重庆市2019年中考数学实现试题研究 新定义阅读理解题题库
中考数学 阅读理解题及答案
阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化. 解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3. (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019=2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019 =2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x2-x+3x+1=x(x+1)-2(x+1)+5x+1=x(x+1)x+1-2(x+1)x+1+5x+1=x-2+5x+1.这样,分式x2-x+3x+1就拆分成一个整式x-2与一个分式5x+1的和的形式.解决问题:(1)将分式x2+6x-3x-1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;(2)已知整数x使分式2x2+5x-20x-3的值为整数,则满足条件的整数x=________;(3)若关于x的方程2x2+(1-2a)x+(4-3a)=0有整数解,求正整数a的值.解(1)x+7+4x-1[解法提示]x2+6x-3x-1=(x-1)2+8(x-1)+4x-1=x-1+8+4x-1=x+7+4x-1.故结果为x+7+4x-1.(2)2,4,16,-10 [解法提示]2x2+5x-20x-3=2x2-6x+11x-33+13x-3=2x(x-3)+11(x-3)+13x-3=2x+11+13x-3.要使原式的值为整数,则13x-3为整数,故x=2,4,16,-10.(3)∵2x2+(1-2a)x+(4-3a)=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎨⎧ x =-1,a =5或⎩⎨⎧ x =-2,a =-10或⎩⎨⎧ x =2,a =2或⎩⎨⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值. 解:设2m 2+n 2=t ,则原方程变为(t +1)(t -1)=80,整理得t 2-1=80,t 2=81,∴t =±9,因为2m 2+n 2>0,所以2m 2+n 2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x ,y 满足(2x 2+2y 2+3)(2x 2+2y 2-3)=27,求x 2+y 2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解 (1)令2x 2+2y 2=t ,则原方程变为(t +3)(t -3)=27,整理得,t 2-9=27,t 2=36.t =±6.∵2x 2+2y 2≥0,∴2x 2+2y 2=6,∴x 2+y 2=3.(2)设四个连续正整数为k -1,k ,k +1,k +2(k ≥2且k 为整数). 由题得(k -1)k (k +1)(k +2)=11880,∴(k -1)(k +2)k (k +1)=11880,∴(k 2+k -2)(k 2+k )=11880.令t =k 2+k ,则(t -2)·t =11880,t 2-2t -11880=0,∴t 1=110,t 2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x -4因式分解的结果为(x +1)(x +2)(x -2),当x =15时,x +1=16,x +2=17,x -2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎨⎧ m -3n =5,n =17,解得⎩⎨⎧ m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎨⎧ m =1,n =2或⎩⎨⎧ m =5,n =1,∴a 的值为734或770.8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17. (1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎨⎧ a +b =3,a -b =2或⎩⎨⎧ a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =15,a -b =3或⎩⎨⎧ a +b =9,a -b =5或⎩⎨⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎨⎧ a =9,b =6或⎩⎨⎧ a =7,b =2或⎩⎨⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =71,a -b =1,解得⎩⎨⎧ a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =92,a -b =1或⎩⎨⎧ a +b =46,a -b =2或⎩⎨⎧ a +b =23,a -b =4. 解得⎩⎨⎧ a =24,b =22.∴F (t )=1112. ③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =24,a -b =1或⎩⎨⎧ a +b =12,a -b =2或⎩⎨⎧ a +b =8,a -b =3或⎩⎨⎧ a +b =6,a -b =4.解得⎩⎨⎧ a =7,b =5或⎩⎨⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15. ∴F (t )的最大值为3536. 9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接EC ,请写出∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC 中,∠ABC =∠ACB =45°,∠BDC =90°.若BD =3,CD =5,请直接写出AD 的长.解(1)①60°②AC=CD+CE[解法提示] 由题意,得△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=∠B=60°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠ACE=∠B=60°,BD=CE.∴AC=BC=CD+BD=CD+CE.(2)∠ACE=45°,2AC=CD+CE.理由:由题意,得∠BAC=∠DAE=90°,AB=AC,AD=AE.∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示] 过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
2019年重庆中考数学材料阅读题专题
2019年重庆中考数学材料阅读题专题一.方程类1.阅读下面的内容用换元法求解方程组的解题目:已知方程组①的解是,求方程组②的解.解:方程组②可以变形为:方程组③设2x=m,3y=n,则方程组③可化为④比较方程组④与方程组①可得,即所以方程组②的解为参考上述方法,解决下列问题:(1)若方程组的解是,则方程组的解为;(2)若方程组①的解是,求方程组②的解.2.阅读理解题:小聪是个非常热爱学习的学生,老师在黑板上写了一题:若方程x2﹣6x﹣k ﹣1=0与x2﹣kx﹣7=0有相同根,试求k的值及相同根.思考片刻后,小聪解答如下:解:设相同根为m,根据题意,得①﹣②,得(k﹣6)m=k﹣6 ③显然,当k=6时,两个方程相同,即两个方程有两个相同根﹣1和7;当k≠6时,由③得m=1,代入②式,得k=﹣6,此时两个方程有一相同根x=1.∴当k=﹣6时,有一相同根x=1;当k=6时,有两个相同根是﹣1和7聪明的同学,请你仔细阅读上面的解题过程,解答问题:已知k为非负实数,当k取什么值时,关于x的方程x2+kx﹣1=0与x2+x+k﹣2=0有相同的实根.3.阅读材料:材料1、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=,x1x2=.材料2、已知实数m、n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.解:由题知m、n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1∴=根据上述材料解决下面问题;(1)一元二次方程2x2+3x﹣1=0的两根为x1、x2,则x1+x2=,x1x2=.(2)已知实数m、n满足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p、q满足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.4.相传,大禹治水时,洛水中出现了一个“神龟”背上有美妙的图案,史称“洛书”,用现在的数字翻译出来,就是三级幻方.三阶幻方是最简单的幻方,又叫九宫格,它是由九个数字组成的一个三行三列的矩阵.其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2也是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,则x的值为;(2)由1、2、3、4、5、6、7、8、9生成的幻方称为基本三阶幻方,在此基础上各数再加或减一个相同的数,可组成新三阶幻方,新三阶幻方的幻和也随之变化.如图3,是由基本三阶幻方中各数加上m后生成的新三阶幻方,该新三阶幻方的幻和为a3的4倍,且a5﹣a3=3,求a7的值;(3)由1、2、3、4、5、6、7、8、9生成的基本三阶幻方中每个数都乘以或除以一个不为0的数也可组成一个新三阶幻方,如图4,是由基本三阶幻方中各数乘以p再减2后生成的新三阶幻方,其中n8为9个数中的最大数,且满足n1﹣2n6=2,n82﹣n62=2448,求p及n9的值.5.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,(1)方程x2﹣x﹣2=0(填“是”或“不是”)倍根方程;(2)若(x﹣2)(mx+n)=0是倍根方程,则求代数式4m2+5mn+n2值;(3)若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程吗?6.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m =0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.7.阅读材料材料1:“上海自来水来自海上”是耳熟能详的回文对联,数学世界里有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22、131、1991、123321、…,像这样的数我们叫它“回文数”.材料2:如果一个三位数,满足a+b+c=8,我们就称这个三位数为“吉利数”.