小数点位置的移动说课稿(精选11篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
小数点位置的移动说课稿
小数点位置的移动说课稿(精选11篇)
作为一位无私奉献的人民教师,时常要开展说课稿准备工作,借助说课稿可以提高教学质量,取得良好的教学效果。
快来参考说课稿是怎么写的吧!下面是小编整理的小数点位置的移动说课稿,希望能够帮助到大家。
小数点位置的移动说课稿篇1
一、指导思想与理论依据:
《课程标准》中指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
”
因此,本课的设计让学生在动手操作、合作探究的过程中,充分感受小数点位置的移动所引起的小数大小的变化规律,进而培养学生自主探究、合作交流以及归纳总结的能力。
二、教材分析:
1、说课内容:
北京市义务教育课程改革实验教材第8册P16、17第一单元小数的例5、例6,本课的知识点包括:小数点向右向左移动引起小数大小变化的规律以及课后的练一练和练习三的第4、5题。
2、本节课教材分析:
小数点位置移动引起小数大小的变化这一内容属于数与代数领域中有关数的认识的范畴。
它是在学生已经掌握了小数的意义、小数的性质和小数大小比较的基础上进行学习的。
这一规律既是小数与复名数相互转化的重要基础,又是小数乘除法计算的理论依据。
其他版本教材:
人民币模型长度模型面积模型
综合各版本教材的设计理念,决定为学生提供多种直观模型,使学生在动手操作、观察比较、总结归纳这些数学活动中,体验数学学习的过程。
三、学情分析:
学生已经在三年级时学习了小数的初步认识,四年级又进一步理解了小数的意义、小数的性质和小数大小的比较这些内容。
基于学生的生活经验与知识基础,小数点位置的移动会引起小数大小的变化学生会比较容易理解。
但学生自己探索发现并真正地理解规律却不是一件容易的事。
为了能更准确地把握学情,我在课前进行了前测,通过前测我发现学生能够根据小数的意义,将小数与生活实际相联系,学生可以借助模型发现变化规律,而一旦脱离了具体模型学生就会遇到困难。
因此可以确定具体形象的模型能够帮助学生探究小数点位置移动的规律。
四、教学目标及重难点:
根据教材特点,并结合学生的实际水平,将教学目标及教学重难
点定为以下内容:
教学目标:
1、掌握小数点位置移动引起小数大小变化的规律。
能依据这一变化规律,正确地判断随着小数点位置的变化,引起这个小数的大小有什么变化。
2、提供直观模型,是学生经历猜想验证、发现规律的过程,在合作交流中培养学生的观察、分析、推理、归纳、概括的能力。
3、使每一个学生获得参与数学活动的机会、体验成功的感觉,培养学生的探究精神和集体协作精神;促进良好学习习惯的养成。
教学重点:掌握经历观察小数点位置移动引起小数大小的变化的规律。
教学难点:小数点位置移动引起小数大小的变化的规律探究过程。
五、教学准备:
学具袋(人民币、直尺、10×10的方格纸、数位顺序表)、小数点卡片、多媒体课件
六、教学主要环节及分析:
(一)创设情境,质疑引趣,提出猜想。
上课开始,我为学生创设了这样一个情景,在菜市场里,人们走到一个摊位前看了看,没买就走了。
我非常好奇,走过去之后也没买。
(出示图片:错误的价签)
摊主也奇怪啊,怎么没人买呢?于是摊主也走到摊位前,一眼他就看出了原因,原来是小数点被蹭掉了,于是他赶快进行了修改。
(出示图片:加了小数点的价签)
看到前后两个价签,学生会产生疑问“咦,怎么一个小数点就能有这么大的作用呢?这到底是什么原因呢?”
学生可能会想到,加上小数点后,小数点向左移动了一位就便宜了。
(课件演示:提炼出小数3.5 35)
这时让学生观察这两个数,并思考:小数点位置有什么变化?这个变化使这个数的大小又发生了怎样的改变呢?
如果再加入一个0.35,又有什么变化呢?(课件出示:0.35)
如果反过来看又是怎样变化的呢?
看来,小数点位置的变化,可以引起小数大小的变化。
但是到底能让小数扩大多少或缩小多少呢?
在学生产生一连串的质疑后引出课题。
(板书:小数点卡片贴在黑板上,板书“移动”)
“好奇”是儿童的天性,新课的导入是一节课的序幕,其直接影响着学生的兴趣和好奇心。
因此,在新课的导入环节,有意识地设疑、激疑、制造一些能引起学生积极思考的悬念,可以激发学生的学习兴趣,紧紧地吸引住学生。
(二)直观模型,验证猜想,总结规律。
这一环节是指导学生动手,学会观察的重要环节。
为了突出重点、突破难点,我是这样安排的:
首先,探究小数点移动一位引起小数大小变化的规律。
(课件出示:0.01 0.1)
师:根据刚才我们的发现,如果从0.01到0.1,小数点位置有什么变化,引起了小数大小怎样的改变?
