接口实验报告-基于51单片机的脉搏温度测试系统-
(完整版)基于C51单片机的脉搏测量仪毕业设计论文

摘要脉搏传感器采样脉搏信号,采用STC89C51单片机作为控制器,脉搏传感器输出方波传入单片机,单片机每接收一个脉冲波形,数码管就计数一次。
脉搏次数超限时用蜂鸣器报警。
三极管加大功率,驱动器件工作。
单片机软件设计,设置中断向量,编程执行。
关键词:STC89C51单片机、脉搏测量仪、软件设计Abstract:Pulse sensor sampling pulse signal, using STC89C51 MCU as controller, pulse sensor output square wave into single chip microcomputer chip, each receiving a pulse waveform, digital tube counting time. Pulse frequency overrun with buzzer alarm. The three transistor to increase power, driving device. MCU software design, set the interrupt vector, programming executive.Key words: STC89C51 monolithic integrated circuit. pulse measuring instrument. Software design.目录引言 (1)1 系统方案选择与论证 (1)1.1 任务 (1)1.2 要求 (1)1.3 系统基本方案 (1)1.3.1各个部分电路的方案选择及论证 (1)1.3.2系统各模块的最终方案 (2)2.系统硬件设计 (3)2.1单片机处理电路 (3)2.1.1STC89C51系列单片机的主要性能特点 (3)2.1.2C51系列单片机的基本组成 (4)2.2 复位电路 (6)2.2.1单片机复位电路 (6)2.2.2测试复位电路 (7)2.3 振荡电路 (7)2.4 脉搏传感器部分 (8)2.4.1HK-2000A 集成化脉搏传感器 (8)2.4.2脉搏传感器接收电路 (9)2.4.3电源电路 (10)2.5显示报警部分 (10)2.5.1数码管显示电路 (10)2.5.2报警电路 (11)3 软件设计 (11)3.1 程序设计 (11)3.2 程序调试 (13)4结论 (18)谢辞 (19)参考文献 (20)附录 (21)引言脉搏波所呈现出来的形态、强度、速率和节律等方面的综合信息,能反映出人体心血管系统中许多生理疾病的血流特征。
基于51单片机的心率体温检测系统设计

基于51单片机的心率体温检测系统设计随着科技的不断进步,智能化设备在日常生活中的应用越来越广泛。
心率体温检测系统作为一种应用广泛的智能设备,可以实时监测人体的心率和体温的变化情况,为人们的健康提供及时准确的数据支持。
本文将介绍一个基于51单片机的心率体温检测系统的设计方案。
一、系统概述本心率体温检测系统由硬件和软件两部分组成,硬件部分包括传感器模块、信号处理模块和显示模块,软件部分则是通过51单片机进行数据的采集和处理,并在显示模块上进行实时的结果显示。
二、硬件设计1. 传感器模块本系统采用心率传感器和体温传感器进行数据的采集。
心率传感器采集心率信号,体温传感器采集体温信号。
这两个传感器通过模拟信号将采集的数据传递给信号处理模块。
2. 信号处理模块信号处理模块对从传感器模块采集到的心率和体温信号进行滤波和放大处理,提高信号的精确性和可读性。
经过处理后的信号将被发送给显示模块进行实时显示。
3. 显示模块显示模块采用OLED显示屏,可以实时显示心率和体温的数值,以及相应的警报信息。
用户可以通过显示屏上的按键进行操作和设定。
三、软件设计1. 数据采集51单片机通过模拟输入引脚采集来自传感器模块的心率和体温信号。
通过定时中断的方式,可以实现对信号的连续采集。
2. 数据处理采集到的数据通过A/D转换进行数字化,并存储到内部RAM中。
通过计算和处理,可以得到心率和体温的准确数值。
3. 数据显示通过串行通信接口,将处理后的数据发送到显示模块,并通过OLED显示屏进行实时展示。
用户可以通过按键控制,实现不同数据的显示切换。
四、系统特点1. 精确性高本系统通过合理的传感器选择和信号处理,可以保证心率和体温数据的准确性,为用户提供可靠的健康数据支持。
2. 实时监测本系统能够实时监测心率和体温的变化情况,并将结果实时显示在屏幕上。
用户可以时刻关注自身的健康状况。
3. 便捷性基于51单片机的心率体温检测系统体积小巧,易于携带和使用。
基于51单片机脉搏测量仪

基于51单片机脉搏测量仪
本文介绍一种用单片机制作的脉搏测量仪,只要把手指放在传感器内,很快就可以精确测出每分钟脉搏数,测量的结果用三位数字显示出来。
一、电路工作原理
电路原理见附图。
电路由传感器电路、信号放大和整形电路、单片机电路、数码显示电路等四部分组成。
传感器由红外线发射二极管和接收二极管组成,测量原理如下:将手指
放在红外线发射二极管和接收二极管之间,血管中血液的流量随着心脏的跳动
变化,由于手指放在光的传递路径中,血管中血液饱和度的变化将引起光的传
递强度变化,此变化和心跳的节拍相对应,因此红外接收二极管的电流也跟着
心跳的节拍改变,使得红外接收二极管输出与心跳节拍相对应的脉冲信号。
该
脉冲信号经F1~F3、R3~R5。
C1、C2等组成的低通放大器放大,
F4、R6、R7、C3组成的放大器进一步放大后,送给由F5、F6、RP1、R8等组成的施密特触发器整形后输出,作为单片机的外部中断信号。
电路中的可变电
阻RP1用来调整施密特触发器的阈值压。
IC2、X1、R10、C5等组成单片机电路。
单片机对由P3.2输入的脉冲信号进行计算处理后,送到数码管显示。
发光二极管VD3作脉搏测量状态显示,脉搏每跳动一次,VD3点亮一次。
三只数码管VT1~VT3、R12-R21等组成数码显示电路。
本机采用动态扫描显示方式,使用共阳数码管,P3.3~P3.5口作三只数码管的动态扫描位驱动码输出,通过三极管VT1-VT3驱动数码管。