(1)请直接写出既是“回文数”又是“吉利数”的所有三位数;(2)三位数①是大于500的“回文数”;②的各位数字之和等于k是一个完全平方数;求这个三位数(请写出必要的推理过程).8.进位数是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n,即可称n进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n(n≤10)进制表示的数,通常使用n个阿拉伯数字0~(n﹣1)进行记数,特点是逢n进一,我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76(1)请将以下两个数转化为十进制:(331)5=,(46)7=(2)若一个正数可以用七进制表示为(),也可以用五进制表示为,请求出这个数并用十进制表示.9.进制也就是进位制,是人们利用符号进行计数的科学方法.对于任何一种进制X进制,就表示某一位置上的数运算时逢X进一位,如十进制数123=1×102+2×101+3×100,记作123(10);七进制123=1×72+2×71+3×70,记作123(7).各进制之间可进行转化,如:将七进制转化为十进制:123(7)=1×72+2×7+3×70=66,即123(7)=66(10),将十进制转化为七进制:(因为72<66<73,所以做除法从72开始)66÷72=1…17,17÷71=2…3,即66(10)=123(7)(1)根据以上信息,若将八进制转化为十进制:15(8)=1×81+5×80=13,即15(8)=;若将十进制转化为九进制:98÷92=1…17,17÷91=1…8,即98(10)=(9)(10)(2)若将一个十进制两位数转换成九进制和八进制数后,得到一个九进制两位数和一个八进制两位数,首位分别2,3,个位分别为x,y.①若x=7,则y=.②请求出满足上述条件的所有十进制两位数.10.请阅读下列材料:问题:已知方程x2+15x﹣1=0,求一个一元二次方程,是它的根分别是已知方程根的2倍.解:设所求方程根为y,则y=2x,所以,把带人已知方程,得,化简得y2+30y﹣4=0.故所求的方程为y2+30y﹣4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的换根法求新方程(要求把方程化为一般形式):(1)已知方程x2+x﹣2=0,求一个一元二次方程.是它的根是已知方程根的相反数,则所求方程为:.(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实根,求一个一元二次方程,使它的根分别是已知方程根的倒数.11.函数[x]称为高斯函数,它表示不超过x的最大整数,例如[5.3]=5,[﹣2.4]=﹣3,[4]=4.对任意的实数x,x﹣1<[x]≤x.(1)证明:对于任意实数x,有[x]+[x+]=[2x];(2)解方程:[]=.12.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”.反之,“有限小数或无限循环小数均可化为分数”例如:=1÷4=0.25,1=1+=1+0.6=1.6或1==8÷5=1.6,=1÷3=0.,反之,0.25==,1.6=1+0.6=1+=1或1.6==,那么0.怎么化为呢?解:∵0.×10=3.=3+0.∴不妨设0.=x,则上式变为10x=3+x,解得x=即0.=根据以上材料,回答下列问题.(1)将“分数化为小数”:=;=.(2)将“小数化为分数”:0.=;1.5=.(3)将小数1.化为分数,需写出推理过程.13.我们知道≈1.414,于是我们说:“的整数部分为1,小数部分则可记为﹣1”.则:(1)﹣3的整数部分为,小数部分则可记为;(2)已知3+的小数部分为a,7﹣的小数部分为b,那么a+b的值是;(3)已知x是的整数部分,y是的小数部分,求的平方根.14.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)例:分解因式:x2﹣2xy﹣8y2解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:6x2﹣7xy+2y2=x2﹣6xy+8y2﹣5x+14y+6=(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=﹣1,求x,y.二、不等式类15.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.16.对非负实数x“四舍五入”到个位的值记为<x>.即:当n为非负整数时,如果n﹣,则<x>=n.反之,当n为非负整数时,如果<x>=n,则n﹣,例如:<0>=<0.48>=0,<0.64>=<1.49>=1,<2>=2,<3.5>=<4.12>=4.试解决下列问题:(1)填空:①<π>=(π为圆周率);②如果<x﹣1>=3,则实数x的取值范围为.(2)①若关于x的不等式组的整数解恰有3个,则a的取值范围是.②若关于x的方程+x﹣2=﹣有正整数解,求m的取值范围.(3)求满足<x+1>=x的所有非负整数x的值.17.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x,y叫做线性数的一个数对.若实数x,y都取正整数,我们称这样的线性数为正格线性数,这时的x,y叫做正格线性数的正格数对.(1)若L(x,y)=x+3y,则L(2,1)=,L(,)=;(2)已知L(1,﹣2)=﹣1,L(,)=2.①a=,b=;②若正格线性数L(m,m﹣2),求满足50<L(m,m﹣2)<100的正格数对有多少个;③若正格线性数L(x,y)=76,满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2,y=a(a﹣1)=a2﹣a∵x=y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:(1)x=98760×98765﹣98761×98764,y=98761×98764﹣98762×98763,试比较x、y 的大小;(2)计算:1.345×0.345×2.69﹣1.3453﹣1.345×0.3452.三、函数类20.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.21.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),(,),…,都是“梦之点”,显然“梦之点”有无数个.(1)若点P(m,5)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)一次函数y=2kx﹣1(k为常数,k≠0)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b为常数,a≠0)的图象上有且只有一个“梦之点”A(c,c),令t=b2+4a,当﹣2<b<2时,求t的取值范围.22.新定义:若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“共性二次函数”.(1)请写出两个为“共性二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4nx+2n2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“共性二次函数”,求函数y2的表达式.23.阅读材料,解答问题.知识迁移:当a>0且x>0时,因为()2≥0,所以x﹣2+≥0,从而x+(当x=时取等号),记函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.直接应用:已知函数y1=x(x>0)与函数y2=(x>0),则当x=时,y1+y2取得最小值为.变形应用:已知函数y1=x+2(x>﹣2)与函数y2=(x+2)2+9(x>﹣2),求的最小值,并指出取得该最小值时相应的x的值.实际应用:建造一个容积为8立方米,深2米的长方体无盖水池,池底和池壁的造价分别为每平方米120元和80元,设池长为x米,水池总造价为y(元),求当x为多少时,水池总造价y最低?最低是多少?24.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=﹣2x2+5x﹣3函数的“旋转函数”.小明是这样思考的:由y=﹣2x2+5x﹣3函数可知,a1=﹣2,b1=5,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣2x2+5x﹣3的“旋转函数”;(2)若函数y1=x2+x﹣n与y2=﹣x2﹣mx﹣2互为“旋转函数”,求(m+n)2019的值;(3)已知函数y=(x﹣2)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试证明经过点A1、B1、C1的二次函数与函数y=(x﹣2)(x+3)互为“旋转函数”.25.问题背景:若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:(x>0),利用函数的图象或通过配方均可求得该函数的最大值.提出新问题:若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?分析问题:若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:(x>0),问题就转化为研究该函数的最大(小)值了.解决问题:借鉴我们已有的研究函数的经验,探索函数(x>0)的最大(小)值.(1)实践操作:填写下表,并用描点法画出函数(x>0)的图象:x…1/41/31/21234…y…545…(2)观察猜想:观察该函数的图象,猜想当x=时,函数(x>0)有最值(填“大”或“小”),是.(3)推理论证:问题背景中提到,通过配方可求二次函数(x>0)的最大值,请你尝试通过配方求函数(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,〕26.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如图中的函数是有界函数,其边界值是1.(1)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(2)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?27.在平面直角坐标系xOy中,当图形W上的点P的横坐标和纵坐标相等时,则称点P为图形W的“梦之点”.(1)已知⊙O的半径为1.①在点E(1,1),F(﹣,﹣),M(﹣2,﹣2)中,⊙O的“梦之点”为;②若点P位于⊙O内部,且为双曲线y=(k≠0)的“梦之点”,求k的取值范围.(2)已知点C的坐标为(1,t),⊙C的半径为,若在⊙C上存在“梦之点”P,直接写出t的取值范围.(3)若二次函数y=ax2﹣ax+1的图象上存在两个“梦之点”A(x1,y1),B(x2,y2),且|x1﹣x2|=2,求二次函数图象的顶点坐标.28.