(这时学生根据刚才的经验,大胆去猜想。
)
你怎样来证明刚才的猜测是不是正确呢?
师:选择学具,先自己想一想要怎样证明,然后动手做一做。
最后在小组内和自己的小伙伴交流一下。
这时学生打开学具袋,里面有人民币、直尺、方格纸、数位顺序表这些学具,学生可以根据自己的需要选择他喜欢的学具,然后动手操作探究规律。
在探究的过程中会有学生能很好地说出自己的想法,利用手中的学具发现规律。
有些学生很可能没有头绪,当他听到其他同学的想法时,会受到一定的启发,要么发现规律,要么重新选择学具,换一个方式来探究。
之后进行小组汇报。
人民币模型:学生可能会有如下的回答
生1:我把1角看成0.1,把1分看成0.01,10分就是1角,所以
10个0.01就是0.1。
那么0.01到0.1,小数点向右移动一位,小数扩大了10倍。
0.1到0.01,小数点向左移动一位,小数缩小了10倍。
师:缩小了,就不能说是10倍了,大家想想还可以怎么说就准确了?
生1:0.1元是1角里有10个1分,10份里的1份,就是110 。
所以可以说向左移动一位,就是原来的110 。
生2:把1角平均分成10份,1分表示这样的1份,所以说1分是1角的110,因此从0.1到0.01,小数点向左移动一位,得到的数是原数的110 。
生2:1分就是0.01元,1角就是0.1元。
1角是1分的10倍,所以从0.01到0.1,小数点向右移动了一位,小数扩大了10倍。
生3:0.01元是1分,0.1元是1角钱,1角里面有10个1分,所以0.1元是0.01元的10倍。
也就是从0.01到0.1,小数点向右移动一位,得到的数就是原数的10倍。
反过来看,从0.1到0.01,小数点向左移动一位,得到的数就是原数的110 。
以上是学生使用人民币模型进行探究的过程,还有学生使用的是直尺。
学生指着尺子,可能会说:
生1:1厘米是0.01米,1分米是0.1米,1分米=10厘米,也就是说0.1米是0.01米的10倍,0.01米是0.1米的110 。
所以说从0.01到0.1,小数点向右移动一位,小数就扩大了10倍。
反过来看,从0.1到0.01,小数点向左移动一位,得到的数是原数的110 。
生2:1毫米可以用0.01分米表示,1厘米可以用0.1分米表示,1厘米=10毫米,所以10毫米也可以用0.1分米表示。
所以说从0.01到0.1,小数点向右移动一位,小数就扩大了10倍。
反过来看,从0.1到0.01,小数点向左移动一位,得到的数是原数的110 。
接下来还有使用面积模型探究的。
学生会根据以上的思路,通过比较面积单位总结出规律。
以上三种模型在表示数量关系时更具直观性,学生在小组合作时理解起来也比较容易,教师要在学生叙述中规范学生的表述,使学生
清楚地理解数量关系。
因为学生的能力有差异,在选择学具时会有所不同,数位顺序表很可能并没有学生使用。
那么在学生汇报的最后教师可以提问:用数位顺序表可以验证这个规律吗?然后结合课件帮助学生理解。
首先在数位顺序表上填数,学生看着数位顺序表可能会说:
生1:0.01和0.1的计数单位挨着,进率是10。
所以向右移动一位,就是扩大10倍,向左移动一位就是原来的110 。
生2:0.01的计数单位是百分之一,0.1的计数单位是十分之一,这两个计数单位之间的进率是10。
所以从0.01到0.1,小数点向右移动一位,小数就扩大了10倍。
反过来看,从0.1到0.01,小数点向左移动一位,得到的数是原数的110 。
到这里学生对小数点移动一位,小数的大小会发生怎样的变化已经有了一个深刻的认识。
而且在使用数位顺序表进行验证时,更能突出位值变化,才是小数点位置的移动引起小数大小变化规律的根本原因,使学生经历由直观形象向抽象概括的过程,做到数形结合,沟通知识之间的联系,更加有效地突破难点。
这时教师小结:小数点向左向右移动一位小数的大小有什么变化规律呢?
