长沙市六年级上册数学试卷练习题应用题期末试卷(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙市六年级上册数学试卷练习题应用题期末试卷(附答案)
一、六年级数学上册应用题解答题
1.有甲、乙两列火车,乙车的速度比甲车速度慢20%。
乙车先从B 站出发开往A 站行驶到距离B 站72千米处时,甲车从A 站出发开往B 站,相遇时,甲、乙两列火车行的路程之比是3∶4。
(1)甲、乙两列火车的速度比是( )∶( );
(2)A 、B 两站之间的路程是多少千米?
解析:(1)5;4
(2)315千米
【分析】
(1)甲车速度是单位“1”,乙车的速度比甲车速度慢20%,甲车速度看作100,乙车速度是100-20,写出速度比化简即可。
(2)路程比=速度比,设相遇时甲行驶的路程是x 千米,乙车形式的路程是4725
x +千米,根据甲车和乙车的路程比=甲车和乙车的时间比,列出方程求出甲车行驶路程,相遇时,甲、乙两列火车行的路程之比是3∶4,甲车行驶了路程的
334
+,用甲车路程÷对应分率=A 、B 两站之间的路程。
【详解】
(1)100∶(100-20)=100∶80=5∶4
(2)解:设相遇时甲行驶的路程是x 千米。
344725x
x =+ 4723451221645
855216588
x x x x x ⎛⎫+⨯= ⎪⎝⎭
+=⨯=⨯ 135x =
3+4=7
31353157
÷=(千米) 答:A 、B 两站之间的路程是315千米。
【点睛】
本题考查了百分数和比的意义,列方程解决问题和按比例分配应用题,较为综合,关键是理解速度、时间、路程之间的关系以及比的意义。
2.一个书架,原来上层和下层中书的本数比是8:7,如果从上层取出8本书放放下层,这时上层和下层的比为4:5,原来上层和下层各有图书多少本?
解析:上层48本;下层42本
【详解】
8÷(
8
87
+
﹣
4
45
+
)
=8÷(
8
15
﹣
4
9
)
=8÷ 4 45
=90(本)
则原来上层有书:90×
8
87
+
=48(本)
下层有书:90×
7
87
+
=42(本)
答:原来上层有书48本,下层有书42本。
3.下图是由两个正方形和一个圆组成的,已知大正方形的面积是2
36cm,那么阴影部分的面积是多少?(圆周率π取3.14)
解析:26平方厘米
【分析】
根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是2
36cm,36=6×6,即大正方形的边长是6cm,也正是圆的直径;小正方形的对角线的长度是6cm,小正方形的面积是6×6÷2=18(平方厘米)。
据此解答即可。
【详解】
36=6×6
3.14×(6÷2)2-6×6÷2
=3.14×9-18
=28.26-18
=10.26(平方厘米)
答:阴影部分的面积是10.26平方厘米。
【点睛】
本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。
4.如图是光明小学的运动场的示意图,阴影部分为跑道.求跑道的占地面积.
解析:2750平方米
【详解】
60﹣10×2
=60﹣20
=40(米)
50×10×2+3.14×[(60÷2)2﹣(40÷2)2]
=1000+3.14×[900﹣400]
=1000+3.14×500
=1000+1750
=2750(平方米)
答:跑道的占地面积2750平方米.
5.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样合理安排这68名工人?请具体说明理由。
解析:(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的
个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。
【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。
(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。
8×(68-x)=10×x÷3
1632-24x=10x
34x=1632
x=48
加工大齿轮的人数是:68-x=68-48=20(人);
答: 20名工人生产大齿轮,48名工人生产小齿轮。
【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
6.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样安排这68名工人最合理?(请计算说明)
解析:(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大
齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。
【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。
(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。
8×(68-x)=10×x÷3
1632-24x=10x
34x=1632
x=48
加工大齿轮的人数是:68-x=68-48=20(人);
答: 20名工人生产大齿轮,48名工人生产小齿轮。
【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
7.佳惠超市按商品标价的80%进行促销。
光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?
(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?