P1.0-P1.6口作数码管段码输出。
二、软件设计。
基于单片机的脉搏监测系统设计

基于单片机的脉搏监测系统设计引言当今在医学领域中,生物医学参数的测试研究是医学界和工程技术界都很关心的新兴学科。
运用近代传感器测试技术来解决临床诊断及实验室研究多种参数的计量检测,无论对于临床诊断与监护还是对于医学基础研究,都具有极其重要的价值和意义。
用传感器技术来对脉搏信息进行定量分析,是国内外医学专家普遍关注的课题。
人体脉搏系统是心血管系统的重要组成部分,它是人体输送养料、传递能量和传播各种生理病理信息的重要途径,脉搏包含有丰富的人体健康状况信息。
研究脉搏信息无论是在中医还是西医中都具有重要的临床诊断价值和实用意义。
因为脉搏检测是带有我国中医特色和独有的生物信号检测技术,因此开发研制这样的监测仪器,可以同时满足医、患两方面的需求。
根据对它的特点的分析,预计它的用途将是非常广泛的,特别是如果加有其他的措施之后,如加上自我分析能力部分,它就有着非常明显的社会效益与经济效益,主要体现在以下几个方面:临床诊断、早期诊断、同步监测、指导用药、中医脉象原理的研究。
本课题结合理论研究和具体实践的基础上,对于嵌入式脉搏检测系统的硬、软件和算法作了一些有意义的研究和探讨,提出了一种新的脉搏检测和分析的系统方案。
即采用前端嵌入式+后端系统的结构,前端嵌入式系统负责脉搏信号的采集与初步处理,后端系统进行显示。
前端和后端系统通过无线收发模块进行通讯。
课题现状及研究意义近年来日本、美国等国家的医生、学者在医学研究、针灸研究中设计了一些脉象客观描记仪器或装置,例。
这些仪器的主要功能是描记脉象波形,是用作临床观察脉象变化的工具。
但是这些仪器装置大多数没有形成产品,也没有见到广泛临床应用的报道。
而虽然目前己有的心血管诊疗仪器设备多种多样,例如:比较成熟的技术有心电图检测.x光透视、CT扫描检查、核磁共振、静脉数字减影造影等,还有目前临床应用较多的:超声心动图、放射性核素心血管造影 (核素显像)、心电机械图、阻抗心动图和阻抗微分波图等,但这些手段要么操作复杂、费用昂贵,不容易反复进行检查,要么获得的诊断指标过少,对确诊疾病作用有限,特别是当要全面了解对病人诊断治疗非常重要的心脏血流动力学情况时,大部分体外检测仪器都无能为力了,目前临床只能采取体内插入式导管的检测方法,但这种方法对病人是有着非常大的创伤和风险的,而且要求实施的意愿有相当高的技术与设备条件等等问题。
基于51单片机的温度报警控制系统报告

报告评分批改老师《现代电子综合实验》课程设计报告基于单片机的温度检测控制系统设计学生姓名 学 号专 业 班 级同组学生 提交日期 年 月 日指导教师目录2一、实验目的 .....................................................................................2二、实验要求 .....................................................................................2三、实验开发环境及工具 ...........................................................................2四、按键扫描和液晶显示功能实现 ...................................................................24.1矩阵键盘电路 ...............................................................................4.1.1矩阵键盘电路简介 .....................................................................224.1.2矩阵式按键扫描原理 ...................................................................24.1.3 按键扫描子程序设计思想及流程图 ......................................................34.2 LCD1602显示电路 ..........................................................................34.2.1 LCD1602模块简介 ....................................................................34.2.2 LCD1602模块引脚说明 .................................................................4.2.3 LCD1602控制方式及指令 ..............................................................344.2.4 LCD1602液晶显示子程序设计思想及流程图 ..............................................5五、基于单片机的温度检测控制系统设计过程 .........................................................55.1 系统整体电路框图及功能说明 ................................................................55.2 DS18B20数字温度传感器电路 ..............................................................55.2.1 单总线通信方式简介 ..................................................................65.2.2 DS18B20简介 ......................................................................5.2.3 DS18B20读写操作 ..................................................................665.3 声光报警及控制电路 ........................................................................75.4 软件设计 ..................................................................................5.4.1 主程序设计流程图 ....................................................................775.4.2 DS18B20子程序设计思想及流程图 ...................................................85.4.3 声光报警子程序设计思想及流程图 .....................................................9七、 实验过程及实验结果 ...........................................................................9八、实验中遇到的问题及解决方法 ...................................................................10附件 ............................................................................................一、实验目的(1). 掌握单片机应用系统的设计方法与步骤;(2).掌握硬件电路各功能模块的工作原理、应用电路与编程方法;(3).熟练掌握单总线的应用及编程;(4). 掌握基于单片机的温度检测控制系统的设计与实现。
基于单片机的脉搏测量仪的设计与实现

设计原理
PART 2
设计原理
脉搏测量主要依赖于光电容积法(PPG)进行测量。这种方法是通过将一束 光束照射到人体组织上,当心脏泵血时,由于血液的透光性不同,光束的 反射或传输会发生变化。通过检测这种变化,我们可以测量出脉搏
在具体的设计中,我们使用51单片机作为主控制器,配合LED光源和光电 传感器来执行PPG测量。当血液流经手指时,LED光源会照射到手指,并 由光电传感器接收反射回来的光线。这个反射光信号经过51单片机的处理 后,就可以转换为脉搏信号
20XX
基于51单片机的脉搏 测量仪的设计与实现
-
目录
1 引言 2 设计原理 3 硬件设计 4 软件设计 5 实验结果与讨论
引言
PART 1
引言
在日常生活和医疗领域,脉搏 测量仪是一种非常常见且有用
的设备
它能有效地监测人体的健康状 况,特别是在心脏和血液循环
方面
基于51单片机的脉搏测量仪设 计,不仅实现了基本的脉搏测 量功能,还具有低成本、便携
硬件设计
PART 3
硬件设计
51单片机
51单片机是最常用的微控制器之一,具有高 可靠性和低功耗的优点。它内置了丰富的外 设和存储器,非常适合用于脉搏测量仪的设 计
硬件设计
LED光源和光电传感器
LED光源和光电传感 器是实现PPG测量的 关键部件。我们选择 具有稳定光输出和抗 干扰能力的LED,同 时配套的光电传感器 也需要具备高灵敏度 和低噪声的特点
信号
最后:程序将脉搏值通过 串口发送到连接的电脑上,
或者直接在51单片机的液 晶显示屏上显示
软件设计
需要注意的是,由于环境的 干扰可能会对PPG测量产生 影响,因此在软件设计中, 我们需要加入滤波算法来处 理这些干扰,以提高测量的
单片机脉搏计实训报告

一、实训目的1. 掌握单片机的应用方法和基本编程技巧。
2. 熟悉脉搏计的工作原理和硬件电路设计。
3. 学会使用单片机实现脉搏计的测量和显示功能。
4. 提高动手能力和团队合作能力。
二、实训环境1. 实训设备:51单片机开发板、脉搏传感器、LCD显示屏、电阻、电容等电子元件。
2. 软件环境:Keil C51软件、Proteus仿真软件。
三、实训原理1. 脉搏传感器原理:脉搏传感器是一种无创测量人体脉搏的传感器,它将脉搏的机械振动转化为电信号。
当脉搏通过传感器时,传感器内部的振动元件会产生相应的电信号,该信号经过放大、滤波等处理后,即可得到与脉搏相对应的电压信号。
2. 单片机原理:单片机是一种集成了CPU、RAM、ROM、I/O接口等功能的微型计算机。
在本实训中,我们使用51单片机作为核心控制单元,通过编写程序实现对脉搏信号的采集、处理和显示。
3. LCD显示屏原理:LCD显示屏是一种低功耗、高清晰度的显示设备。
在本实训中,我们使用LCD显示屏显示脉搏计的测量结果。
四、实训过程1. 硬件电路设计(1)设计脉搏传感器电路:将脉搏传感器与单片机连接,通过放大电路放大传感器输出的微弱信号。
(2)设计单片机电路:将单片机与LCD显示屏、按键等外围电路连接。
2. 软件编程(1)编写脉搏信号采集程序:使用单片机的A/D转换功能,将脉搏信号转换为数字信号。
(2)编写脉搏信号处理程序:对采集到的脉搏信号进行滤波、去噪等处理。
(3)编写LCD显示程序:将处理后的脉搏信号显示在LCD显示屏上。
(4)编写按键控制程序:实现按键控制LCD显示内容的功能。
3. 联调测试(1)连接电路:将设计的电路连接到单片机开发板上。
(2)软件编译:将编写的程序编译成hex文件。
(3)程序烧录:将编译好的hex文件烧录到单片机中。
(4)测试:观察LCD显示屏上显示的脉搏计测量结果,检查程序是否正常运行。
五、实训结果1. 成功实现了脉搏信号的采集、处理和显示。
基于51单片机心率脉搏计设计和实现机械自动化专业

