测量 中线性条件得到满足,对体系的正弦波电位或正弦波电流扰 动信号的幅值必须很小,使得电极过程速度随每个状态变量 的变化都近似地符合线性规律,才能保证电极系统对扰动的 响应信号与扰动信号之间近似地符合线性条件。总的说来, 电化学阻抗谱的线性条件只能被近似地满足。我们把近似地 符合线性条件时扰动信号振幅的取值范围叫做线性范围。每 个电极过程的线性范围是不同的,它与电极过程的控制参量 有关。如:对于一个简单的只有电荷转移过程的电极反应而 言,其线性范围的大小与电极反应的塔菲尔常数有关,塔菲 尔常数越大,其线性范围越宽。
率 的复变函数表示。故G的一般表示式可以写为:
G( ) = G’( ) + j G”( )
电化学阻抗谱
阻抗或导纳的复平面图
• 复合元件(RC)频响特征的阻抗复平面图
电化学阻抗谱
导纳平面图
阻抗波特(Bode)图
复合元件(RC)阻抗波特图
电化学阻抗谱
电化学阻抗谱的基本条件
• 因果性条件:当用一个正弦波的电位信号对电极 系统进行扰动,因果性条件要求电极系统只对 该电位信号进行响应。
电化学阻抗谱
阻抗与导纳
对于一个稳定的线性系统M,如以一个角频率为
的正弦波电信号(电压或电流)X为激励信号
(在电化学术语中亦称作扰动信号)输入该系统,
则相应地从该系统输出一个角频率也是 的正弦
波电信号(电流或电压)Y,Y即是响应信号。Y与 X之间的关系可以用下式来表示:
Y = G( ) X
如果扰动信号X为正弦波电流信号,而Y为正弦波 电压信号,则称G为系统M的阻抗 (Impedance)。如 果扰动信号X为正弦波电压信号,而Y为正弦波电 流信号,则称G为系统M的导纳 (Admittance)。
电化学阻抗谱
阻纳数据的非线性最小二乘法拟合
在进行阻纳测量时,我们得到的测量数据是一 个复数:
G(X)=G’(X) + jG”(X) 在阻纳数据的非线性最小二乘法拟合中目标函 数为: S =Σ (gi’, - Gi’ )2 +Σ (gi” - Gi” )2 或为: S =Σ Wi(gi’, - Gi’ )2 +Σ Wi(gi” - Gi” )2
R(Q(W(RC))) 电化学阻抗谱
R(Q(W(RC)))
第1个括号表示等效元件Q与第2个括号中的复合元件 并联,第2个括号表示等效元件W与第3个括号中的复 合元件串联,而第三个括号又表示这一复合元件是由等 效元件R与C并联组成的。现在我们用“级”表示括号 的次序。第1级表示第1个括号所表示的等效元件,第 2级表示由第2个括号所表示的等效元件,如此类推。 由此有了第(4)条规则:
电化学阻抗谱
稳定性条件
• 对电极系统的扰动停止后,电极系统能否回复到原先的状 态,往往与电极系统的内部结构亦即电极过程的动力学特 征有关。一般而言,对于一个可逆电极过程,稳定性条件 比较容易满足。电极系统在受到扰动时,其内部结构所发 生的变化不大,可以在受到小振幅的扰动之后又回到原先 的状态。
• 在对不可逆电极过程进行测量时,要近似地满足稳定性条 件也往往是很困难的。这种情况在使用频率域的方法进行 阻抗测量时尤为严重,因为用频率域的方法测量阻抗的低 频数据往往很费时间,有时可长达几小时。这么长的时间 中,电极系统的表面状态就可能发生较大的变化
电化学阻抗谱
• 对于复杂的电路,首先将整个电路分解 成2个或2个以上互相串联或互相并联 的“盒”,每个盒必须具有可以作为输 入和输出端的两个端点。这些盒可以是 等效元件、简单的复合元件(即由等效 元件简单串联或并联组成的复合元件)、 或是既有串联又有并联的复杂电路。对 于后者,可以称之为复杂的复合元件。 如果是简单的复合元件,就按规则(1) 或(2)表示。于是把每个盒,不论其 为等效元件、简单的复合元件还是复杂 的复合元件,都看作是一个元件,按各 盒之间是串联或是并联,用规则(1) 或(2)表示。然后用同样的方法来分 解复杂的复合元件,逐步分解下去,直 至将复杂的复合元件的组成都表示出来 为止。
电化学阻抗谱
• 电化学阻抗谱方法是一种以小振幅的正弦波电 位(或电流)为扰动信号的电化学测量方法。 由于以小振幅的电信号对体系扰动,一方面可 避免对体系产生大的影响,另一方面也使得扰 动与体系的响应之间近似呈线性关系,这就使 测量结果的数学处理变得简单。
• 同时,电化学阻抗谱方法又是一种频率域的测 量方法,它以测量得到的频率范围很宽的阻抗 谱来研究电极系统,因而能比其他常规的电化 学方法得到更多的动力学信息及电极界面结构 的信息。
相关文档
最新文档