高考数学二轮复习 专题七 解析几何 专题对点练22 直线与圆及圆锥曲线 文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题对点练22 直线与圆及圆锥曲线
1.设A,B为曲线C:y=上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
2.(2018全国Ⅱ,文20)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.
(1)求l的方程.
(2)求过点A,B且与C的准线相切的圆的方程.
3.在平面直角坐标系xOy中,已知圆O1:(x+1)2+y2=1和O2:(x-1)2+y2=9,动圆P与圆O1外切,与圆O2内切.
(1)求圆心P的轨迹E的方程;
(2)过A(-2,0)作两条互相垂直的直线l1,l2分别交曲线E于M,N两点,设l1的斜率为k(k>0),△AMN 的面积为S,求的取值范围.
4.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线x-y=4相切.
(1)求圆O的方程;
(2)若圆O上有两点M,N关于直线x+2y=0对称,且|MN|=2,求直线MN的方程;
(3)圆O与x轴相交于A,B两点,圆内的动点P使|PA|,|PO|,|PB|成等比数列,求的取值范围.
5.已知点N(-1,0),F(1,0)为平面直角坐标系内两定点,点M是以N为圆心,4为半径的圆上任意一点,线段MF的垂直平分线交MN于点R.
(1)点R的轨迹为曲线E,求曲线E的方程;
(2)抛物线C的顶点在坐标原点,F为其焦点,过点F的直线l与抛物线C交于A,B两点,与曲线E交于P,Q两点,请问:是否存在直线l使A,F,Q是线段PB的四等分点?若存在,求出直线l的方程;若不存在,请说明理由.
6.(2018天津,文19)设椭圆=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为
,|AB|=.
(1)求椭圆的方程;
(2)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.
专题对点练22答案
1.解(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k==1.
(2)由y=,得y'=.
设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1).
设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.
将y=x+m代入y=得x2-4x-4m=0.
当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.
从而|AB|=|x1-x2|=4.
由题设知|AB|=2|MN|,即4=2(m+1),
解得m=7.
所以直线AB的方程为y=x+7.
2.解 (1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).
设A(x1,y1),B(x2,y2).
由
得k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故x1+x2=.
所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=;
由题设知=8,解得k=-1(舍去),k=1.
因此l的方程为y=x-1.
(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.
设所求圆的圆心坐标为(x0,y0),则
解得
因此所求圆的方程为
(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
3.解 (1)设动圆P的半径为r,则|PO1|=r+1,|PO2|=3-r,所以|PO1|+|PO2|=4,
所以P的轨迹为椭圆,2a=4,2c=2,所以a=2,c=1,b=,
所以椭圆的方程为=1(x≠-2).
(2)设点M坐标为(x0,y0),直线l1的方程为y=k(x+2),代入=1,
可得(3+4k2)x2+16k2x+16k2-12=0.∵A(-2,0)在椭圆=1上,
∴x0×(-2)=,则x0=,
∴|AM|=.
同理|AN|=.
所以S=|AM|·|AN|=.
,令k2+1=t>1,
,所以∈(0,6).
4.解 (1)依题意,圆O的半径r等于原点O到直线x-y=4的距离,
即r==2.
所以圆O的方程为x2+y2=4.
(2)由题意,可设直线MN的方程为2x-y+m=0.
则圆心O到直线MN的距离d=,
所以+()2=22,即m=±.
所以直线MN的方程为2x-y+=0或2x-y-=0.
(3)设P(x,y),由题意得A(-2,0),B(2,0).
由|PA|,|PO|,|PB|成等比数列,
得=x2+y2,即x2-y2=2.
因为=(-2-x,-y)·(2-x,-y)=2(y2-1).
由于点P在圆O内,故
由此得y2<1.
所以的取值范围为[-2,0).
5.解 (1)由题意,|RM|=|RF|,∴|RF|+|RN|=|RM|+|RN|=|MN|=4>|NF|,
∴R的轨迹是以N,F为焦点的椭圆,a=2,c=1,b=,
∴曲线E的方程为=1;
(2)抛物线C的顶点在坐标原点,F为其焦点,抛物线的方程为y2=4x,
假设存在直线l使A,F,Q是线段PB的四等分点,则|AF|=|FB|.
直线l斜率显然存在,设方程为y=k(x-1)(k≠0),
设A(x1,y1),B(x2,y2),则直线代入抛物线方程,整理可得ky2-4y-4k=0,
∴y1+y2=, ①
y1y2=-4, ②
∵|AF|=|FB|,∴=-2, ③
∴由①②③解得k=±2.
k=2时,直线l的方程为y=2(x-1),解得A,B(2,2).
直线与椭圆方程联立解得P,A.
∵y B≠2y Q,∴Q不是FB的中点,即A,F,Q不是线段PB的四等分点.
同理可得k=-2时,A,F,Q不是线段PB的四等分点,
∴不存在直线l使A,F,Q是线段PB的四等分点.
6.解 (1)设椭圆的焦距为2c,由已知有.又由a2=b2+c2,可得2a=3b.由|AB|=,从而a=3,b=2.
所以,椭圆的方程为=1.
(2)设点P的坐标为(x1,y1),点M的坐标为(x2,y2),由题意,x2>x1>0,点Q的坐标为(-x1,-y1).由△BPM 的面积是△BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2[x1-(-x1)],即x2=5x1.
易知直线AB的方程为2x+3y=6,由方程组消去y,可得x2=.由方程组消去y,可得x1=.由x2=5x1,可得=5(3k+2),两边平方,整理得18k2+25k+8=0,解得k=-,或
k=-.当k=-时,x2=-9<0,不合题意,舍去;当k=-时,x2=12,x1=,符合题意.
所以,k的值为-.。