第19章第2课函数自变量的取值范围课件-人教版八年级数学下册(共19张PPT)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)当 Q=80 时,600-40t=80,解得 t=13. 答:13 h 后,池中还剩 80 m3 的水.
7.(2018·怀化)某学校积极响应怀化市“三城同创”的号召, 绿化校园,计划购进A,B两种树苗,共21棵,已知A种 树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵, 购买两种树苗所需费用为y元.求y与x的函数解析式, 其中0≤x≤21.
第2课 函数自变量的取值范围
目录
温故知新
新课学习 重难易错
三级检测练
1.填空.
温故知新
函数解析式 的形式
自变量的 取值范围
例如
y=2x+8
整式
全体实数
x_为___全__体__实__数__
分式A B
分母 B≠0
y=x-2 3 __x_≠_3__
二次根式 被开方数 a≥0 y= x-1 _x_≥_1___
元.设购买A种树苗x棵,购买两种树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
∴2x>-2x+50,即x>12.
1x,解得x=100.
(1)写出y与x的函数关系式.
解:x为全体实数.
(3)8 h 后,池中还剩多少立方米的水? (4)几小时后,池中还剩 80 m3 的水?
(3)当 t=8 时,Q=600-40×8=280. 答:8h 后,池中还剩 280 m3 的水.
(2)(2020·齐齐哈尔)在函数 y=
x+3 x-2
中,自变量 x
的取值范围是___x_≥_-__3_且__x_≠_2______.
二级能力提升练
12.某商店进一批货,每件5元,售出时,每件加利润0.8元, 如售出x件,应收货款y元.
(1)y与x的函数关系式是_____y_=__5_._8_x_________;
∴自变量x的取值范围是12.5<x<25.
15.某人购进一批苹果到集市上零售,已知卖出的苹果x(千克) 与销售的金额y(元)的关系如下表:
x/千克 1
2
3
4…
y/元 2+0.1 4+0.2 6+0.3 8+0.4 …
(1)写出y与x的函数关系式.
(2)该商贩要想使销售的金额达到210元,至少需要卖出多少
树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21. 某商店进一批货,每件5元,售出时,每件加利润0.
解:x≥-3且x≠-2.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70
(2)0≤t≤15. 元.设购买A种树苗x棵,购买两种树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
∴y关于x的函数解析式为y=-2x+50.
解:x≥-1且x≠1.
(1)y与x的函数关系式是____________________;
解:(1)Q=600-40t. (2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种
解:根据题意,得y=90x+70(21-x)=20x+1 470, 所以函数解析式为y=20x+1 470.
重难易错
8.(1)(2020·菏泽)函数 y=
x-2 x-5
的自变量 x 的取值范
围是( D )
A.x≠5 B.x>2 且 x≠5
C.x≥2 D.x≥2 且 x≠5
(2)(2020·绥化)在函数 y=
解:x为全体实数. 某人购进一批苹果到集市上零售,已知卖出的苹果x(千克)与销售的金额y(元)的关系如下表:
(2)自变量x的取值范围是____________________.
当x>3时,y=5+(x-3),得y=x+2.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70
(2)自变量x的取值范围是__非__负__整__数____________.
13.如图,△ABC 底边 BC 上的高是 6 cm,点 C 沿底 边所在直线向点 B 运动时,三角形的面积发生了变 化.
(1)如果三角形的底边长为 x(cm),三角形的面积 y(cm2)可以表示为_y_=__3_x_; (2)在这个变化过程中,常量是_3_____,变量是 _x_,__y__.
三级拓展延伸练
14.已知:等腰三角形的周长为50 cm,若设底边长为y cm,腰 长为x cm,求y与x的函数解析式及自变量x的取值范围.
解:∵等腰△ABC的两腰相等,周长为50,
∴2x+y=50. ∴y关于x的函数解析式为y=-2x+50. ∵x+x>y,
∴2x>-2x+50,即x>12.5. ∵y>0,∴-2x+50>0,即x<25.
(1)写出剩余水的体积 Q(m )与时间 t(h)之间的函数关 树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
当0≤x≤3时,y=5;
3
某市出租车起步价是5元(3 km及3 km以内为起步价),以后每增加1 km加收1元,不足1 km按1 km收费.求收费y(元)与行驶里程x(km)之间的函数关系式及自变量的取值范围.
当0≤x≤3时,y=5;
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种 树苗x棵,购买两种树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
当x>3时,y=5+(x-3),得y=x+2.
一级基础巩固练
三级检测练
10.(1)(2020·岳阳)在函数 y= x-2 中,自变量 x 的 取值范围是_x_≥_2___; (2)(2020·内江)在函数 y=2x-1 4 中,自变量 x 的取值 范围是__x≠_2___.
11. (1)在函数 y=
1 2x-3
中,自变量 x 的取值范围
是____x_>__1_.5__________;
(2)y=x-1 2;
解:x为全体实数.