目录摘要 (I)Abstract (II)引言 (1)1 控制系统设计 (3)1.1 系统方案设计 (3)1.2 系统总体设计 (4)2 硬件设计 (5)2.1 主控电路 (5)2.2 驱动电路 (8)2.3 信号采集电路 (10)2.4 显示电路 (13)2.5 总体电路图设计 (15)3 软件设计 (16)3.1 软件开发环境的介绍 (16)3.2 系统重要函数介绍 (16)4 系统调试 (19)4.1 系统硬件调试 (19)4.2 系统软件调试 (19)结论 (22)参考文献 (23)附录1 总体原理图设计 (25)附录2 源程序清单 (26)致谢 (30)摘要为实现探究心率脉搏计的应用领域,测量心率能够高效的进行,在节省时间的同时准确显示心率相关状况是否存在异常的目标,本文设计了一款操作简单、运行稳定、可靠性高的心率脉搏计。
本设计使用STC89C51单片机作为控制核心,结合ST188光电传感器检测,再借用单片机系统的内部计时器计算时间。
其大致的步骤为通过ST188光电传感器感应生成脉冲,心跳次数由单片机累计所得,其对应的时间根据定时器获取。
本设计使用的时候可以展现脉搏心率次数当其终止使用的时候可以展示总的脉搏心率次数以及时间长短。
由于一些现实状况的存在我们应当实施下述的相关内容:一是了解系统功能的同时可以进行需求分析;二是机体内部生物信号大都在充满噪音状况里,频率和信号很弱,应该放大并且进行滤波处理;三是所有的硬件设备以及对弱信号的处理都应整合在一起,这样能够让人体脉搏信号转化为电信号。
还能够通过C语言这种方式进行编程,而且实现构建屏显等作用。
相关结果能够说明,心率脉搏计设计在技术方面有一定的可行性,基本上符合精度标准。
能够确保基础脉冲测量功能的同时又可以确保测量的精准度且使用单片机控制确保了系统准确稳定。
传感器采用光电传感器,大大降低了外界干扰信号的干扰。
显示器运用液晶显示器,显示效果更好,且易于操作。
基于51单片机的脉搏心率测量仪-参考论文

基于51单片机的脉搏测量仪摘要:脉搏心率测量仪在我们的日常生活中已经得到了非常广泛的应用。
为了提高脉搏心率测量仪的简便性和精确度,本课题设计了一种基于51单片机的脉搏心率测量仪。
系统以STC89C51单片机为核心,以红外反射式传感器ST188为检测原件,并利用单片机系统内部定时器来计算时间,由红外反射式传感器ST188感应产生脉冲,单片机通过对脉冲累加得到脉搏心率跳动次数,时间由定时器定时而得。
系统运行中能显示脉搏心率次数和时间,系统停止运行时,能够显示总的脉搏心率次数和时间。
经测试,系统工作正常,达到设计要求。
关键词:脉搏心率测量仪;STC89C51单片机;红外反射式传感器一脉搏心率测量仪系统结构脉搏心率测量仪的设计,必须是通过采集人体脉搏心率变化引起的一些生物信号,然后把生物信号转化为物理信号,使得这些变化的物理信号能够表达人体的脉搏心率变化,最后要得出每分钟的脉搏心率次数,就需要通过相应的硬件电路及芯片来处理物理变化并存储脉搏心率次数。
在硬件设计中一般的物理信号就是电压变化。
1.1 光电脉搏心率测量仪的结构光电脉搏心率测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏心率跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。
本系统的组成包括光电传感器、信号处理、单片机电路、数码管显示电路、电源等部分。
1.光电传感器即将非电量(红外光)转换成电量的转换元件,它由红外发射二极管和红外接收三极管组成,它可以将接收到的红外光按一定的函数关系(通常是线性关系)转换成便于测量的物理量(如电压、电流或频率等)输出。
2.信号处理即处理光电传感器采集到的低频信号的模拟电路(包括放大、滤波、整形等)。
3. 单片机电路即利用单片机自身的定时中断计数功能对输入的脉冲电平进行运算得出心率(包括STC89C51、外部晶振、外部中断等)。
4.数码管显示电路即把单片机计算得出的结果用四位一体数码管显示出来。
5. 电源即向光电传感器、信号处理、单片机提供的电源,采用直流5V 电源供电。
基于单片机的脉搏测量仪的设计

安徽工程大学毕业设计(论文)基于单片机的脉搏测量仪的设计摘要脉搏测量仪在我们的日常生活中已经得到了非常广泛的应用。
为了提高脉搏测量仪的简便性和精确度,本课题设计了一种基于51单片机的脉搏测量仪。
系统以AT89C51单片机为核心,以红外发光二极管和光敏三极管为传感器,并利用单片机系统内部定时器来计算时间,由光敏三极管感应产生脉冲,单片机通过对脉冲累加得到脉搏跳动次数,时间由定时器定时而得。
传感器把采集到的用于检测脉搏跳动的红外光转换成电信号,这些电信号通过信号处理系统进行滤波、放大、整形得到符合要求的脉搏电信号,传给单片机,并通过单片机进行处理,最后由数码管显示每分钟的脉搏次数。
系统停止运行时,能够显示总的脉搏次数和时间。
经测试,系统工作正常,达到设计要求。
这样的脉搏测量系统性能良好,结构简单,耗电低,体积小,输出显示稳定。
通过该课题学习掌握了脉搏测量的原理、方法、实现过程。
学会了相关的单片机知识,能够较全面的融合电路、电子技术、信号采集和处理、程序设计等等的专业知识。
随着电子技术的发展,脉搏测量技术也越来越先进,对脉搏的测量精度也越来越高,脉搏测量仪的发展主要向以下几个趋势发展:(1)自动测量脉搏并且对所得到的脉搏进行自动分析。
(2)数字化技术等先进技术的应用。
(3)多功能化越来越明显。
