图们市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图们市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. △ABC 的内角A ,B ,C
所对的边分别为,,,已知a =
b =
6
A π
∠=
,则
B ∠=( )111]
A .
4π B .4π或34π C .3π或23π D .3
π
2.
若椭圆
和圆
为椭圆的半焦距),有四个不同的交点,则
椭圆的离心率e 的取值范围是( ) A
.
B
.
C
. D
.
3. 已知M 是△ABC
内的一点,且
=2
,∠BAC=30°,若△MBC ,△MCA 和△MAB
的面积分别为
,x ,y
,则
+的最小值是( )
A .20
B .18
C .16
D .9
4. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3
D .﹣1或﹣3
5. 如图,长方形ABCD 的长AD=2x ,宽AB=x (x ≥1),线段MN 的长度为1,端点M 、N 在长方形ABCD 的四边上滑动,当M 、N 沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数y=f (x )的图象大致为( )
A
. B
. C
. D
.
6. 直径为6的球的表面积和体积分别是( )
A .144,144ππ
B .144,36ππ
C .36,144ππ
D .36,36ππ 7. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .2
8. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x
B x x R =≤∈,则集合U A
C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范
围是( )
A .(0,1)
B .(1,+∞)
C .(﹣1,0)
D .(﹣∞,﹣1)
10.已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定
11.函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f (
)的值为( )
A .
B .0
C .
D .
12.设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )
A .
B .
C .
D .
二、填空题
13.已知α为钝角,sin (
+α)=,则sin (
﹣α)= .
14.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.
15.不等式的解为 .
16.在
中,角
、
、
所对应的边分别为、、,若
,则
_________
17.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .
18.直线ax+
by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐
标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .
三、解答题
19.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金. (1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
20.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .
(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:31
3b a
+≥.
21.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.
22.已知全集U=R ,函数y=+
的定义域为A ,B={y|y=2x
,1≤x ≤2},求:
(1)集合A ,B ;
(2)(∁U A)∩B.
23.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)(1)求点C到直线AB的距离;
(2)求AB边的高所在直线的方程.
24.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.
(Ⅰ)求数列{a n}通项公式;
(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.
图们市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】
试题分析:由正弦定理可得
:()
,sin0,,
sin24
sin
6
B B B
B
π
π
π
=∴=∈∴=或
3
4
π
,故选B.
考点:1、正弦定理的应用;2、特殊角的三角函数. 2.【答案】A
【解析】解:∵
椭圆
和圆为椭圆的半焦距)的中心都在原点,
且它们有四个交点,
∴
圆的半径,
由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,
∴;
由,得b+2c<2a,
再平方,b2+4c2+4bc<4a2,
∴3c2+4bc<3a2,
∴4bc<3b2,
∴4c<3b,
∴16c2<9b2,
∴16c2<9a2﹣9c2,
∴9a2>25c2,
∴,
∴.
综上所述,.
故选A.
3.【答案】B
【解析】
解:由已知得=bccos∠
BAC=2⇒bc=4,
故S△ABC=x+y+=bcsinA=1⇒x+y=,
而+=2(+)×(x+y)
=2(5++)≥2(5+2)=18,
故选B.
【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算.要注意灵活利用y=ax+的形式.
4.【答案】A
【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,
所以=≠,
解得a=﹣3,或a=1.
故选:A.
5.【答案】C
【解析】解:∵线段MN的长度为1,线段MN的中点P,
∴AP=,
即P的轨迹是分别以A,B,C,D为圆心,半径为的4个圆,以及线段GH,FE,RT,LK,部分.
∴G的周长等于四个圆弧长加上线段GH,FE,RT,LK的长,
即周长==π+4x﹣2+2x﹣2=6x+π﹣4,
面积为矩形的面积减去4个圆的面积,即等于矩形的面积减去一个整圆的面积
为,
∴f(x)=6x+π﹣4﹣=,是一个开口向下的抛物线,
∴对应的图象为C,
故选:C.
【点评】本题主要考查函数图象的识别和判断,根据条件确定点P的轨迹是解决本题的关键,综合性较强,难度较大.
6. 【答案】D 【解析】
考点:球的表面积和体积. 7. 【答案】C
【解析】解:∵复数(2+ai )2=4﹣a 2
+4ai 是实数,
∴4a=0, 解得a=0. 故选:C .
【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.
8. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
9. 【答案】A
【解析】解:函数f (x )=
的图象如下图所示:
由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点, 即方程f (x )=k 有两个不同的实根, 故选:A
10.【答案】C
【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02
>4,
求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,
故直线和圆C 相交,
故选:C.
【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.11.【答案】C
【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.
再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,
故f(x)=sin(2x﹣),
故f()=sin(﹣)=sin=,
故选:C.
【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.
12.【答案】B
【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.
故选B.
【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.
二、填空题
13.【答案】﹣.
【解析】解:∵sin(+α)=,
∴cos(﹣α)=cos[﹣(+α)]
=sin(+α)=,
∵α为钝角,即<α<π,
∴<﹣,
∴sin(﹣α)<0,
∴sin(﹣α)=﹣
=﹣
=﹣,
故答案为:﹣.
【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.
14.【答案】或 【解析】
试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.
【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.
15.【答案】 {x|x >1或x <0} .
【解析】解:
即
即x (x ﹣1)>0 解得x >1或x <0
故答案为{x|x >1或x <0}
【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解
以解集形式写出
16.【答案】
【解析】 因为,所以
,
所以 ,所以
答案:
17.【答案】32
【解析】
试题分析:由题意得11,422
k α
α==⇒=∴32k α+=
考点:幂函数定义
18.【答案】.
【解析】解:∵△AOB是直角三角形(O是坐标原点),
∴圆心到直线ax+by=1的距离d=,
即d==,
整理得a2+2b2=2,
则点P(a,b)与点Q(1,0)之间距离d==≥,
∴点P(a,b)与点(1,0)之间距离的最小值为.
故答案为:.
【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.
三、解答题
19.【答案】
【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,
奖金的可能取值是0,30,60,240,
∴一等奖的概率P(ξ=240)=,
P(ξ=60)=
P(ξ=30)=,
P(ξ=0)=1﹣
∴变量的分布列是ξ
∴E ξ==20
(2)由(1)可得乙一次抽奖中奖的概率是1﹣
四次抽奖是相互独立的
∴中奖次数η~B(4,)
∴Dη=4×
【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.
20.【答案】
【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.
21.【答案】
【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),
∴log a4=2,a=2,则g(x)=log2x.…
∵函数y=f(x)的图象与g(X)的图象关于x轴对称,
∴.…
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴,
即,解得1<x<3,
所以x的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
22.【答案】
【解析】解:(1)由,解得0≤x≤3
A=[0,3],
由B={y|y=2x,1≤x≤2}=[2,4],
(2))∁U A=(﹣∞,0)∪[3,+∞),
∴(∁U A)∩B=(3,4]
23.【答案】
【解析】解(1)∵,
∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,
∴根据点到直线的距离公式,点C到直线AB的距离为;
(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,
由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.
24.【答案】
【解析】(Ⅰ)解:由4S n=(a n+1)2,
令n=1,得,即a1=1,
又4S n+1=(a n+1+1)2,
∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.
∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,
∴a n=1+2(n﹣1)=2n﹣1;
(Ⅱ)证明:由(Ⅰ)可知,b n==,
则b1+b2+…+b n=
=
=.。