(找学生说,同桌互相说。
)
探究小数点移动两位、三位……引起小数大小变化的规律。
这时学生对小数点移动一位引起小数大小变化的规律探究过程印象非常深刻了,此时提出问题:那么从0.01到1,有什么变化规律呢?从1到0.01呢?
学生有了之前的探究经验,完全可以仿照之前的过程来叙述小数点移动两位引起小数大小变化的规律。
教师根据学生的发言随时补充板书。
然后指着板书,问:那么小数点移动三位呢?四位……学生一定能很快地说出来。
最后进行归纳和整理,让学生对小数点位置的移动引起小数大小变化的规律,进行完整地叙述。
这个环节的设计意图是使学生明白引起小数大小变化的根本原因,即“位值制”和“十进制计数法”,沟通“规律”与“小数的意义”、“计数单位”、“十进制计数法”等知识之间的联系,真正实现了“知其然,也知其所以然”。
同时也让学生明白,每学习一个新的知识,都可以在原有知识、经验的基础上,寻找知识之间的联系,自己想办法解决问题,为学生今后的学习提供了很好的学习方法。
(三)多层训练,灵活运用,巩固规律。
一、填空。
1、把25.73的小数点向()移动()位得到0.2573。
2、把2.875的小数点去掉是(),这时就扩大到原来的()倍。
3、把0.126的小数点向右移动两位是(),把()的小数点向左移动三位是0.0068。
4、把0.008扩大100倍是( ),把9.5缩小原数的( )是0.0095。
这道题属于模仿练习,是学生对照例题,加深对规律理解的过程,同时在本练习中继续巩固位数不够时用“0”补位的问题。
二、判断:
①0.8的小数点向右移动3位,原数就扩大了1000倍。
②3.69扩大20倍,小数点向右移动两位。
③把23.05的小数点向左移动5位后,再向右移动三位,这个数就变成了230.5。
④去掉1.04的小数点,这个数就扩大100倍。
判断相对于模仿练习有了一些变化,由浅入深,逐步提高学生对规律的理解与运用。
三、填一填
这道题是为了后面例7的教学,让学生理解小数点位置的移动与乘、除法之间的关系做的铺垫。
四、拓展提高:
一个小数戴面纱。
小数点乱搬家,左跳五位右跳仨。
气喘吁吁停住脚,组成小数0.698。
快快动脑想一想,揭开面纱认识它。
(69.8)
一首儿歌既激发了学生的学习兴趣,同时在儿歌中还蕴藏着今天学生们所学的知识。
学生在解决这个问题的过程中,既要对小数点位置的移动会引起小数大小怎样的变化非常清楚,还要运用到逆推的方法,运用今天所发现的规律进行两次变化才可以。
(四)反思总结,回顾整理,提升认知。
师:通过这节课的学习,你有了哪些收获?或者你还有什么想要提醒大家注意的?
让学生讲收获是对整节课的一个回顾与整理,可以帮助学生将本节课所学的知识串联起来。
请学生说说有哪些要提醒大家注意的,是生生互动,效果会比教师总结要好。
七、板书设计
八、本教学设计与以往或其他教学设计相比的特点:
数学学习要重视根据学习内容和学生的学习特点,处理好“知其然,还要知其所以然”的关系。
这不仅是要学生记住知识,更是让学生知道知识形成的过程和数学的基本原理。
因此在设计本课时,做了以下三点:
(一)横向、纵向比较,了解本课内容在知识体系中所处的位置,以及各版本教材的处理方法。
在理解教材的基础上,综合使用教材,重视让学生在动手实践的过程中,让学生开放地使用学具,借助直观模型,亲自感知,经历“规律”的形成过程,突出“知其所以然”这个环节,从而使学生真正地“知其然”。
(二)体现规律形成的全过程。
本课教学是通过提出猜想-模型验证-汇报交流-总结规律-运用规律这些过程呈现的。
教学中,教师不是简单的奉送结论,而是在展示知识的发生、发展过程。
分层次的探究活动也使学生形成了良好的认识结构,让学生在探究中学到知识,学到方法,训练能力。
(三)注重现代教学技术和直观教具的使用。
教学多媒体课件、丰富的学具,让学生经历了将直观模型抽象成数学模型,并进行解释与应用的过程,引导学生主动地进行观察、验证、推理与交流,“动手实践、自主探索与合作交流”成为学生学习数学的重要方式,促使学生动手、动脑、动口参与学习活动,为学生的探究过程搭设了桥梁,使学生在活动中逐步形成一定的数学学习的能力。
小数点位置的移动说课稿篇2
一、说教材:
1、说课内容:
九年义务教育课程标准实验教科书小学数学四年级下册第61页“小数点移动”。
2、本节课教材分析:
小数点位置移动引起小数大小的变化这一内容的学习,是在已经掌握了小数的意义、小数的性质和小数大小比较的基础上进行学习的。