解析:(1)12.75元
(2)20%
【分析】
(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;
(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。
【详解】
(1)2040÷200÷80%
=10.2÷80%
=12.75(元)
答:每支钢笔的标价是12.75元。
(2)(2040÷200-8.5)÷8.5
=1.7÷8.5
=20%
答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。
【点睛】
本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。
8.修一段公路,甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m处相遇。
求这段公路长多少米?
解析:16500米
【分析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。
【详解】
1÷(11 2024
+)
=1÷
11 120
=120
11
(天)
750×2÷(11201120 20112411
⨯-⨯)
=1500÷(65 1111
-)
=1500×11
=16500(米)
答:这段公路长16500米。
【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。
9.一辆大巴从广州开往韶关,行了一段路程后,离韶关还有210千米,接着又行了全程的20%,这时已行路程与未行路程的比是3:2。
广州到韶关两地相距多少千米?(用方程解)
解析:350千米
【分析】
分析题干,根据这时已行路程与未行路程的比是3∶ 2,则未行路程占全程的2
5
,而全程的
2
5
与全程的20%的和是210千米,可得到等量关系广州、韶关两地相距多少千米×(20%+2
5
)=210,据此列出方程解答即可。
【详解】
解:设广州到韶关两地相距x千米。
220%2105x ⎛⎫+= ⎪⎝
⎭ 32105
x = 333210555
x ÷=÷ 350x =
答:广州到韶关两地相距350千米。
【点睛】
本题考查列方程解决问题、百分数、比的意义,解答本题的关键是根据题意找到等量关系:广州、韶关两地相距多少千米×(20%+25
)=210。
10.小明放一群鸭子,已知岸上的只数与水中的只数比是3:4,现在从水中上岸9只后,岸上的只数是水中的
45,这群鸭子有多少只? 解析:567只
【详解】
3:4=
34 9÷(445+-334
+) =9÷(
49-37) =9÷163
=567(只)
答:这群鸭子有567只.
11.修路队三天刚好修完一条路,已知第一天修了全程的25%,第二天比第一天多修30米,第三天修5米,这条路共有多少米?
解析:70米
【分析】
把总的工作量看做单位“1”,根据“第一天修了全程的25%,第二天比第一天多修30米,第三天修5米”,先求出(30+5)米对应的单位“1”的量,进一步求出单位“1”的量即这条路共有的米数。
【详解】
(30+5)÷(1-25%-25%)
=35÷50%
=70(米)
答:这条路共有70米。
【点睛】
解决此题关键是先求出第二天比第一天多修的和第三天修的总米数所占的分率,进一步求
得单位“1”的量即这条路共有的米数。
12.果园里有500棵果树,其中苹果树和梨树占总数的 40%,其余的是桃树和杏树,桃树和杏树的比是 3:2。
杏树有多少棵?
解析:120棵
【详解】
500×(1-40%)×[2÷(3+2)]=120(棵)
13.某服装店将两件不同的衣服都以每件120元的价格出售,与进价相比,结果一件赚了20%,另一件亏了20%。
服装店老板出售这两件衣服是赚了还是亏了?赚了(或亏了)多少元?
解析:亏了亏了10元
【详解】
120-120÷(1+20%)=20(元)
120÷(1-20%)-120=30(元)
20<30
所以亏了
30-20=10(元)
答:服装店老板出售这两件衣服亏了,亏了10元。
14.小明和小丽原来存款数量的比是4:3,现在小明取出自己存款的40%还多100元,小丽存进500元,现在小丽的存款比小明多900元,小明取出存款多少元?
解析:900元
【详解】
解:设小明和小丽原来存款各是4x元、3x元,
3x+500=4x×(1﹣40%)﹣100+900
3x+500=2.4x+800
3x=2.4x+300
0.6x=300
x=500
4x=4×500=2000
2000×40%+100
=800+100
=900(元)
答:小明取出存款900元。
15.一辆客车从甲地开往乙地,第一天行了全程的20%,第二天行了450km,这时已行的路程和剩下的路程比是3:7.甲、乙两地相距多少千米?
解析:4500千米
【详解】
450÷(-20%)=4500(km)
答:甲、乙两地相距4500千米.