解:x≠2.
(3)y= 5-x;
解:x≤5.
(4)y=3 2x+1.
解:x为全体实数.
4.(例 2)求下列函数中自变量 x 的取值范围.
(1)y=
x 2x-1
;
解:x>1 . 2
(2)y=
x+3 x+2
.
解:x≥-3且x≠-2.
5.求下列函数中自变量 x 的取值范围. (1)y= x+1 +1-1 x ;
围. 1x,解得x=100.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y 元.求y与x的函数解析式,其中0≤x≤21. 第2课 函数自变量的取值范围
所以函数解析式为y=20x+1 470.
千克的苹果?
解:(1)y=2.1x.
(2)210=2.1x,解得x=100. 答:至少需要卖出100千克的苹果.
谢谢!
a
零次幂 a0
底数不为零 a≠0
y=(x-1)0 x≠1
新课学习
2.(例 1)求下列函数中自变量 x 的取值范围. (1)y=x2-x-2;
解:x为全体实数.
(2) y=4x+3 8 ;
解:x≠-2.
(3)y= x+3 .
解:x≥-3.
3.求下列函数中自变量 x 的取值范围.
(1)y=3x+1;
x-3 x+1
+x-1 5
中,自变量
x 的取值范围是__x_≥_3_且__x_≠_5___________.
9.某市出租车起步价是5元(3 km及3 km以内为起步价),以后
每增加1 km加收1元,不足1 km按1 km收费.求收费y(元)
与行驶里程x(km)之间的函数关系式及自变量的取值范
∵y>0,∴-2x+50>0,即x<25.
∴自变量x的取值范围是12. 所以函数解析式为y=20x+1 470.
解:分两种情况: ∴自变量x的取值范围是12.
(1)写出y与x的函数关系式. ∴自变量x的取值范围是12.
(1)写出y与x的函数关系式.
∴y关于x的函数解析式为y=-2x+50.
当0≤x≤3时,y=5; ∴2x>-2x+50,即x>12.
∵y>0,∴-2x+50>0,即x<25.
所以函数解析式为y=20x+1 470.
系式; 解:x为全体实数.
所以函数解析式为y=20x+1 470.
∴自变量x的取值范围是12.
当0≤x≤3时,y=5;
(2)写出自变量 t 的取值范围. 解:x为全体实数.
∴y关于x的函数解析式为y=-2x+50. ∴2x>-2x+50,即x>12.
解:x≥-1且x≠1.
(2)y= 2x-3 + 3的水,每小时放水 40 m3.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种
7.(2018·怀化)某学校积极响应怀化市“三城同创”的号召, 绿化校园,计划购进A,B两种树苗,共21棵,已知A种 树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵, 购买两种树苗所需费用为y元.求y与x的函数解析式, 其中0≤x≤21.
第2课 函数自变量的取值范围
目录
温故知新
新课学习 重难易错
三级检测练
1.填空.
温故知新
函数解析式 的形式
自变量的 取值范围
例如
y=2x+8
整式
全体实数
x_为___全__体__实__数__
分式A B
分母 B≠0
y=x-2 3 __x_≠_3__
二次根式 被开方数 a≥0 y= x-1 _x_≥_1___
元.设购买A种树苗x棵,购买两种树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
∴2x>-2x+50,即x>12.
1x,解得x=100.
(1)写出y与x的函数关系式.
解:x为全体实数.
(3)8 h 后,池中还剩多少立方米的水? (4)几小时后,池中还剩 80 m3 的水?
(3)当 t=8 时,Q=600-40×8=280. 答:8h 后,池中还剩 280 m3 的水.
(2)(2020·齐齐哈尔)在函数 y=
x+3 x-2
中,自变量 x
的取值范围是___x_≥_-__3_且__x_≠_2______.
二级能力提升练
12.某商店进一批货,每件5元,售出时,每件加利润0.8元, 如售出x件,应收货款y元.
(1)y与x的函数关系式是_____y_=__5_._8_x_________;
∴自变量x的取值范围是12.5<x<25.
15.某人购进一批苹果到集市上零售,已知卖出的苹果x(千克) 与销售的金额y(元)的关系如下表:
x/千克 1
2
3
4…
y/元 2+0.1 4+0.2 6+0.3 8+0.4 …
(1)写出y与x的函数关系式.
(2)该商贩要想使销售的金额达到210元,至少需要卖出多少
树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21. 某商店进一批货,每件5元,售出时,每件加利润0.
解:x≥-3且x≠-2.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70
(2)0≤t≤15. 元.设购买A种树苗x棵,购买两种树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
∴y关于x的函数解析式为y=-2x+50.
解:x≥-1且x≠1.
(1)y与x的函数关系式是____________________;
解:(1)Q=600-40t. (2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种
解:根据题意,得y=90x+70(21-x)=20x+1 470, 所以函数解析式为y=20x+1 470.