学习这一规律既是小数乘除法计算的理论依据,又是复名数与小数相互改写的重要基础。
通过学习,有助于培养学生用联系变化的观点来认识事物,并进行辩证唯物主义观点教育。
3、本节课的教学目标:
1)使学生掌握小数点移动的方法。
2)使学生探索出小数点向左、向右移动引起小数大小的变化规律。
3)通过观察、概括,培养学生思维能力。
4)激发学生学习数学的兴趣,培养合作意识和应用意识。
4、本节课的重点、难点和关键
教学重点:探索并归纳出小数点位置移动引起小数大小的变化的规律,和比较熟练地判断随着小数点位置的变化,引起这个小数的大小有什么变化。
教学难点:如何发现这个规律和当移动小数点时,小数位数不够怎么处理的情况。
教学关键:则是启发学生通过自主探索,动手操作,合作交流等方式,发现并归纳出这一变化规律。
5、教学准备
多媒体课件,卡片
二、说教法
俗话说:教学有法,教无定法,贵在得法。
根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过小数点自我介绍这一情境感知并进行猜想,再通过从故事中提取数学问题,自己总结归纳出小数点移动的变化规律,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。
注重现代教学技术和直观教具的使用。
老师准备教学电脑课件。
三、说学法
本节课学习适于学生展开观察、猜想、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式、自我探究、闯关等形式组织教学。
这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发知慧的火花。
四、教学过程设计
为了突出重点,突破难点,达到已定的教学目标。
我安排了四个主要的教学环节;1创设情景,激趣引入,——2操作感知,探究规律——3多层训练,巩固规律——4自我检测,反馈评价——5课堂总结,故事升华等。
1、创设情景,激趣引入。
(1)首先,我给学生播放动画小数点的自我介绍让他们明白小数点在小数中的重要性激发了学生的探索欲望。
从而引出本节课教学内容:“小数点位置移动的奥秘”。
(2)以孙悟空招收徒弟为由,激发学生学习兴趣。
接着以听“孙悟空棒打妖怪”故事,同时出示4幅图片设置悬念,从故事中得到哪些数学信息,小数点移动与金箍棒的长短有什么关系?培养学生认真
听故事的良好习惯。
(3)我让学生猜想一下,小数点向右移动,小数的大小会引起什么变化呢?鼓励学生大敢猜想,使学生对探究规律产生浓厚的兴趣,再次激发了学生的求知欲。
2、小组合作,自主探究。
这一环节是课堂教学的主体部分,是学习知识,培养能力的主要途径之一,是一节课的关键环节。
为了分散难点,我安排三个层次:(1)给学生明确的探究指向:0.09米与0.009米相比,小数点向哪边移动?移动了几位?小数的大小发生了怎样的变化?
(2)小组合作,自主探究0.9米、9米与0.009米相比,小数点的移动情况与小数大小的变化情况。
让学生说出小数点向右移动一位,这个数就扩大到原来的10倍,小数点向右移动两位,这个数就扩大到原来的100倍,小数点向右移动三位,这个数就扩大到原来的1000倍。
等等。
(有了上一环节的教学,学生对问题的探究方向十分明了,这时可考虑到提问的广度。
)
(3)既然知道了小数点向右移动的规律,那你会联想到什么?小数点向左移动又有什么规律呢?让学生自己设疑,想到了小数点也可以向左移动,而移动的位置与引起小数大小的变化情况完全放手,让学生成为学习的主动者,自主探究得出“小数点向左移动一位,这个数就缩小到原来的1/10,小数点向左移动两位,这个数就缩小到原来的1/100,小数点向左移动三位,这个数就缩小到原来的1/1000,等等。
(有了前面规律的认识,这一环节学生能比较快速的解决问题。
)在这节课,我让孩子们不同的思维火花得以闪现,再通过与他人的合作交流,不断完善自己的想法,互教互学互长。
3、多层练习,巩固深化。
我以孙悟空招收徒弟为由,激发学生学习兴趣,将所学知识得以巩固。
这一环节,我采用的是我会填,我真行——我会辨,我真棒——我会说,我真牛这样的多层练习,让学生在不知不觉中理解和运用所学知识。
4、自我检测,反馈评价。
让学生及时检测自己一节课的收获,查
漏补缺。
5、课堂总结,故事升华。