16.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。
现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。
(1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗)
(2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)
解析:(1)4000块;(2)1000块
【分析】
(1)利用长方形面积公式:S=ab,计算人行道的面积,然后用人行道的面积除以每块地砖的面积,就是所需块数。
(2)根据图形的排列规律,每4×4=16(块)方砖中,有4块是红色的,求所需地砖块数包含几个16,再乘4,计算所需红色地砖的块数即可。
【详解】
(1)400×1.6÷(0.4×0.4)
=640÷0.16
=4000(块)
答:铺设这条人行道一共需4000块地砖。
(2)4000÷16×4
=250×4
=1000(块)
答:铺设这条人行道一共需要1000块红色地砖。
【点睛】
本题主要考查数与形结合的规律,关键是根据图示发现地砖排列的规律。
17.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。
例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。
图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。
解析:图2(19:47:26);
图3
【分析】
(1)同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数,注意灯灭表示0,那么图2左侧第1列代表1,第2列代表1+8=9,也就是19时;第3列表示4,第4列表示1+2+4=7,也就是47分;第5列表示2,第6列表示2+4=6,也就是26秒;(2)图3是左侧第1列是0,所以不涂;第2列是7,从下往上涂代表数字1、2、4的灯亮;第3列代表数字4的灯亮,其它灯灭;第4列代表数字1、8的灯亮;第5列代表数字1、4的灯亮,其它灯灭;第6列代表数字2、4的灯亮,其它灯灭。
【详解】
据分析可得,图2代表(19:47:26);
图3是:
故答案为:图2(19:47:26);
图3是。
【点睛】
本题考查数与形,解答本题的关键就是理解同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数的概念。
18.2019年12月新野到郑州的高铁正式开通,现在从新野乘高铁约需1小时30分到郑州,而乘大巴车到郑州约需4.5小时,现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几?速度提高了百分之几?
解析:67%;200%
【分析】
①要求现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几,可用乘大巴的时间减去乘高铁的时间,再用这个差除以乘大巴的时间,即(大-小)÷大,就是所求;
②可以把路程看作单位“1”,则乘高铁的速度就是
1
1.5
、乘大巴的速度是
1
4.5
,依据(大-
小)÷小,可计算出速度提高了百分之几。
【详解】
①1小时30分=1.5小时
(4.5-1.5)÷4.5
=3÷4.5
≈66.67%
②(11.5-14.5
)÷14.5 222399
⎛⎫=-÷ ⎪⎝⎭ 4299
=÷ 200%=
答:现在乘高铁到郑州用的时间比乘大巴车到郑州节省66.67%;速度提高了200%。
【点睛】
本题分别考查了一个数比另一个数多百分之几、一个数比另一个数少百分之几。
其中第二小问还要调动有关单位“1”的知识。
19.某口罩厂两个车间计划生产相同个数的防尘口罩和医用口罩,当医用口罩完成了25时,防尘口罩刚好完成了37。
这时,为了提前完成医用口罩的生产任务,改进了生产工艺,效率提高了50%。
这样,当医用口罩完成任务时,防尘口罩还有3500个没完成,原计划生产医用口罩多少个?
解析:24500个
【分析】 根据题目可知,当医用口罩完成了25时,防尘口罩刚好完成了37
,此时两种口罩生产的时间是相同的,根据效率比等于完成的量的比,即生产医用口罩的效率∶生产防尘口罩的效率=25∶37=14∶15,即医用口罩的效率∶防尘口罩的效率=1415
,由此可知防尘口罩的生产效率是医用口罩生产效率的1514,假设医用口罩生产效率为1,防尘口罩生产效率:1514
;由于提高效率50%,即此时医用口罩的生产效率:1×(1+50%)=
32,则此时防尘口罩的生产效率为医用口罩的
1514÷32=57,提高生产效率后生产的防尘口罩量是提高效率后生产医用口罩的
57,即口罩总量×(1-25)×57,设:口罩总量为x 个,列方程:x -37x -x×(1-25
)×57=3500,解方程,即可解答。
【详解】
解:设原计划生产口罩x 个,由题意分析可列出方程:
325(1)3500757
x x x ---⨯= 4353500757
x x -⨯= 43350077
x x -= 135007
x = 24500x =
答:原计划生产医用口罩24500个。
【点睛】
本题主要考查的是比的应用以及列方程解决实际问题,解题的关键是找出提高效率之后医用口罩生产效率和防尘口罩之间的关系,再列方程计算。
20.操场上有108名同学在锻炼身体,其中女生占29,后来又来了几名女生,这时女生人数占310
,后来又来了几名女生? 解析:12名
【分析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的3(1)10
-,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学生数,再进一步得出结论。
【详解】
原来男生人数:
2108(1)9
⨯- 71089
=⨯ 84=(名)
后来学生总数:
384(1)10
÷- 78410
=÷ 120=(名)
12010812-=(名)
答:后来又来了12名女生。
【点评】
明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。
21.张明和李丽进行口算比赛,两人在10分钟的时间里一共完成了230道题,张明比李
丽多做了1
11
.他们两人各做了多少道题?
