高考数学压轴专题(易错题)备战高考《平面解析几何》单元汇编附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面解析几何》知识点汇总
一、选择题
1.已知双曲线22
19x y m
-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )
A .34y x =?
B .43y x =±
C .y x =
D .y x = 【答案】B 【解析】
根据题意,双曲线的方程为22
19x y m
-=,则其焦点在x 轴上,
直线5x y +=与x 轴交点的坐标为()5,0, 则双曲线的焦点坐标为()5,0, 则有925m +=, 解可得,16m =,
则双曲线的方程为:22
1916
x y -=,
其渐近线方程为:4
3
y x =±, 故选B.
2.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( ) A .8 B .11 C .13 D .16
【答案】C 【解析】 【分析】
设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】
抛物线2
:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),
由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3, 又线段AB 中点M 的横坐标为
12
2
y y +=5,
∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】
本题考查了抛物线的定义的应用及中点坐标公式,是中档题.
3.已知椭圆2
2
:12
y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,
则m 的取值范围是( )
A .33⎛- ⎝⎭
B .,44⎛- ⎝⎭
C .⎛ ⎝⎭
D .⎛ ⎝⎭
【答案】C 【解析】 【分析】
设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得
002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.
【详解】
设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.
又因为A ,B 在椭圆C 上,所以2211
12y x +=,2
2
2212
y x +=,
两式相减可得
1212
1212
2y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =.
因为点M 在椭圆C 内部,所以2
2
21m m +<,解得m ⎛∈ ⎝⎭
.
故选:C 【点睛】
本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.
4.已知抛物线x 2
=16y 的焦点为F ,双曲线22
145
x y -=的左、右焦点分别为F 1、F 2,点P
是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C
【解析】 【分析】
由题意并结合双曲线的定义可得
1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公
式可得所求最小值. 【详解】
由题意得抛物线2
16x y =的焦点为()0,4F ,双曲线22
145
x y -=的左、右焦点分别为
()()123,0,3,0F F -.
∵点P 是双曲线右支上一点, ∴124PF PF =+.
∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当
2,,F P F 三点共线时等号成立,
∴1PF PF +的最小值为9. 故选C . 【点睛】
解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.
5.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, AF BF +=, 则∠AFB 的最大值为( ) A .
3
π B .
34
π C .
56
π D .
23
π 【答案】D 【解析】 【分析】
设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】
设|AF |=m ,|BF |=n ,
∵AF BF +=,
AB ≥∴213mn AB ≤,
在△AFB 中,由余弦定理得2
2
222()2cos 22m n AB
m n mn AB
AFB mn
mn
+-+--∠=
=
2
12213222
AB mn
mn mn mn mn --=≥=-
∴∠AFB 的最大值为
23
π. 故选:D 【点睛】
本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.
6.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( ) A
.
3
B .
12
C .
23
D
.
2
【答案】B 【解析】 【分析】 由2
(3)4y k x y x
=+⎧⎨
=⎩,得()
22226490k x k x k +-+=,()
22
464360k k ∆=-->,得21
3
k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从
而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解. 【详解】
设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >, 由2
(3)4y k x y x
=+⎧⎨
=⎩,得()
22226490k x k x k +-+=,()
22
464360k k ∆=-->, 所以2
1
3
k <
,129x x =①. 因为1112p FA x x =+
=+,2212
p
FB x x =+=+,且5FA FB =, 所以1254x x =+②. 由①②及20x >得21x =, 所以(1,2)B ,代入(3)y k x =+, 得12
k =
.