我以总结孙悟空招收的徒弟,将课堂推向高潮,再以《小数点的悲剧》这一故事警诫学生要认真对待学习、生活中的每一个细节。
6、说板书设计:
板书:
小数点位置移动的奥秘
原数小数点原数
缩小到左移 . 右移扩大到
1/10 一位 10倍
1/100 两位 100倍
1/1000 三位 1000倍
位不够 0补足
小数点位置的移动说课稿篇3
一、说教材
说课内容是九年义务教育六年制小学教科书(实验本)数学第八册第105页的知识:小数点位置移动引起小数大小的变化。
小数点位置移动引起小数大小的变化这节知识是在学生已经掌握整数的有关知识,特别是十进制计数法以及小数的意义和性质等知识之后学习的。
因为小数与整数一样,都是按照十进制来计数,也就是数字所在的位置不同,表示的数值大小也不同。
小数的数位是由小数点确定的,所以,小数点的移动必然引起小数每一位上的数值发生变化。
这一变化规律不仅是小数乘除法计算的根据,也是复名数与小数相互改写的重要基础。
这一小节教材内容的展开,注意了由感性到理性,由具体到抽象的思维过程,并通过已有的知识来引入新课,充分调动学生学习的积极性,从而引导学生发现和掌握这一规律。
根据教学大纲和教材的特点,确立的教学目的是:
(1)使学生理解和掌握小数点位置移动引起小数大小的变化的规律。
(2)能比较熟练地把一些数同一个数(数字相同)进行比较,
知道其扩大、缩小及其倍数。
(3)培养学生类比推理和概括能力。
(4)初步培养学生用联系变化的观点认识事物。
教学重点:启发学生发现"小数点位置移动引起小数大小的变化规律"。
教学难点:概括、推理"小数点位置移动引起小数大小的变化规律"。
二、说教法
根据本节教学内容,可通过投影仪、磁黑板、卡片等教具,将知识的讲解与直观演示有机的结合起来,从表象出发,引导学生发现规律,激发学习兴趣,培养学生初步的抽象思维能力和概括能力,更有利于突出重点,突破难点。
为此,采用的教学方法是以启发式为指导思想,以讲授法为主,直观演示法、引导发现法、讨论法为辅,以讲、扶、放的形式进行教学,使学生的各种感官共同参与学习。
三、说学法
根据学法指导的自主性原则,充分发挥学生的主观能动性;根据学法指导的差异性原则,对学生进行有针对性的分类指导。
四、说程序
本节课教学,设计三个环节进行。
第一环节:
复习提问(约5分钟)
1.在○里填上>、<或=符号。
(板演)0.36○0.3603.68○36.824.3○2.432.口
答下面各题。
(与板演同时进行。
)
(1)0.1里有()个0.01?
(2)0.01里有()个0.001?(3)1里有()个0.1?()个0.01?)?
2.填空。
2×()=20130÷()=132×()=2001300÷()=13第一组题复习的目的主要是根据小数的性质判断小数的大小没有变化和两个小数的数字虽然相同,但是小数点的位置不同,小数位有了变化,小数大小也有了变化。
第二组题复习小数的意义及每相邻两个单位间的进率都是10的知识。
第三组题复习整数
部分中的扩大与缩小等知识。
第二环节:
传授新知(约15分钟)
1.导入新课。
(为了唤起学生的求知欲,激发兴趣,通过设疑,导入新课。
)
(1)板演题中的(2)(3)小题有什么相同点和不同点?
(2)为什么每组数字相同,排列顺序也相同,而组成的小数的大小不同呢?
(3)小数点位置移动引起小数的大小有什么变化呢?变化的规律是什么?
2.板书课题。
3.教学例1。
(通过讲、扶、放形式教学。
)
(1)边观察投影,边提问,边板书。
0.004米=4毫米......①0.04米=40毫米......②0.4米=400毫米......③4米=4000毫米......④
a.引导学生观察:(体现"教")以①式为标准,0.004米到0.04米,小数点的位置发生了怎样的变化?原来的数字4所在数位发生了怎样的变化?小数的大小发生了什么变化?为什么?由此我们可以得出:小数点向右移动一位,原来的数就扩大10倍。
(板书)
b.引导学生观察:(体现"扶")①式到③式,师按上述方法引导学生回答,并板书规律。
c.继续观察:(体现"放")①式到④式,独立回答上述问题。
并练习概括。
d.通过上述的比较,你发现什么规律?可以试着说一说。
后师板书。
如果小数点向右移动四位、五位......原来的数会发生什么变化呢?(补充:......)
e.完成105页做一做。
(2)根据刚才的学习方法,自己出声想。
问题是以④为标准,同③②①式比较投影出思考题。
(同前面的"教"。
)并完成106页。