解析:李丽做了110道,张明做了120道【详解】
解法一
李丽:230÷(1+1
11
+1)=110(道)张明:230−110=120(道)
解法二
解:设李丽做了x道题.
x+x(1+1
11
)=230
x=110
张明:110×(1+1 11
)=120(道)
答:李丽做了110道,张明做了120道.
22.根据大数据显示,荔波2016年旅游接待迅速升温,各旅游景区(点)游人如织.全县全年接待游客超700万人,其中大、小七孔景区共接待了游客人数的,小七孔景区比大七孔景区多接待游客,大、小七孔景区各全年接待了游客多少万人?
解析:大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人
【解析】
【详解】
700× =600(万人) 600÷(1+ +1)
=600÷
=250(万人)
600﹣250=350(万人)
答:大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人
23.下图中,以圆的半径为边长的正方形的面积是75平方厘米.求圆的面积.
解析:52
cm
【详解】
22
22
75
3.1475235.5
r cm
S r cm
π
=
==⨯=
圆
()
()
24.已知,在直角三角形ABC中,∠ACB=90°,AC=8,BC=6,AB=10,以AB边为直径作半圆,把4个相同的直角三角形通过一定的图形运动拼成四叶草的形状(如图所示),求阴影部分的面积.
解析:61
【详解】
根据题意得:
[3.14×(10÷2)2×1
2
﹣
1
2
×6×8]×4
=[39.25﹣24]×4
=15.25×4
=61
答:阴影部分的面积是61.
25.求实小学原来男、女生人数之比为16:13,这学期又转来几名女生,这样男、女生人数之比为6:5,这时男、女生人数共有880人,转来的女生有多少人?
解析:10人
【详解】
880÷(6+5)=80(人),80×6=480(人),480÷16=30(人),30×13=390(人),80×5-390=10(人).
答:转来的女生有10人.
26.甲、乙两辆汽车同时从A、B两地相向开出,2小时后在途中相遇,这时甲车正好行了
全程的2
5
,已知乙车每小时行36千米,A、B两地间公路长多少千米?
解析:120km 【详解】
2 3621120
5km
⨯÷-=
()()
答:A、B两地间公路长120千米.
27.甲、乙二人同时从A地走向B地,当甲走了全程的5
7
时,乙走了全程的
3
5
;当甲离B
地还有1
7
时,乙离B地还有50米,A、B两地相距多少米?
解析:1250
7
米
【详解】
相同时间内:甲乙的速度比就是5
7
:
3
5
=25:21;
乙的速度就是甲的21
25
,相同时间内,已走的路程就是甲的
21
25
1﹣1
7
=
6
7
6 7×
21
25
=
18
25
50÷(1﹣18 25
)
=50÷7 25
=1250
7
(米)
答:A、B两地相距1250
7
米.
28.仙居目前的居民用电电价是0.55元/千瓦时。
为了倡导建设“节约型社会”,鼓励市民安装分时电表实行峰谷时谷电价,具体收费标准如下:
分时电表,一年能节约多少钱?