重难易错
8.(1)(2020·菏泽)函数 y=
x-2 x-5
的自变量 x 的取值范
围是( D )
A.x≠5 B.x>2 且 x≠5
C.x≥2 D.x≥2 且 x≠5
(2)(2020·绥化)在函数 y=
解:x为全体实数. 某人购进一批苹果到集市上零售,已知卖出的苹果x(千克)与销售的金额y(元)的关系如下表:
(2)自变量x的取值范围是____________________.
当x>3时,y=5+(x-3),得y=x+2.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70
(2)自变量x的取值范围是__非__负__整__数____________.
13.如图,△ABC 底边 BC 上的高是 6 cm,点 C 沿底 边所在直线向点 B 运动时,三角形的面积发生了变 化.
(1)如果三角形的底边长为 x(cm),三角形的面积 y(cm2)可以表示为_y_=__3_x_; (2)在这个变化过程中,常量是_3_____,变量是 _x_,__y__.
三级拓展延伸练
14.已知:等腰三角形的周长为50 cm,若设底边长为y cm,腰 长为x cm,求y与x的函数解析式及自变量x的取值范围.
解:∵等腰△ABC的两腰相等,周长为50,
∴2x+y=50. ∴y关于x的函数解析式为y=-2x+50. ∵x+x>y,
∴2x>-2x+50,即x>12.5. ∵y>0,∴-2x+50>0,即x<25.
(1)写出剩余水的体积 Q(m )与时间 t(h)之间的函数关 树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
当0≤x≤3时,y=5;
3
某市出租车起步价是5元(3 km及3 km以内为起步价),以后每增加1 km加收1元,不足1 km按1 km收费.求收费y(元)与行驶里程x(km)之间的函数关系式及自变量的取值范围.
当0≤x≤3时,y=5;
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种 树苗x棵,购买两种树苗所需费用为y元.求y与x的函数解析式,其中0≤x≤21.
当x>3时,y=5+(x-3),得y=x+2.
一级基础巩固练
三级检测练
10.(1)(2020·岳阳)在函数 y= x-2 中,自变量 x 的 取值范围是_x_≥_2___; (2)(2020·内江)在函数 y=2x-1 4 中,自变量 x 的取值 范围是__x≠_2___.
11. (1)在函数 y=
1 2x-3
中,自变量 x 的取值范围
是____x_>__1_.5__________;
(2)y=x-1 2;
解:x为全体实数.
解:x≠2.
(3)y= 5-x;
解:x≤5.
(4)y=3 2x+1.
解:x为全体实数.
4.(例 2)求下列函数中自变量 x 的取值范围.
(1)y=
x 2x-1
;
解:x>1 . 2
(2)y=
x+3 x+2
.
解:x≥-3且x≠-2.
5.求下列函数中自变量 x 的取值范围. (1)y= x+1 +1-1 x ;
围. 1x,解得x=100.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y 元.求y与x的函数解析式,其中0≤x≤21. 第2课 函数自变量的取值范围
所以函数解析式为y=20x+1 470.
千克的苹果?
解:(1)y=2.1x.
(2)210=2.1x,解得x=100. 答:至少需要卖出100千克的苹果.
谢谢!
a
零次幂 a0
底数不为零 a≠0
y=(x-1)0 x≠1
新课学习
2.(例 1)求下列函数中自变量 x 的取值范围. (1)y=x2-x-2;
解:x为全体实数.
(2) y=4x+3 8 ;
解:x≠-2.
(3)y= x+3 .
解:x≥-3.
3.求下列函数中自变量 x 的取值范围.
(1)y=3x+1;
x-3 x+1
+x-1 5
中,自变量
x 的取值范围是__x_≥_3_且__x_≠_5___________.
9.某市出租车起步价是5元(3 km及3 km以内为起步价),以后
每增加1 km加收1元,不足1 km按1 km收费.求收费y(元)
与行驶里程x(km)之间的函数关系式及自变量的取值范
∵y>0,∴-2x+50>0,即x<25.
∴自变量x的取值范围是12. 所以函数解析式为y=20x+1 470.
解:分两种情况: ∴自变量x的取值范围是12.
(1)写出y与x的函数关系式. ∴自变量x的取值范围是12.
(1)写出y与x的函数关系式.
∴y关于x的函数解析式为y=-2x+50.
当0≤x≤3时,y=5; ∴2x>-2x+50,即x>12.
∵y>0,∴-2x+50>0,即x<25.
所以函数解析式为y=20x+1 470.
系式; 解:x为全体实数.
所以函数解析式为y=20x+1 470.
∴自变量x的取值范围是12.
当0≤x≤3时,y=5;
(2)写出自变量 t 的取值范围. 解:x为全体实数.
∴y关于x的函数解析式为y=-2x+50. ∴2x>-2x+50,即x>12.
解:x≥-1且x≠1.
(2)y= 2x-3 + 3的水,每小时放水 40 m3.
(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种