著名数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则.”阅读下列两则材料,回答问题材料一:平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何将双重二次根式(a>0,b>0,a±2>0)化简呢?如能找到两个数m,n(m>0,n>0),使得(2+()2=a即m+n=a,且使即m•n=b,那么a±2=()2+()2±2=(2∴==|,双重二次根式得以化简:例如化简:;∵3=1+2且2=1×2,∴3+2=()2+()2+2∴==1+材料二:在直角坐标系xoy中,对于点P(x,y)和点Q(x,y′)出如下定义:若y′=,则称点Q为点P的“横负纵变点”例如,点(3,2)的“横负纵变点”为(3,2)点(﹣2,5)的“横负纵变点”为(﹣2,﹣5)问题:(1)请直接写出点(﹣3,﹣2)的“横负纵变点”为;化简,=;(2)点M为一次函数y=﹣x+1图象上的点,M′为点M的横负纵变点,已知N(1,1),若M′N=,求点M的坐标.(3)已知b为常数且1≤b≤2,点P在函数y=﹣x2+16(+)(﹣7≤x≤a)的图象上,其“横负纵变点”的纵坐标y′的取值范围是﹣32<y′≤32,若a 为偶数,求a的值.29.对于三个数a、b、c,M|a,b,c|表示这三个数的平均数,min{a,b,c}表示a、b、c 这三个数中最小的数,如:M|﹣1,2,3|==,min{﹣1,2,3}=﹣1;M|﹣1,2,a|==,min{﹣1,2,a}=解决下列问题:(1)填空:M|,,|=;min{﹣3,,﹣π}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M|2,x+1,2x|=min{2,x+1,2x},求x的值;(4)如图,在同一平面直角坐标系中,画出了函数y=x+1,y=(x﹣1)2,y=2﹣x的图象,则min{x+1,(x﹣1)2,2﹣x}的最大值为.30.定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:y=+1的图象向左平移2个单位,再向下平移1个单位得到y=的图象,则y=+1是y与x的“反比例平移函数”.(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”y =的图象经过B、E两点.①求这个“反比例平移函数”的表达式;②这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请直接写出这个反比例函数的表达式.31.请阅读下述材料,并解答问题例:说明代数式+的几何意义,并求它的最小值.解:在平面直角坐标系中,已知两点P1(x1,y1),P2(x2,y2)则这两点间的距离公式为:P1P2=所以原式=+如图建立直角坐标系,点P(x,0)是x轴上一点,则可以看成点P 与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段P A与PB的长度之和,它的最小值就是P A+PB的最小值.设点A关于x轴的对称点为A′,则P A=P A′,因此,求P A+PB的最小值,只需求P A′+PB的最小值,由两点之间,线段最短可得,P A′+PB的最小值为线段A′B的长度.为求A′B我们可以构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3解答问题:(1)代数式+的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B的距离之和(填写点B的坐标);(2)代数式+的最小值为.32.“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:(1)设P(a,)、R(b,),求直线OM对应的函数表达式(用含a,b的代数式表示);(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).四、因式分解类33.阅读下列材料1637年笛卡儿(R.Descartes,1596﹣1650)在其《几何学》中,首次应用待定系数法将4次方程分解为两个2次方程求解,并最早给出因式分解定理.他认为,若一个高于二次的关于x的多项式能被(x﹣a)整除,则其一定可以分解为(x ﹣a)与另外一个整式的乘积,而且令这个多项式的值为0时,x=a是关于x的这个方程的一个根.例如:多项式x2+9x﹣10可以分解为(x﹣1)与另外一个整式M的乘积,即x2+9x﹣10=(x﹣1)M,令x2+9x﹣10=0时,可知x=1为该方程的一个根.关于笛卡尔的“待定系数法”原理,举例说明如下:分解因式:x3+2x2﹣3.观察知,显然x=1时,原式=0,因此原式可分解为(x﹣1)与另一个整式的积.令:x3+2x2﹣3=(x﹣1)(x2+bx+c),而(x﹣1)(x2+bx+c)=x3+(b﹣1)x2+(c﹣b)x﹣c,因等式两边x同次幂的系数相等,则有:,得,从而x3+2x2﹣3=(x﹣1)(x2+3x+3).此时,不难发现x=1是方程x3+2x2﹣3=0的一个根.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.(2)若多项式3x4+ax3+bx﹣34含有因式x+1及x﹣2,求a+b的值.(3)若多项式6x2﹣xy﹣2y2+5x﹣8y+a可以分解为两个一次因式之积,求a的值将该多项式分解因式.34.阅读理解:若一个整数能表示成a2+b2(a、b是整数)的形式,则称这个数为“平和数”,例如5是“平和数”,因为5=22+1,再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整数),我们称M也是“平和数”.(1)请你写一个小于5的“平和数”,并判断34是否为“平和数”.(2)已知S=x2+9y2+6x﹣6y+k(x,y是整数,k是常数,要使S为“平和数”,试求出符合条件的一个k值,并说明理由.(3)如果数m,n都是“平和数”,试说明也是“平和数”.35.阅读下列材料解决问题两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.(1)下列说法错误的是A.123和51互为调和数”B.345和513互为“调和数C.2018和8120互为“调和数”D.两位数和互为“调和数”(2)若A、B是两个不等的两位数,A=,B=,A和B互为“调和数”,且A与B 之和是B与A之差的3倍,求满足条件的两位数A.36.请阅读以下材料,并解决相应的问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在解某些特殊方程时,使用换元法常常可以达到转化与化归的目的,例如在求解一元四次方程x4﹣2x2+1=0时,令x2=t,则原方程可变为t2﹣2t+1=0,解得t=1,从而得到原方程的解为x=±1.村料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.它呈现了某些特定系数在三角形中的一种有规律的几何排列.如图为杨辉三角形:(1)利用换元法解方程:(x2+3x﹣1)2+2(x2+3x﹣1)=3(2)在杨辉三角形中,按照由上至下、从左到右的顺序观察,设a n是第n行的第2个数(其中n≥4),b n是第n行的第3个数,c n是第(n﹣1)行的第3个数.请利用换元法因式分解:4(b n﹣a n)•c n+137.材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17“明三礼”数(填“是”或“不是”);721是“明礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.38.阅读下列材料:我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);再例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)已知a,b,c为△ABC的三边,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.39.任意三个正整数a、b、c,若满足a+b2﹣2c=2,我们称这三个数组成的一组数为和谐数组,记为(a,b,c).对每一和谐数组,我们用F(a,b,c)表示它的和谐度,规定:F(a,b,c)=abc.例如:∵6+22﹣2×4=2,∴(6,2,4)是和谐数组,F(6,2,4)=6×2×4=48.(1)(a,b,c)是和谐数组,求和谐度F(a,b,c)的最小值.(2)(a,b,c)是和谐数组,且a,b、c满足3a2﹣8b+c=0.求和谐度F(a,b,c)的最小值.40.若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为39.(1)26的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被45整除;(2)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的值.。
新定义阅读理解题-含答案
新定义阅读理解题(2019·重庆A卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征,在数的学习过程中,我们会对其中一些具有某种特性数进行研究.如学习自然数时,我们研究了奇数、偶数、质数、合数等,现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2 019和2 020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据纯数的定义逐一判断2 019和2 020即可;(2)判断不大于100的“纯数”的个数,可先从个位数字入手,确定个位数字的特点,再确定十位数字的特点,即可得到对应的“纯数”.【自主解答】1.(2018·重庆A卷)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2) 如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=m33.求满足D(m)是完全平方数的所有m.2.(2020·原创)若在一个两位正整数N的个位数字与十位数字之间添上数字2,组成一个新的三位数,我们称这个三位数为N的“中2数”,记作F(N),如34的“中2数”为F(34)=324;若将一个两位正整数M加2后得到一个新数,我们称这个新数为M的“尾2数”,记作P(M),如34的“尾2数”为P(34)=36.对于任意一个两位正整数T,令Q(T)=F(T)-P(T)9.(1)判断Q(T)是否为整数,并说明理由;(2)对于一个两位正整数M,若P(M)的各位数之和是M的各位数之和的一半,求M的值.3.