关键词:AT89C51单片机;脉搏测量仪;传感器;信号采集基于单片机的脉搏测量仪的设计The Design of Pulse Measuring Instrument Based on MicrocomputerAbstractPulse measuring instrument in our daily lives has been a very wide range of applications. In order to improve the simplicity and accuracy of the pulse measuring instrument, the subject is designed based on 51 single-chip pulse measuring instrument. System uses AT89C51 microcontroller as the core, the infrared light-emitting diode and the photosensitive triode as sensor, and calculates time with using of the inner timer. The sensor produces pulse and the single-chip microcomputer gets the frequency by accumulating the pulses, and the timer obtains the time. Sensor collected for detecting the pulse of infrared light is converted into electrical signals, these electrical signals by the signal processing system, filtering, amplification, shaping meet the requirements of the pulse signal transmitted to the microcontroller, and processed by the microcontroller, and finally from the digital display pulse rate per minute. When the system stops running, it is possible to display the total of the pulse frequency and time. After testing, the system works well and meets the design requirements.The pulse measurement system performance is good, simple structure, low power consumption, small volume, stable output display. Through the study of the subject grasps the pulse measurement principle, method and implementation process. Learned the related knowledge of single chip microcomputer, can more comprehensive integration of circuit, electronic technology, signal acquisition and processing, program design, and so on professional knowledge.With the development of electronic technology, pulse measurement techniques become more and more advanced, the pulse measurement accuracy is getting higher and higher, the pulse measuring instrument development mainly to the following trends:(1) Automatic measuring pulse and the pulse generated by automatic analysis.(2) The application of the advanced technologies such as digital technology.(3) More functional is more and more obvious.Keywords: AT89C51 microcontroller; pulse measuring instrument; sensor; signal acquisition安徽工程大学毕业设计(论文)目录引言 ............................................................................................................................. 错误!未定义书签。
基于51单片机的心率体温检测系统设计

目录摘要 (I)Abstract (II)引言 (1)1 控制系统设计 (2)1.1 主控系统方案设计 (2)1.2 脉搏传感器方案设计 (3)1.3 系统工作原理 (5)2 硬件设计 (6)2.1 主电路 (6)2.1.1 单片机的选择 (6)2.1.2 STC89C51的主要功能及性能参数 (6)2.1.3 STC89C51单片机引脚说明 (6)2.2 驱动电路 (8)2.2.1 比较器的介绍 (8)2.3放大电路 (8)2.4最小系统 (11)3 软件设计 (13)3.1编程语言的选择 (13)3.2 Keil程序开发环境 (13)3.3 STC-ISP程序烧录软件介绍 (14)3.4 CH340串口程序烧写模块介绍 (14)4 系统调试 (16)4.1 系统硬件调试 (16)4.2 系统软件调试 (16)结论 (17)参考文献 (18)附录1 总体原理图设计 (20)附录2 源程序清单 (21)致谢 (25)摘要随着日新月异科技发展,在心率体温测量方面,我们取得了迅速的发展,就近日而言,脉搏测量仪已经在多个领域大展身手,除了在医学领域有所建树,在人们的日常生活方面的应用也不断拓展,如检疫中心的额温枪都用到了技术先进的脉搏测量仪。
在今年的疫情爆发的同时,我们可以积极应对,利用所学的知识,方便高效地检测出人体有无异常体温,在上学签到时,我们可以利用此来检测温度,预防集体性感染事件。
为了在心率测量仪的精准性和便携性方面做出重大改变,我计划设计一种以51单片机为核心的心率体温测量仪。