解析:176元
【分析】
根据单价×数量=总价,求出孔强家安装分时电表的费用;根据比的意义,用总用电量÷峰时和谷时用电量总份数,求出一份数对应用电量,一份数用电量分别乘峰时和谷时对应份数,求出峰时和谷时用电量,峰时用电量×单价+谷时用电量×单价=安装分时电表总费用,再求出安装前和安装后的费用差即可。
【详解】
4800×0.55=2640(元)
4800÷(5+7)
=4800÷12
=400(千瓦时)
400×5=2000(千瓦时)
400×7=2800(千瓦时)
2000×0.63+2800×0.43
=1260+1204
=2464(元)
2640-2464=176(元)
答:装分时电表,一年能节约176元钱。
【点睛】
关键是理解比的意义,按比例分配应用题关键是先求出一份数。
29.客车和货车同时从甲、乙两地相对开出,相遇时客车和货车所行的路程比是4:3,相遇后货车提高速度,比相遇前每小时多行35千米,客车仍按原速前进,结果两车同时到达目的地。
已知客车从甲地到乙地一共用了6.5小时,甲、乙两地相距多少千米? 解析:390千米
【分析】
根据题意,相遇时客车和货车所行的路程比是4:3,那速度比也是4:3,设客车速度是x ,则货车速度是34
x ,两车相遇时共同行驶的时间是46.57⨯,相遇后客车、货车共同行驶的时间是36.57⨯,则客车行驶全程的距离6.5x 等于货车相遇时行驶的距离3134427
x ⨯⨯加货车相遇后行驶的距离33(35) 6.547
x +⨯⨯,据此列方程解答。
【详解】
由题意知,相遇时客车和货车所行的路程比是4:3,那么速度比也是4:3。
解:设客车速度是x ,则货车速度是34
x 。
34336.5(35) 6.5 6.54747
x x x ⨯⨯++⨯⨯= 313431331331335427427272
x x x ⨯⨯+⨯⨯+⨯⨯= 3911719513145622
x x x ++= 1561171953645656256
x x x ++= 27319536456256
x x += 36427319556562
x x -= 91195562
x = 19556291
x =⨯ 60x =
6.5 6.560390x =⨯=
答:甲、乙两地相距390千米。
【点睛】
解答本题要注意两点:①相遇时两车行驶路程比,也是速度比。
②找出客车和货车的行驶路程等量关系式。
明确这两点,本题才能得以解答。
30.小红、小英和小明三位小朋友储蓄钱数的比是1:3:4,他们储蓄的平均钱数是320元。
小英储蓄了多少钱?
解析:360元
【分析】
他们储蓄的平均钱数是320元,那么总共是960元,小红、小英和小明的钱数分别是1份、3份和4份,8份是960元,1份是120元。
【详解】
()
3203134
⨯÷++
9608
=÷
120
=(元)
1203360
⨯=(元)
答:小英储蓄了360元钱。
【点睛】
本题考查的是按比分配问题,按比分配问题与和倍问题类似,先求出一份量,再计算多份量。
31.甲乙两城相距450千米,两辆汽车同时从甲乙两城相对开出,3小时后相遇,已知快车与慢车的速度比是3:2,那么快车比慢车总共多行驶了多少千米?
解析:90千米
【分析】
根据题意,3小时相遇,可以根据总路程除以3,即可求得两辆汽车的速度和。
再根据速度比是3:2,计算出两车行驶的路程,求差即可。
【详解】
450÷3=150(千米)
150×
3
32+
=90(千米);90×3=270(千米)
150×
2
3+2
=60(千米);60×3=180(千米)
270-180=90(千米)
答:快车比慢车总共多行驶了90千米。
【点睛】
本题也可以根据比例知识求解:速度比是3:2,则相同时间内行驶的路程比也是3:2。
32.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零
件个数的比是1∶3,第二周加工了总任务的1
3
,已知两周一共加工了140个零件。
王叔叔
接到的任务是一共要加工多少个零件?
解析:240个
【分析】
根据条件“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”可知,第一周完
成的占全部任务的
1
31
+
=
1
4
,然后用两周一共加工的零件总个数÷两周一共加工的占总个
数的分率=要加工的零件总个数,据此列式解答。
【详解】
第一周完成了
1
31
=
1
4
140÷(1
4
+
1
3
)
=140÷
7 12
=140×12 7
=240(个)
答:王叔叔接到的任务是一共要加工240个零件。
【点睛】
题目中不易理解的一句话是“他第一周加工后,已加工零件个数和剩下零件个数的比是
1∶3”,我们需要依据比与分数的关系,把它转化成一个表示第一周完成的零件个数占零件总数的分率。
33.张师傅,王师傅,李师傅和孙师傅合做一批零件,张师傅做的个数与其他三人零件总数比是1:4,王师傅做的个数与其他三人零件总数比是2:3,李师傅做的个数与其余三人零件总数比是3:5,孙师傅做了90个零件.张师傅做了多少个零件?