(2017·重庆A 卷)对于任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后,可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n),例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位和个位上的数字得到132,这三个新三位数的和为213+321+132=666,∴F(123)=6. (1)计算:F(243),F(617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y(1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F(s)+F(t)=18时,求k 的最大值.4.(2020·原创)事实:我们知道若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除,反之也成立.定义:对于一个两位数m和一个三位数n,它们各个数位上的数字都不为0,将数m任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这样方式产生的所有新的两位数的和我们称之为“二三联合”,用F(m,n)表示.例如数12与345的“二三联合”为F(12,345)=13+14+15+23+24+25=114.(1)填空:F(11,369)=________ ;F(16,123)=________ ;(2)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x,y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中的“二三联合”的最大值.5.(2019·九龙坡区模拟)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣一个要求.大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了.设S=1+21+22+23+…+263,则2S=2(1+21+22+23+24+…+263)=2+22+23+24+…+263+264.2S-S=2(1+21+22+23+24+…+263)-(1+21+22+23+24+…+263),即:S=264-1.事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264-1)粒米.那么264-1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18 446 744 073 709 551 615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有一问题:“远望巍巍塔七层,红光点点倍加增;共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n;(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值.参考答案【例1】解:(1)当n=2 019时,n+1=2 020,n+2=2 021,∵9+0+1=10,需进位,∴2 019不是“纯数”;当n=2 020时,n+1=2 021,n+2=2 022,个位:0+1+2=3,不需要进位;十位:2+2+2=6,不需要进位;百位:0+0+0=0,不需要进位;千位:2+2+2=6,不需要进位;∴2 020是“纯数”.(2)当n=0时,n+1=1,n+2=2,则0+1+2=3,不需要进位,∴0是“纯数”;当n=1时,n+1=2,n+2=3,1+2+3=6,不需要进位,∴1是“纯数”;当n=2时,n+1=3,n+2=4,2+3+4=9,不需要进位,∴2是“纯数”;当n=3时,n+1=4,n+2=5,3+4+5=12,需要进位,∴3不是“纯数”,综上可知,当这个自然数是一位自然数时,只能是0,1,2;当这个自然数是两位自然数时,这个自然数可以是10,11,12,20,21,22,30,31,32,共9个,当这个自然数是三位自然数时,100是“纯数”,∴不大于100的自然数中,“纯数”的个数为3+9+1=13.跟踪训练1.解:(1)1 188;2 475; 9 900.(答案不唯一)猜想:任意一个“极数”是99的倍数.理由如下:设任意一个“极数”为xy(9-x)(9-y)(其中1≤x≤9,0≤y≤9,且x,y均为整数),则xy(9-x)(9-y)=1 000x+100y+10(9-x)+9-y=1 000x+100y+90-10x+9-y=99(10x+y+1).∵x,y为整数,∴10x+y+1为整数,∴任意一个“极数”是99的倍数.(2)设m=xy(9-x)(9-y),由题意可知,D(m)=99(10x+y+1)33=3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,∵D(m)是完全平方数,∴D(m)可取的值为36,81,144,225,当D(m)=36时,3(10x +y +1)=36,则x =1,y =1,m =1 188; 当D(m)=81时,3(10x +y +1)=81,则x =2,y =6,m =2 673; 当D(m)=144时,3(10x +y +1)=144,则x =4,y =7,m =4 752; 当D(m)=225时,3(10x +y +1)=225,则x =7,y =4,m =7 425.综上所述,满足D(m)为完全平方数的m 的值为1 188,2 673,4 752,7 425. 2.解:(1)Q(T)是整数.理由如下: 设两位正整数T 为ab ,则T =10a +b , ∴F(T)=a2b =100a +20+b , P(T)=10a +b +2,∴F(T)-P(T)=100a +20+b -(10a +b +2) =90a +18=9(10a +2), ∵a 为整数,∴10a+2为整数, ∴Q(T)=F (T )-P (T )9是整数.(2)设M =ab ,1≤a≤9,0≤b≤9, ∴M+2=10a +b +2,∵M+2的各数位上的数之和比M 各数位上的数之和小, ∴M+2后,个位发生了进位,∴b≥8,且M +2=10(a +1)+(b +2-10), ∴a+1+b +2-10=12(a +b),整理得a +b =14,∴a=6,b =8,或a =5,b =9,∴M 为68或59.3.解:(1)F(243)=(423+342+234)÷111=9, F(617)=(167+716+671)÷111=14. (2)∵s,t 都是相异数,∴F(s)=(302+10x +230+x +100x +23)÷111=x +5, F(t)=(510+y +100y +51+105+10y)÷111=y +6, ∵F(s)+F(t)=18,∴x+5+y +6=x +y +11=18, ∴x+y =7,∵1≤x≤9,1≤y≤9,且x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1y =6或⎩⎪⎨⎪⎧x =2y =5或⎩⎪⎨⎪⎧x =3y =4或⎩⎪⎨⎪⎧x =4y =3或⎩⎪⎨⎪⎧x =5y =2或⎩⎪⎨⎪⎧x =6y =1, ∵s 是相异数,∴x≠2,x≠3, ∵t 是相异数,∴y≠1,y≠5,∴满足条件的有⎩⎪⎨⎪⎧x =1y =6或⎩⎪⎨⎪⎧x =4y =3或⎩⎪⎨⎪⎧x =5y =2,∴⎩⎪⎨⎪⎧F (s )=6F (t )=12或⎩⎪⎨⎪⎧F (s )=9F (t )=9或⎩⎪⎨⎪⎧F (s )=10F (t )=8, ∴k=F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54,∵12<1<54, ∴k 的最大值为54.4.解:(1)F(11,369)=13+16+19+13+16+19=96; F(16,123)=11+12+13+61+62+63=222.(2)已知s=21x+y=20x+(x+y),t=121x+y+199=100(x+2)+20x+(x+y -1),∵1≤x≤4,1≤y≤5,且x,y均为整数,∴t′+3(x+y)=100(x+y-1)+20x+x+2+3(x+y)=124x+103y-98,∵t′+3(x+y)能被11整除,∴t′+3(x+y)11=121x+99y-9911+3x+4y+111=11x+9y-9+3x+4y+111为整数,∴3x+4y+111是整数,∵1≤x≤4,1≤y≤5,∴8≤3x+4y+1≤33,∴当3x+4y+1=11时,x=2,y=1,此时s=43,t=442;当3x+4y+1=22时,得x=3,y=3,此时s=66,t=565;当3x+4y+1=33时,x=4,y=5,此时s=89,t=688.∴F(s,t)的最大值为F(89,688)=554.5.解:(1)设塔的顶层有x盏灯,依题意得:x+21x+22x+23x+24x+25x+26x=381,解得:x=3,答:塔的顶层共有3盏灯.(2)设S=1+3+9+27+…+3n,则3S=3(1+3+9+27+…+3n)=3+9+27+…+3n+3n+1,∴3S-S=(3+9+27+3n+3n+1)-(1+3+9+27+3n),∴2S=3n+1-1,∴S=3n +1-12, 即:1+3+9+27+…+3n =3n +1-12. (3)由题意这列数分n +1组:前n 组含有的项数分别为:1,2,3,…,n ,最后一组x 项,根据材料可知每组和公式,求得前n 组每组的和分别为:21-1,22-1,23-1,…,2n -1,前n 组共有项数为N′=1+2+3+…+n =n (n +1)2, 前n 组所有项数的和为S n =21-1+22-1+23-1+…+2n -1=(21+22+23+…+2n )-n =2n +1-2-n ,由题意可知:2n +1为2的整数幂.只需最后一组x 项将-2-n 消去即可,则①1+2+(-2-n)=0,解得:n =1,总项数为N =1×(1+1)2+2=3,不满足10<N<100,②1+2+4+(-2-n)=0,解得:n =5,总项数为N =5×(5+1)2+3=18,满足10<N<100,③1+2+4+8+(-2-n)=0,解得:n =13,总项数为N =13×(13+1)2+4=95,满足10<N<100,④1+2+4+8+16+(-2-n)=0,解得:n =29,总项数为N =29×(29+1)2+5=440,不满足10<N<100,∴所有满足条件的软件激活码正整数N 的值为:18或95.。
2019年中考数学《阅读理解专题训练》 附答案
所以可将代数式 的值看作点 到点 的距离.
利用材料一,解关于x的方程: ,其中 ;
利用材料二,求代数式 的最小值,并求出此时y与x的函数关系式,写出x的取值范图;
将 所得的y与x的函数关系式和x的取值范围代入 中解出x,直接写出x的值.
2.规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如 , 等.类比有理数的乘方, 记作 ④,读作“ 的圈4次方”,一般地,我们把 ( )记作 ⓝ,读作“a的圈n次方”.
① __________(用含有k,n的代数式表示);
②若 4420,求 的值。
4.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: 其中m>n>0,m,n是互质的奇数.
应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.