我们的心率体温检测系统以STC89C51单片机为核心,借用单片机系统的内部计时器计算时间。
其大致的步骤为通过ST188光电传感器感应生成脉冲,心跳次数由单片机累计所得,其对应的时间根据定时器获取。
本设计使用的时候可以展现脉搏心率次数以及时间长短,当其终止使用的时候可以展示总的脉搏心率次数以及时间长短。
经过我的个人测试,系统成功运行,符合设计要求。
基于51单片机的心率体温检测程序 (2)

基于51单片机的心率体温检测程序引言心率体温检测在医疗行业中具有重要的意义。
传统的心率体温检测设备通常较为复杂且体积较大,而近年来,随着51单片机技术的不断进步,通过单片机来实现心率体温检测变得更加简便和便携。
本文将介绍一种基于51单片机的心率体温检测程序。
心率检测原理心率检测的原理是通过测量心脏搏动的频率来推测心率。
常用的方法是将一个光传感器放置在皮肤上,通过光的反射来检测血液的流动情况。
当血液流动时,反射的光强度会发生变化。
通过测量光传感器的输出电压变化,可以计算出心率。
体温检测原理体温检测的原理是通过测量人体的温度来推测体温。
常见的方法是使用温度传感器,将其放置在人体的腋下或口腔内。
传感器会感应到人体的温度变化,并将温度转化为电信号。
通过测量传感器的输出电压或电流,可以获得人体的体温。
设备列表•51单片机开发板•光传感器•温度传感器•LCD显示屏•连接线硬件连接1.将光传感器连接到51单片机的模拟输入引脚。
2.将温度传感器连接到51单片机的模拟输入引脚。
3.将LCD显示屏连接到51单片机的数字输出引脚。
软件实现1.配置51单片机的模拟输入引脚和数字输出引脚。
2.在主程序中循环执行以下动作:–读取光传感器的输出电压,并计算出心率。
–读取温度传感器的输出电压或电流,并计算出体温。
–将心率和体温值显示在LCD屏幕上。
以下是伪代码示例:#include <reg51.h>sbit LightSensor = P1^0;sbit TempSensor = P1^1;sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;void ReadLightSensor(){// 读取光传感器的输出电压}void ReadTempSensor(){// 读取温度传感器的输出电压或电流}void DisplayData(){// 在LCD屏幕上显示心率和体温值}void main(){while(1){ReadLightSensor();ReadTempSensor();DisplayData();}}总结基于51单片机的心率体温检测程序是一种简便和便携的心率体温检测解决方案。
基于单片机的人体脉搏测量系统设计

基于单片机的人体脉搏测量系统设计随着科技的不断进步,越来越多的人开始关注自己的健康状况,其中对于心脏健康的关注尤为重要。
传统的心率测量需要使用手触碰心跳位置计算心率,而随着技术的发展,基于单片机的人体脉搏测量系统逐渐走进人们的视野,能够更加精确地测量心率,具有更高的准确性。
本文将介绍一种基于单片机的人体脉搏测量系统的设计原理和实现方式。
一、设计原理本文所述的基于单片机的人体脉搏测量系统采用Pulse Sensor传感器,该传感器具有LO(三极管发光二极管加敏感电阻触发)和DO(数字输出)两个引脚。
当心跳发生时,脉搏信号会引起手指皮肤上的毛细血管变形,从而引起皮肤亮度的变化,Pulse Sensor通过检测这种亮度变化来识别脉搏信号。
二、实现方式1.硬件设计系统的硬件主要包括Pulse Sensor传感器、按键、LCD 显示屏、电源电路和单片机。
其中,Pulse Sensor的引脚需要分别连接到Vcc、GND、以及单片机上的AD0口。
并通过加一个削峰平均电路(RC滤波电路)来检测脉搏的特征在信号中的存在,同时提高抗干扰能力和减小毛刺干扰。
2.软件设计a.初始化系统开机后,初始化中断、ADC模块和LCD模块,并开始一次ADC转换和推力器中断的使能。
b.中断处理当传感器检测到信号时,会产生一个中断,同时启动ADC转换,并在数据转换完成后通过DMA传输数据。
c.数据处理通过对脉搏信号进行滤波、均值化和去噪,得到脉搏波形图,并将其实时显示在LCD屏幕上。
同时,通过对脉搏信号进行FFT(快速傅里叶变换)处理,得到脉搏信号的频域波形,从而得到人体的心率数据。
d.功能实现利用相关算法计算出实时的心率数据,并将其实时显示在LCD屏幕上,同时将心率数据保存在系统内存中,并可以通过按键遥控查看历史心率数据和图形。
三、总结基于单片机的人体脉搏测量系统的设计可以实现更加准确的心率测量,使人们更加了解自己的健康状况。
其设计原理和实现方式比较简单,可以方便地应用于普通家用电器和医疗设备中。
基于51系列单片机的穿戴式脉搏检测系统设计

^mmmm2021年第01期(总第217期)基于51系列单片机的穿戴式脉搏检测系统设计杨晔,贾炀,部秋月,林晓亮,卢亚君(齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006)摘要:该系统设计了一种智能穿戴式脉搏检测系统,该系统使用S T C89C51为主控芯片,通过红外光电传感器检测出使 用者血液的光信号并经过处理转换成脉搏数据呈现给使用者,快捷方便。
同时,使用者还可以使用Android手机通过蓝 牙来接收脉搏情况,实现对使用者脉搏的实时监控功能。
经过测试,该设计实现了预设功能,很大程度上解决了病患脉 搏检测难的问题。