解析:720个
【详解】
90÷(1﹣
1
1+4
﹣
2
2+3
﹣
3
3+5
)×
1
1+4
=90÷(1﹣1
5
﹣
2
5
﹣
3
8
)×
1
5
=90÷1
40
×
1
5
=3600×1 5
=720(个);
答:张师傅做了720个零件.
34.如图所示为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多少米?(保留小数点后一位)
解析:4米
【详解】
20÷2=10(厘米)
6÷2=3(厘米)
0.4毫米=0.04厘米
3.14×(102﹣32)÷0.04
=3.14×(100﹣9)÷0.04
=3.14×91÷0.04
=7143.5(厘米)
7143.5厘米≈71.4米
答:这卷纸展开后大约有71.4米.
35.根据下列信息回答问题。
印刷厂的纸是以“令”来卖的。
一令是500张。
最普通的纸张是A4纸。
A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分。
一张A0纸的规格为1189毫米×841毫米,差不多有1平方米。
如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等。
(1)需要多少张A4纸才能覆盖住一张A0纸?()
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?()
①420mm ②297mm ③210mm ④149mm
解析:(1)② (2)③
【解析】
【详解】
略
数一数,填一填,做一做。
36.“外方内圆”是中国建筑中经常能见到的设计,而且“外方”与“内圆”的面积比是固定的。
(1)如图所示,“内圆”的半径是r,它的面积是________;“外方”的面积是________。
(用含有字母的式子表示以上结果)
(2)所以,S外方:S内圆=________:________。
(3)如图中正方形的面积是20平方厘米,那么图中“内圆”的面积是多少平方厘米?
解析:(1)πr2;4r2
(2)4;π
(3)20÷4×π=5π=15.7(cm2)
【分析】
(1)已知圆的半径,那么内圆的面积=πr2;外方的面积=4×r2;
(2)化简比时,用比的基本性质作答即可,即比的前项和后项同时乘或除以相同的数(0除外),比值不变;
可
【详解】
(1)“内圆”的半径是r,它的面积是πr2;“外方”的面积是4r2;
(2)由(1)得S外方:S内圆=πr2:4r2=4:π。
(3)内圆的面积=正方形的面积×π÷4,据此作答即
37.修一条公路,已经修完了全程的1
4
,又修了剩余的
1
5
,这时距终点还有6千米,这
条公路全长多少千米.解析:10千米
【详解】
6÷[1﹣1
4
﹣(1﹣
1
4
)×
1
5
]
=6÷(3
4
﹣
3
4
×
1
5
)
=6÷(3
4
﹣
3
20
)
=6÷ 3 5
=10(千米)
答:这条公路全长是10千米.
38.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
解析:174个
【详解】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个。
39.当图中两块阴影部分的面积相等时,x的值应该是多少?(单位:cm)
解析:4厘米
【分析】
左边阴影部分的面积=梯形面积-1
4
圆的面积,右边阴影部分的面积=
1
4
圆的面积-三角
形面积,由题意可知两块阴影部分的面积相等,据此列出方程即可。
【详解】
(10+x)×10÷2-3.14×10²÷4=3.14×10²÷4-10×10÷2
解:50+5x-78.5=78.5-50
5x-28.5=28.5
5x=57
x=11.4
答:x的值应该是11.4厘米。
【点睛】
本题考查了列方程解决问题,关键是观察图形特点,找到等量关系。
40.水果店运来一批橘子,第一天卖出总数的40%,第二天卖出140千克,剩下的与卖出的重量比是1:3,这批橘子重多少千克?
解析:400千克
【详解】
1+3=4, 140÷(1﹣40%﹣),
=140÷0.35,
=400(千克);
答:这批橘子重400千克。