①把 拆成两个分子为1的正的真分数之差,即 _______;
②把 拆成两个分子为1的正的真分数之和,即 _______;
深入探究
定义“ ”是一种新的运算,若 , , ,则 计算的结果是_________。
拓展延伸
第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数k,记2个数的和为 ;第二次将两个半圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记4个数的和为 ;第三次将四个 圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记8个数的和为 ;第四次将八个 圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记16个数的和为 ;……,如此进行了n次。
②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;
重庆市2019年中考数学试卷及解析
2019年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2019重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( )A .﹣3B .﹣1C .0D .2考点:有理数大小比较。
解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2.(2019重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。
解答:解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .3.(2019重庆)计算()2ab 的结果是( )A .2abB .b a 2C .22b aD .2ab考点:幂的乘方与积的乘方。
解答:解:原式=a 2b 2.故选C .4.(2019重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°考点:圆周角定理。
解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=45°.故选A .5.(2019重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率考点:全面调查与抽样调查。
解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C .6.(2019重庆)已知:如图,BD 平分∠ABC,点E 在BC 上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°考点:平行线的性质;角平分线的定义。
2019年中考数学总复习新定义问题专题综合训练题含答案和解析语文
2019年 中考数学总复习 新定义问题 专题综合训练题1.对于两个不相等的实数a ,b ,我们规定符号max{a ,b}表示a ,b 中的较大值,如:max{2,4}=4,按照这个规定,方程max{x ,-x}=2x +1x的解为( ) A .1- 2 B .2- 2 C .1+2或1- 2 D .1+2或-12. 定义[a ,b ,c]为函数y =ax 2+bx +c 的特征数, 下面给出特征数为[2m ,1-m ,-1-m]的函数的一些结论:①当m =-3时,函数图象的顶点坐标是(13,83);②当m>0时,函数图象截x 轴所得的线段长度大于32;③当m<0时,函数在x>14时,y 随x 的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有( )A .①②③④B .①②④C .①③④D .②④3. 我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i”,使其满足i 2=-1 (即方程x 2=-1有一个根为i),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3= i 2·i=(-1)·i=-i, i 4=( i 2)2=(-1) 2=1,从而对任意正整数n ,我们可以得到i 4n +1=i 4n ·i=(i 4)n ·i =i ,同理可得i 4n +2=-1, i 4n +3=-i , i 4n =1,那么i + i 2+ i 3+ i 4+…+ i 2019+ i 2019 的值为( )A .0B .1C .-1D .i4. 对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18.则方程x ⊗(-2)=2x -4-1的解是( )A .x =4B .x =5C .x =6D .x =75. 现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)6. 设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是____.(填写所有正确结论的序号)①[0)=0; ②[x)-x 的最小值是0; ③[x)-x 的最大值是1; ④存在实数x ,使[x)-x =0.5成立.7. 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2(n <10),f (n )(n ≥10),其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f (123)=12+32=10.规定F 1(n )=F (n ),F k +1(n )=F (F k (n ))(k 为正整数).例如:F 1(123)=F (123)=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)=____,F 2019(4)=____;(2)若F 3m (4)=89,求正整数m 的最小值.8. 定义一种新运算:a b =b 2-ab ,如:12=22-1×2=2,则(-12)3=____.9. 定义一种新运算:观察下列各式:1⊙3=1×4+3=7;3⊙(-1)=3×4-1=11;5⊙4=5×4+4=24;4⊙(-3)=4×4-3=13.(1)请你想一想:a⊙b= ;(2)若a≠b,那么a⊙b____b ⊙a (填“=”或“≠”);(3)若a ⊙(-2b )=4,请计算(a -b )⊙(2a +b )的值.10. 若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 .11. 对某种几何图形给出如下定义: 符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1)如图1,在△ABC 中,AB =AC ,∠BAC =90°,A(0,2),B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE ,且DE⊥x 轴于点G, 则直线DE 的表达式是 .(2)当△ABC 是等边三角形时,在(1)的条件下,动点C 形成的轨迹也是一条直线. ①当点B 运动到如图2的位置时,AC ∥x 轴,则C 点的坐标是 ; ②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式;③设②中这条直线分别与x ,y 轴交于E ,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动(不与O ,F 重合),且CH =CE ,求CE 的取值范围.12. 对x ,y 定义一种新运算T ,规定:T (x ,y )=ax +by 2x +y(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a ×0+b ×12×0+1=b .(1)已知T (1,-1)=-2,T (4,2)=1.①求a ,b 的值;②若关于m 的不等式组⎩⎪⎨⎪⎧T (2m ,5-4m )≤4,T (m ,3-2m )>p 恰好有3个整数解,求实数p 的取值范围;(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立(这里T (x ,y )和T (y ,x )均有意义),则a ,b 应满足怎样的关系式?13. 实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B(如图),若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b -a =2时,求a ,b 的大黄金数与小黄金数之差m -n.参考答案:1. D 解析:根据x 与-x 的大小关系,取x 与-x 中的最大值化简所求方程,求出解即可.2. B3. A4. B5. D 【解析】根据题意可知,S 1中2有2的倍数个,3有3的倍数个,据此即可作出选择.A.∵2有3个,∴不可以作为S 1,故选项错误;B.∵2有3个,∴不可以作为S 1,故选项错误;C.3只有1个,∴不可以作为S 1,故选项错误;D.符合定义的一种变换,故选项正确.故选D.6. ③④7. 解:(1)37,26 (2)68. -9 【解析】先根据新定义计算出-12=6,然后计算再根据新定义计算63即可.-12=22-(-1)×2=6,63=32-6×3=-9,所以(-12)3=-9.9. 解:(1) 4a +b(2) ≠(3)因为a ⊙(-2b)=4,所以4a -2b =4,所以2a -b =2,(a -b)⊙(2a +b)=4(a -b)+(2a +b)=4a -4b +2a +b =6a -3b =3(2a -b)=3×2=6解析:(1)观察前面的例子可得a ⊙b =4a +b ;(2)根据定义a ⊙b =4a +b ,b ⊙a =4b +a ,因为a ≠b ,所以a ⊙b ≠b ⊙a ;(3)根据定义先将a ⊙(-2b )=4化简,再将(a -b )⊙(2a +b )化简并把上面得到的式子代入计算.10. 30°或150°11. 解:(1)x =2 (2)①(433,2) ②画图略,y =3x -2 ③493≤EC<233 12. 解:(1)①根据题意得T(1,-1)=a -b 2-1=-2,即a -b =-2; T =(4,2)=4a +2b 8+2=1,即2a +b =5,解得a =1,b =3 ②根据题意得⎩⎪⎨⎪⎧2m +3(5-4m )4m +5-4m≤4①,m +3(3-2m )2m +3-2m >p②,由①得m≥-12; 由②得m <9-3p 5,∴不等式组的解集为-12≤m <9-3p 5, ∵不等式组恰好有3个整数解,即m =0,1,2,∴2<9-3p 5≤3, 解得-2≤p<-13(2)由T(x ,y)=T(y ,x),得到ax +by 2x +y =ay +bx 2y +x,整理得(x2-y2)(2b-a)=0,∵T(x,y)=T(y,x)对任意实数x,y都成立,∴2b-a=0,即a=2b 13. 解:AB=b-a=2,设AM=x,则BM=2-x,由题意得x2=2(2-x),解得x1=-1+5,x2=-1-5(舍去),则AM=BN=5-1,∴MN=m-n=AM+BN -2=2(5-1)-2=25-4。
重庆市中考数学 第二部分 题型研究 题型六 新定义题针对演练-人教版初中九年级全册数学试题