关键词:S T C89C51,脉搏检测,蓝牙,Android中图分类号:TP212.9 文献标识码:A文章编号:2096-9759(2021 )01-0122-03Design of wearable Pulse detection System based on 51 series single chip microcomputerYang Ye,Jia Yang,Zou Qiuyue,Lin Xiaoliang,Lu Yajun(School of communication and electronic engineering,Qiqihar University,Heilongjiang,161006) Abstract:The system designs an intelligent wearable pulse detection system.The system uses S T C89C51 as the main control chip, detects the light signal of the user's blood through the infrared photoelectric sensor, and transforms i t into the pulse data to present to the user,which i s fast and convenient.At the same time,users can also use the A n droid phone to receive the pulse situation through Bluetooth, so as to realize the real-time monitoring function of the user's pulse.After testing,the design realizes the preset function and solves the problem of patients'pulse detection to a great extent.Key words:S T C89C51; pulse detection;Bluetooth;Android〇引言随着国民生活水平的不断提高,民众对健康问题也越加 重视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要接口实验报告题目:脉搏波体温自动采集系统院(系):电子工程与自动化学院专业:仪器仪表工程学生姓名:学号:****:**职称:教授20 年8月28日I摘要本文介绍了一种基于51单片机的心率体温采集系统。
首先介绍了51系列单片机的内部相关配置、工作原理以及编程方法,其次介绍了温度传感器PT100的相关测温方法以及通过红外光电传感器TCRT5000对射的方法来抓取人体脉搏信号。
此次设计的电路部分主要包括:传感测量电路、放大电路、滤波整形电路、AD转换电路、控制电路、电源供电电路等。
上位机为通过VC编程界面。
通过上位机按键控制,将PT100及TCRT5000输入的微弱信号进行放大整形,最后AD采集转换传送给单片机,在上位机界面上显示相关体温及心率信息。
本次硬件设计基于比较稳定可行、低成本的设计思想,软件设计采用模块化的设计方法,并且详细分析了红外传感器TCRT5000应用于心率测量上以及PT100应用于温度测量上的原理及优点,阐述了其他各配合电路的组成与工作特点,并且通过仿真进行电路的可行性验证,最后完成实物电路的设计,使得本次课题的预期结果得以实现。
关键词:51单片机;传感器;仿真;AD转换AbstractAbstractThis paper introduced a heart rate and body temperature acquisition system that based on 51 single chip microcomputer. First the internal configurations of 51 single chip microcomputer are introduced. And the paper also tell how 51 single chip microcomputer works and how can we program on it. Then the method of using temperature sensor PT100 to get body temperature is introduced, and we use infrared photoelectric sensor TCRT5000 to get the pulse signal of human body.The design of the circuit mainly comprises sensing circuit, amplifying circuit, filtering and shaping circuit, AD converting circuit, counting and displaying circuit, controlling circuit, power supplying circuit and so on. When the keyboard is pressed, the system starts to get signal. The small signal from PT100 and TCRT5000 will be amplified and shaped. Then ad converter will change the analog signal into digital signal and send to 51 single chip microcomputer. At last LCD1602 will display the information of body temperature and heart rate.Keywords: Piezoelectric sensors;control circuit;counters;Multisim2001 simulation software control circuit.III第一章引言1.1 心率体温测试计研究的意义随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。
在三大信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术和脉搏测量技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的身体健康与自身的体温和脉搏息息相关。
心率指人体心脏每分钟脉搏的次数。