题型六 新定义题针对演练1. (2016某某)设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =⎩⎪⎨⎪⎧b a (a >0)a -b (a ≤0).例如:1⊕(-3)=-31=-3,(-3)⊕ 2=(-3)-2=-5,(x 2+1)⊕(x -1)=x -1x 2+1.(因为x 2+1>0) 参照上面材料,解答下列问题:(1)2⊕ 4=________,(-2)⊕ 4=________;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x ),求x 的值.2. 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2,n <10f (n ),n ≥10,其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f (123)=12+02=1, .规定F 1(n )=F (n ),F k +1(n )=F (F k (n )).例如:F 1(123)=F (123)=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)和F 2015(4);(2)若F3m(4)=89,求正整数m的最小值.3. 如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13-(-1)3,26=33-13,所以2、26均为“麻辣数”.【立方差公式:a3-b3=(a-b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)求在不超过2016的自然数中,所有的“麻辣数”之和为多少?4. (2015某某A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数1232+22=131,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此1232+22=131是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.5. (2016某某一中三模)当一个多位数为偶数位时,在其中间位插入一位数k(0≤k≤9)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足此条件的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.6. (2016某某外国语学校二诊)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除….(1)我们发现,3和6,4和12,5和20,6和30,…,都是两个数的祖冲之数组;由此猜测n和n(n-1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想;(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.____________________ __________ __________ __________ _______________ _____7. (2016某某南开阶段测试三)进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n (n ≤10)进制表示的数,通常使用n 个阿拉伯数字0~(n -1)进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76.(1)请将以下两个数转化为十进制:(331)5=________,(46)7=________;(2)若一个正数可以用七进制表示为(abc )7,也可以用五进制表示为(cba )5,请求出这个数并用十进制表示.8. (2016某某实验外国语学校一诊)有一个n 位自然数abcd …gh 能被x 0整除,依次轮换个位数字得到的新数bcd …gha 能被(x 0+1)整除,再依次轮换个位数字得到的新数cd …ghab 能被(x 0+2)整除,按此规律轮换后,d …ghabc 能被(x 0+3)整除,…,habc …g 能被(x 0+n_____ _____-1)整除,则称这个n 位数abcd …gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:32+22=134能被2整除,243能被3整除,432+22=13能被4整除,则称三位数32+22=134是2的一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”; (2)若三位自然数abc 是3的一个“轮换数”,其中a =2,求这个三位自然数abc .9. 把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…,如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如: 32+22=13→32+22=13→12+02=1, →12+02=1, 72+02=→72+02=42+92=97→42+92=97→92+72=130→12+32+02=10→12+02=1, 所以32+22=13和72+02=都是“快乐数”._____ _____ _____ __________ (1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.10. 定义一种对于三位数abc (a 、b 、c 不完全相同)的“F 运算”:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc =213时,则 213――→F 198(32+22=131-123=198)――→F792(981-189=792). (1)579经过三次“F 运算”得________;(2)假设abc 中a >b >c ,则abc 经过一次“F 运算”得______(用代数式表示);(3)猜想:任意一个三位数经过若干次“F 运算”都会得到一个定值,请证明你的猜想.11. (2016大渡口区诊断性检测)若一个整数能表示成a 2+b 2(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x ,y 是整数),所以M 也是“完美数”. (1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知S =x 2+4y 2+4x -12y +k (x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由;(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.12. (2016某某西大附中第九次月考)对于实数x ,y 我们定义一种新运算L (x ,y )=ax +by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=x +3y ,则L (2,1)=________,L (32,12)=________; (2)已知L (1,-2)=-1,L (13,12)=2. ①a =________,b =________;②若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;③若正格线性数L (x ,y )=76,求满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.13. (2016某某巴蜀二诊)古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第n 个k 边形数N (n ,k )=k -22n 2+4-k 2n (n ≥1,k ≥3,k 、n 都为整数), 如第1个三角形数N (1,3)=3-22×12+4-32×1=1; 第2个三角形数N (2,3)=3-22×22+4-32×2=3; 第3个四边形数N (3,4)=4-22×32+4-42×3=9; 第4个四边形数N (4,4)=4-22×42+4-42×4=16. (1)N (5,3)=________,N (6,5)=________;(2)若N (m ,6)比N (m +2,4)大10,求m 的值;(3)若记y =N (6,t )-N (t ,5),试求出y 的最大值.题型六 新定义题针对演练1. 解:(1)2,-6.【解法提示】2⊕ 4=42=2,(-2)⊕ 4=-2-4=-6. (2)∵x >12, ∴2x -1>0,∴(2x -1)⊕(4x 2-1)=12142--x x =-4-(1-4x ), 即2x +1=-5+4x ,解得x =3.∴x 的值为3.2. 解:(1)F 2(4)=F (F 1(4))=F (F (4))=F (16)=12+62=37; F 1(4)=F (4)=16,F 2(4)=37,F 3(4)=58,F 4(4)=89,F 5(4)=145,F 6(4)=26,F 7(4)=40,F 8(4)=16,通过观察发现,每进行7步运算是一个循环,2015÷7=287……6,因此F 2015(4)=F 6(4)=26.(2)由(1)可知,每进行7步运算是一个循环,F 4(4)=89=F 11(4)=F 18(4)=F 4+7i (4),其中i =0,1,2,3,…,要求m 的最小值,则(4+7i )为3的最小公倍数,因为3m >4,所以3m =18,所以m =6.3. 解:(1)98是麻辣数,169不是麻辣数,理由如下:设k 为整数,则2k +1,2k -1为两个连续奇数,设M 为麻辣数,则M =(2k +1)3-(2k -1)3=24k 2+2, ∵98=53-33,故98是麻辣数;M =24k 2+2为偶数,故169不是麻辣数. (2)同(1)令M ≤2016,则24k 2+2≤2016, 解得k 2≤100712<84, 故k 2=0,1,4,9,16,25,36,49,64,81, 故M 的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.所以,在不超过2016的自然数中,所有的“麻辣数”之和为6860.4. 解:(1)1331,2442,1001.猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为:1000x +100y +10y +x =1001x +110y =11(91x +10y ),∵x 、y 是0~9之间的整数,∴11(91x +10y )能被11整除.∴任意一个四位“和谐数”能被11整除.(2)设这个三位“和谐数”为xyx ,用十进制表示为:100x +10y +x =101x +10y ,∵它是11的倍数, ∴1110101y x +为整数. 将这个式子变形:1110101y x +=11291121199y x y x y x y x -++=-++, ∵x 、y 是0~9之间的整数, ∴112y x -应为整数. 又∵1≤x ≤4,0≤y ≤9,∴2≤2x ≤8,-9≤-y ≤0,∴-7≤2x -y ≤8, ∵要使112y x 是整数,则2x -y 只能是0, ∴2x -y =0,即y =2x ,∴y 与x 的函数关系式是y =2x (1≤x ≤4,x 为自然数).5. (1)解:如:135,225,315,405.【解法提示】设原来的两位数为xy ,插入的数字为k .由题意得:9(10x +y )=100x +10k +y ,化简得:4y -5x =5k ,当k =0时,4y -5x =0,则x =4,y =5;当k =1时,4y -5x =5,则x =3,y =5;当k =2时,4y -5x =10,则x =2时,y =5;_____ __________ ___ 当k =3时,4y -5x =15,则x =1,y =5.(2)证明:设一个位数为2n 位的多位数为ab ,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数)为amb ,由题意得,amb -10ab =a ×10n +1+m ×10n +b -10(a ×10n +b )=m ×10n-9b , ∵m 是3的倍数,∴m ×10n能被3整除, 又∵9b 能被3整除,∴m ×10n-9b 能被3整除, 故对于任何一个位数为偶数的多位数,中间插入数字m (0≤m ≤9,且m 为3的倍数),所得的关联数与原数10倍的差一定能被3整除.6. (1)证明:∵n +n (n -1)=n +n 2-n =n 2, ∴n ·n (n -1)÷[n +n (n -1)]=n -1,∵n ≥2,n 为整数,∴n -1是整数,∴n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组.(2)解:∵(4a ,5a ,6a )是三个数的祖冲之数组,∴可设⎪⎩⎪⎨⎧+=⋅+=⋅+=⋅pa a a a n a a a a ma a a a )65(65)64(64)54(54,即⎪⎩⎪⎨⎧===pa n a ma 1130512920,∴920m =512n =1130p ,化简得:22p =25n =27m ;∵m 、n 、p 均为整数,∴m =22×25×i (i 为整数),∴a =920×22×25i =25119i⨯⨯,∵a 是整数,∴i 为偶数,当i =2时,a =495,当i =4时,a =990,__________ _____ _____ __________ 当i =6时,a =1485,不是三位数,舍去,综上所述,满足条件的所有三位正整数a 为495和990.7. 解:(1)(331)5=3×52+3×5+1=91; (46)7=4×7+6=34.(2)∵(abc )7=a ×72+b ×7+c ,(cba)5=c ×52+b ×5+a , ∴25c +5b +a =49a +7b +c ,即24a +b =12c ,∵a 、b 、c 是0~6的整数,∴b =0,c =2a ,当a =1时,c =2,这个十进制的数为51;当a =2时,c =4,这个十进制的数为102;当a =3时,c =6,这个十进制的数为153.8. (1)证明:设此两位数为a 2a ,∵a 2a =10a +2a =12a 为6的倍数,轮换后2aa =20a +a =21a 为7的倍数,_____ _____ _____ _____∴a 2a 为6的一个轮换数.故这个两位自然数一定是“轮换数”.