它是反映心脏是否正常工作的一个重要参数,同时心率值也是衡量体力劳动强度和脑力劳动强度的重要指标。
因此心率的测量是一种评价病人生理状况很好的方法。
心率计是用于测量心率值的医疗设备,它的应用在于心血管疾病的研究和诊断方面也发挥出显著的作用,它们所能记录的心脏活动时的生物电信号,已成为临床诊断的重要依据。
体温,通常指人体内部的温度,正常人腋下温度为36-37度,测量方法有口测发、腋测法及肛测法。
人体的温度是相对恒定的,正常人在24小时内体温略有波动,一般相差不超过1度。
生理状态下,早晨体温略低,下午略高。
运动、进食后等体温稍高,老年人体温偏低。
体温达到37.5-38度称为低热,38-39度为中度发热,39-40度为高热,40度以上为超高热。
如体温高于41度或低于25度时将严重影响各系统的机能活动,甚至危害生命。
临床上对病人检查体温,观察其变化对诊断疾病或判断某些疾病的预防有重要的意义。
脉搏和体温的异常表明人体遭受了某些疾病,在古代中医采用的方法中就有把脉这一项,就现代来说心率作为一项重要的生理指标被广泛的研究,在非典时期体温的测量尤为重要,现代医学的不断发展和进步,使人们对各种测量仪器的要求越来越高,而心率和体温的测量是一种评价人生理状况的好方法,可见研究体温、心率的测量方法和装置的重要性。
作为现代电子仪器与医学相结合的一个重要应用课题,具有深远意义。
1.2 国内外研究现状随着社会的进步,科学技术的发展,特别是近20年来,电子技术日新月异,计算机的普及和应用把人类带到了信息时代,各种电器设备充满了人们生产和生IV产和生活的各个领域,相当大一部分的电器设备都应用到了传感器件,传感器技术是现代信息技术中主要技术之一,在国民经济建设中占据有极其重要的地位。
在医疗诊断中,快速脉搏测定已从传统的测量方法向多参数生命体征监护仪和自动脉搏测量仪发展。
由于其操作简单、快捷、准确、可定时、可记忆存储数据等功能特点,不仅减轻了医务人员的工作强度,也使医疗手段得以现代化、高科技化。
新技术和新工艺使传感器和实验室仪表两者成为同一个芯片,这是全新的提高。
这种多元化的测量系统正朝着体积小,功耗低、使用灵活、便于携带,适合于社区和住院病房使用,有较强的分析能力,可扩展等方向发展。
如与PC 机进行通信,将采集到的脉搏信号通过无线网络传输到PC 端,从而实现远程医疗等。
现今多数医生用听诊器测量脉搏,医用脉搏计可以精确测出心率,并且可以测出心肌收缩力度,从而判断病人的健康状况;而家用脉搏计只需测出脉搏的频率,功能简单,数字脉搏计正好适应了这一要求,使用简单,便于携带。
而目前市场上许多有关血压、脉搏。
体温等电子仪器体积小,使用方便,但相对的价格比较贵。
目前的脉率采集主要有三种方法:采用一对红色发光二极管实现、采用反射式的红外管实现和采用压电陶瓷芯片实现。
采用红色发光二极管,当血液送到人体组织时,组织的半透明度减小,当血液流回心脏时,半透明度增大。
当使用红外发光二极管产生的红外线照射到人体手指等部位时,可通过检测机体组织的透明程度将其转换成电信号,最后将该信号进行整形,就可以得出人体每分钟的脉搏次数。
而当采用反射式的红外管,目前市场上脉率计普遍采用这种传感器来采集信号,因为红外接收和发射处于手指的同一侧,所以不用考虑每人的手指不同而造成的麻烦,但是得到信号也是比较困难的事。
采用压电陶瓷片通过脉搏的跳动来采集信号,随着心脏的跳动,人体手腕的脉搏和颈部的脉搏比较明显,将压电传感器放在上述部位,把压电传感器测得的信号转换成脉冲同样可得出脉搏次数。
自20世纪50年代以来,科学家对于脉学的理论、脉诊方法、临床诊断和实验研究等方面均开展了大量工作,取得了较大进展。
脉象的客观化研究集中在脉象仪的研制方面。
脉象传感器是脉象仪的关键部分。
英国人Marey最早设计了以弹簧为动力的杠杆式脉搏传感器,并记录了桡动脉脉搏波。
1860年首次出现杠杆和压力鼓式描述脉搏图,1895年开始采用换能的方式,出现了杠杆式光学脉搏描述器。
20世纪50年代我国学者朱颜首次将杠杆脉搏描述器引用到中1医脉诊的研究中来。
自20世纪70年代至今,研究人员已研制出种类繁多的换能器以模拟中医切脉的手指采集脉搏信号并记录。
目前应用的脉象传感器种类繁多,根据其工作原理可分为4种:通过感受脉动处压力的变化而描述脉搏图的压力传感器;通过感受脉管容积的变化来描述脉象的光电传感器;利用声学原理,拾取由脉搏引起的振动即所谓听信号的传声器;还有超声多普勒检测技术。
温度传感器从使用的角度大致分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定距离,通过检测从待测物体放射出的红外线达到测温目的。
其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。
热电阻传感器可分为金属热电阻式和半导体热电阻式两类。
前者简称热电阻,后者简称热敏电阻。
常用的热电阻材料有铂,铜,镍,铁等,它们具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻传感器有PT100。
目前的智能温度传感器(数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。
近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司的DS18B20,MAXIM公司的MAX6576,MAX6577,ADI公司的AD7416等,这些芯片的显著特点是单片机接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质为数字输出,而ADI公司的AD7416的数字接口则为近年比较流行的I2C总线,这些本身带数字接口的温度传感器芯片给用户带来了极大的方便,但是也存在着比较大的缺点,它们的测温范围太窄,一般只有-55-125度之间,而且温度的测量精度不高,一般有2度左右误差,因此在高精度场合不太满足用户的需要。
热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单,制造方便,测温范围宽,热惯性小,准确度高,输出信号便于远传等优点。