(2)解:∵此三位数为2bc =200+10b +c =198+9b +(2+b +c ),为3的倍数, ∴(2+b +c )为3的倍数,第一次轮换后:bc 2=100b +10c +2=100b +8c +(2c +2),为4的倍数,∴(c +1)为2的倍数,即c 为奇数,第二次轮换后:c 2b =100c +20+b ,为5的倍数,则b 为0或者5.当b =0时,2+b +c =2+c ,为3的倍数且c 为奇数,则c =1,或7,即三位数为201 或207;当b =5时,2+b +c =7+c 为3的倍数且c 为奇数,则c =5,即三位数为255.综上所述,这个三位自然数abc 为201,207或255.9. 解:(1)最小的两位“快乐数”是10; 19是“快乐数”. 证明:由题意可知,用反证法证明数字4经过若干次运算后都不会出现数字1即可. ∵4→16→37→58→89→145→42→20→4→16…→4出现两次,∴后面将重复出现,永远不会出现1,∴任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设这个三位“快乐数”为abc,由题意知,经过两次运算后结果为1,所以第一次运算后结果一定是10或100,所以a2+b2+c2=10或100,又因为a、b、c为整数,且a≠0,所以a2+b2+c2=12+32+02=10或a2+b2+c2=0+62+82=100.(i)当a=1,b=3或0,c=0或3时,这个三位“快乐数”为130,103;(ii)当a=2时,b、c无解;(iii)当a=3时,b=1或0,c=0或1时,这个三位“快乐数”为310,301;同理当a2+b2+c2=100时,因为62+82=100, 所以这个三位“快乐数”的所有可能为680,608,806,860.综上所述,一共有130,103,310,301,680,608,806,860八个.又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,经计算知只有310和860满足条件.10.解:(1)495.【解法提示】①975-579=396;②963-369=594;③954-459=495.(2)99(a-c).【解法提示】(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c).(3)证明:设这个三位数中三个数字为a,b,c,且a≥b≥c,a≥c+1,则经过“F运算”_____ _____有abc-cba=99(a-c)=100(a-c-1)+10×9+(10+c-a),因此所得的三位数中必有一个9,而另外两个数字之和为9,共有990,981,972,963,954五种情况;以990为例得,990-099=891,981-189=792,972-279=693,963-369=594,954-459=495,…,由此可知最后得到495时就会循环.∴任意一个三位数经过若干次“F运算”都会得到一个定值,这个定值为495.11.解:(1)0,1,2,4,8,9均可.∵29=52+22,∴29是“完美数”.(2)根据题意S=x2+4y2+4x-12y+k=(x2+4x)+(4y2-12y)+k=(x+2)2-4+(2y-3)2-9+k=(x+2)2+(2y-3)2+(k-13).要使S为“完美数”,则k-13=0,即k=13.(3)设m=a2+b2,n=c2+d2(a,b,c,d都是整数),则mn=(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=a2c2+2abcd+b2d2+b2c2-2abcd+a2d2=(ac +bd )2+(bc -ad )2, ∴mn 也是“完美数”.12. 解:(1)5;3.【解法提示】由新定义得,L(2,1)=2+3×1=2+3=5;L(32,12)=32+3×12=3. (2)①3;2. 【解法提示】由定义得,⎪⎩⎪⎨⎧=+-=-2213112b a b a ,解得⎩⎨⎧==23b a . ②由新定义,得L (m ,m -2)=3m +2(m -2)=5m -4,∵50<L (m ,m -2)<100,∴⎩⎨⎧<->-100455045m m ,解得545<m <1045, ∵m 和m -2均为正整数,∴经计算可知满足50<L (m ,m -2)<100的正格数对共有10个. ③由L (x ,y )=3x +2y =76,得y =2376x -, ∵x >0,y >0,即2376x ->0,解得x <763,又∵x ,y 均为正整数,∴x 为偶数,∴经计算可知共有12个满足条件的正格数对,若x ,y 满足问题②,则x -y =2,即x -2376x -=2, 解得x =16,∴y =x -2=14,∴在这些正格数对中,有满足问题②的数对,为⎩⎨⎧==1416y x .13. 解:(1)15;51.【解法提示】根据题意得,N (5,3)=3-22×52+4-32×5=252+52=15; N (6,5)=5-22×62+4-52×6=54-3=51. (2)由题意得,6-22m 2+4-62m =4-22(m +2)2+4-42(m +2)+10, 化简得m 2-5m -14=0, 解方程得,m =7或m =-2(不合题意,舍去),故m =7.(3)由题意得,y =22-t ×62+24t -×6-5-22t 2-4-52t =-32t 2+312t -24, 整理得y =-32(t -316)2+38524, ∵a =-32<0,且t 是整数,∴当t =5时,y 有最大值,其最大值为16.。
2019中考真题精选1 新定义型问题
3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,
ac bd
y)满是x=
,y=
,那么称点T是点A,B的融合点。例如:A(-1,8),B(4,一2),
3
3
1 4
8 (2)
当点T(x.y)满是x=
=1,y=
=2时.则点T(1,2)是点A,B的融合点。
3
x
根据以上材料,解答下面的问题:
已知函数
f
x
1 x2
x
(x<0),
f
1
1
12
1
0,
f
2
1
2 2
2
7 4
(1)计算:f(-3)=________,f(-4)=________;
(2)猜想:函数
f
x
1 x2
x
(x<0)是________函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
(1)将指数 34=81 转化为对数式
;
M
(2)证明 loga =logaM﹣logaN(a>0,a≠1,M>0,N>0)
N
(3)拓展运用:计算 log69+log68﹣log62=
.
4
新定义型问题参考答案
1.【答案】B 【解析】 当 y=x 时,x=x2+2x+c,即为 x2+x+c=0,由题意可知:x1,x2 是该方程的两
2019 中考真题精选 1——新定义型问题
1.(2019·岳阳)对于一个函数,自变量 x 取 a 时,函数值 y 也等于 a,我们称 a 为这个函数的不 动点.如果二次函数 y=x2+2x+c 有两个相异的不动点 x1、x2,且 x1<1<x2,则 c 的取值范围是( )
中考数学复习专项练习卷_新定义型问题(含答案解析)
中考数学二轮复习精品资料附参考答案新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例2 (2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。
(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.思路分析:(1)按照定义新运算a⊕b=a(a-b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解:(1)∵a⊕b=a(a-b)+1,∴(-2)⊕3=-2(-2-3)+1=10+1=11;(2)∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1.在数轴上表示如下:例3 (2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.-CE PC PC a s2考点四:开放题型中的新定义例4 (2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.思路分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;»BC上任意一点构成的四边形(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点思路分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上.解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.对应训练5.(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形四、中考真题演练一、选择题1.(2013•成都)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=-x+3 B.y= 5xC.y=2x D.y=-2x2+x-71.C2.(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.DA.40 B.45 C.51 D.563.C4.(2013•乌鲁木齐)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.D5.(2013•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.5.C二、填空题6.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.6.30°7.(2013•宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.三、解答题10.(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.(3)作EF ⊥AB 于F ,EG ⊥AD 于G ,EH ⊥CD 于H ,∴∠BFE =∠CHE =90°.∵AE 平分∠BAD ,DE 平分∠ADC ,∴EF =EG =EH ,在Rt △EFB 和Rt △EHC 中BE CE EF EH=⎧⎨=⎩, ∴Rt △EFB ≌Rt △EHC (HL ),∴∠3=∠4.∵BE =CE ,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC =∠DCB ,∵ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴ABCD 是“准等腰梯形”.当点E 不在四边形ABCD 的内部时,有两种情况:如图4,当点E 在BC 边上时,同理可以证明△EFB ≌△EHC ,∴∠B =∠C ,∴ABCD 是“准等腰梯形”.如图5,当点E 在四边形ABCD 的外部时,同理可以证明△EFB ≌△EHC ,∴∠EBF =∠ECH .∵BE =CE ,∴∠3=∠4,∴∠EBF -∠3=∠ECH -∠4,即∠1=∠2,。
2019重庆数学中考试卷+答案+解析
3重庆市2019年初中学业水平暨高中招生考试(A卷)(满分:150分考试时间:120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b,4ac-b2),对称轴为x=-b.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.下列各数中,比-1小的数是()A.2B.1C.0D.-22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()3.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.54.如图,AB是☉O的直径,AC是☉O的切线,A为切点,BC与☉O交于点D,连接OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°5.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形的值应在()6.估计(2√3+6√2)×√13A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为( ) A.{x +12y =5023x +y =50 B.{x +12y =50x +23y =50 C.{12x +y =5023x +y =50 D.{12x +y =50x +23y =508.按如图所示的运算程序,能使输出y 值为1的是( )A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=19.如图,在平面直角坐标系中,矩形ABCD 的顶点A,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y=kx (k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4), 则k 的值为( )A.16B.20C.32D.4010.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1∶2.4的山坡AB 上发现有一棵古树CD.测得古树底端C 到山脚点A 的距离AC=26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED=48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( ) (参考数据:sin 48°≈0.73,cos 48°≈0.67,tan 48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.若关于x 的一元一次不等式组{x -14(4a -2)≤12,3x -12<x +2的解集是x ≤a,且关于y 的分式方程2y -a y -1-y -41-y=1有非负整数解,则符合条件的所有整数a 的和为( )A.0B.1C.4D.612.如图,在△ABC 中,D 是AC 边的中点,连接BD,把△BDC 沿BD 翻折,得到△BDC',DC'与AB 交于点E,连接AC'.若AD=AC'=2,BD=3,则点D 到BC'的距离为( )A.3√32B.3√217C.√7D.√13二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在横线上. 13.计算:(π-√3)0+(12)-1= .14.今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25 600 000人次,请把数25 600 000用科学记数法表示为 .15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .16.如图,在菱形ABCD 中,对角线AC,BD 交于点O,∠ABC=60°,AB=2.分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件.甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比是4∶3∶5.根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940,为使川香种植总面积与贝母种植总面积之比达到3∶4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线). 19.计算:(1)(x+y)2-y(2x+y); (2)(a +9-4a a -2)÷a 2-9a -2.20.如图,在△ABC 中,AB=AC,D 是BC 边上的中点,连接AD.BE 平分∠ABC 交AC 于点E,过点E 作EF ∥BC 交AB 于点F. (1)若∠C=36°,求∠BAD 的度数; (2)求证:FB=FE.21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x ≤100),下面给出了部分信息: 七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82. 八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94.七、八年级抽取的学生竞赛成绩统计表年级 七年级 八年级 平均数 92 92 中位数 93 b 众数 c 100 方差 52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少.22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是不是“纯数”,请说明理由;(2)求出不大于100的“纯数”的个数.23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出结合上面经历的学习过了所学的函数图象.同时,我们也学习了绝对值的意义:|a|={a(a≥0),-a(a<0).程,现在来解决下面的问题:在函数y=|kx-3|+b中,当x=2时,y=-4;当x=0时,y=-1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=12x-3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx-3|+b ≤12x-3的解集.24.某文明小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司每月底按每平方米2元收取当月物管费,该小区全部住宅都入住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次活动.为提高大家的积极性,6月份准备把活动一升级为活动二:“垃圾分类抵扣物管费”,同时终止活动一.经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少310a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少14a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少518a%,求a 的值.25.如图,在▱ABCD 中,点E 在边BC 上,连接AE,EM ⊥AE,垂足为E,交CD 于点M.AF ⊥BC,垂足为F.BH ⊥AE,垂足为H,交AF 于点N.点P 是AD 上一点,连接CP. (1)若DP=2AP=4,CP=√17,CD=5,求△ACD 的面积; (2)若AE=BN,AN=CE,求证:AD=√2CM+2CE.四、解答题(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线).26.如图,在平面直角坐标系中,抛物线y=x 2-2x-3与x 轴交于点A,B(点A 在点B 的左侧),交y 轴于点C,点D 为抛物线的顶点,对称轴与x 轴交于点E.(1)连接BD,点M 是线段BD 上一动点(点M 不与端点B,D 重合),过点M 作MN ⊥BD,交抛物线于点N(点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H,交BD 于点F.点P 是线段OC 上一动点,当MN 取得最大值时,求HF+FP+13PC 的最小值;(2)在(1)中,当MN 取得最大值,HF+FP+13PC 取得最小值时,把点P 向上平移√22个单位得到点Q,连接AQ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A'OQ',其中边A'Q'交坐标轴于点G,在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q'的坐标;若不存在,请说明理由.备用图3重庆市2019年初中学业水平暨高中招生考试(A卷)一、选择题1.D∵-2<-1<0<1<2,∴比-1小的数是-2,故选D.2.A由主视图的定义可知选A.3.C∵△ABO∽△CDO,∴ABCD =OB OD.∵OB=6,OD=3,CD=2,∴AB2=63,∴AB=4,故选C.4.C∵AC是☉O的切线,AB是☉O的直径,∴AB⊥AC,∴∠CAB=90°.∵∠C=50°,∴∠B=180°-90°-50°=40°.∴∠AOD=2∠B=2×40°=80°,故选C.5.A∵有一个角是直角的平行四边形是矩形,∴A选项正确;∵四条边相等的四边形是菱形,∴B选项错误;∵有一组邻边相等的平行四边形是菱形,∴C选项错误;∵对角线相等的平行四边形是矩形,∴D选项错误.故选A.6.C(2√3+6√2)×√13=(2√3+6√2)×√33=2√3×√33+6√2×√33=2+2√6.∵2√6=√24,4<√24<5,∴6<2+2√6<7,故选C.7.A由题意可得{x+12y=50,2 3x+y=50.故选A.8.D当m=1,n=1时,m=n,所以y=2m+1=2×1+1=3≠1,故A选项不符合题意;当m=1,n=0时,m>n,所以y=2n-1=2×0-1=-1≠1,故B选项不符合题意;当m=1,n=2时,m<n,所以y=2m+1=2×1+1=3≠1,故C选项不符合题意;当m=2,n=1时,m>n,所以y=2n-1=2×1-1=1,故D选项符合题意.故选D.9.B∵点D(0,4),DB∥x轴,∴点B的纵坐标为4,设点B的坐标为(a,4).由点A(2,0),点D(0,4)可知OA=2,OD=4,∴AD=√22+42=√20,AB=√(a-2)2+42,DB=a.∵四边形ABCD是矩形,∴∠DAB=90°.在Rt△DAB中,DA2+AB2=DB2,∴(√20)2+[√(a-2)2+42]2=a2,解得a=10.∴点B的坐标为(10,4).∵四边形ABCD是矩形,∴点E为DB的中点.∴点E的坐标为(5,4).将点E(5,4)代入y=kx中,得k=20,故选B.10.C延长DC交EA于点F.∵i=CF AF =12.4=512,∴设CF=5x 米,AF=12x 米,且x>0.在Rt △ACF 中,AC=√CF 2+AF 2=13x=26, ∴x=2,∴CF=10米,AF=24米.∵AE=6米,∴EF=EA+AF=6+24=30米. 在Rt △EDF 中,tan ∠AED=tan 48°=DF EF, ∴DF=EF ·tan 48°≈30×1.11=33.3米,∴CD=DF -CF=33.3-10=23.3米,故选C.11.B 解不等式x-14(4a-2)≤12,得x ≤a,解不等式3x -12<x+2,得x<5.∵解集是x ≤a,∴a<5. 解分式方程 2y -a y -1-y -41-y =1,得y=3+a 2. ∵关于y 的分式方程有非负整数解, ∴3+a 2≥0,∴a ≥-3,∴-3≤a<5. ∵3+a 2为整数,∴a=-3,-1,1,3. ∵当a=-1时,y=1,不是分式方程的解, ∴a=-3,1,3,∴-3+1+3=1,即符合条件的所有整数a 的和为1,故选B.12.B 如图,连接CC',交DB 于点M,过点D 作DH ⊥CB 于点H.由翻折的性质可知DC'=DC,BC'=BC.∴点D 、B 在CC'的垂直平分线上,∴BD 垂直平分CC'. ∵AD=AC'=2,DC=DC',点D 是AC 边的中点, ∴AD=AC'=DC'=2,即△ADC'为等边三角形, ∴∠C'DA=60°.∵DC=DC',DB ⊥C'C,∴∠BDC=12∠C'DC=12×120°=60°, ∴CM=DC ·sin ∠MDC=2×sin 60°=2×√32=√3, DM=DC ·cos ∠MDC=2×cos 60°=2×12=1. ∴BM=BD -DM=3-1=2.∴BC=√BM 2+MC 2=√22+(√3)2=√7. ∵S △BDC =12BD ·MC=12DH ·BC, ∴12×3×√3=12DH×√7,解得DH=3√217. 由题意可知△BDC'≌△BDC, ∴D 到C'B 的距离=DH=3√217. 故选B.二、填空题13.答案 3解析 (π-√3)0+(12)-1=1+2=3. 14.答案 2.56×107解析 由科学记数法表示形式可知25 600 000=2.56×107. 15.答案14解析 画树状图为共有36种等可能情况,其中两次都摸到红球有9种情况,所以P(两次都摸到红球)=936=14.16.答案 2√3-23π 解析 ∵四边形ABCD 为菱形,∴AC ⊥BD,BD 平分∠ABC,OA=OC,OB=OD,AD ∥BC. ∴∠ABO=12∠ABC=12×60°=30°. ∴在Rt △AOB 中,OA=12AB=12×2=1,OB=√AB 2-OA 2=√22-12=√3, ∴OC=OA=1,AC=2OA=2,BD=2OB=2√3. ∴S菱形ABCD =12AC ·BD=12×2×2√3=2√3.∵AD ∥BC,∴∠BAD=180°-∠ABC=120°, ∴S阴影=S 菱形ABCD -2×120°360°π×12=2√3-23π.17.答案 6 000解析 由题意可得v 甲=4 000÷(12-2-2)=500米/分,v 乙=4 000+500×2-500×24=1 000米/分. 由于甲、乙相遇时,乙走了4分钟,所以当乙回到公司时,也用了4分钟,此时甲离公司的路程为500×(12-2)-500×2+500×4=6 000米. 18.答案320解析 设该村已种药材面积为x,余下土地面积为y,还需种植贝母的面积为z,则种植的总面积为(x+y),川香已种植面积为13x,贝母已种植面积为14x,黄连已种植面积为512x. 根据题意得{512x +916y =1940(x +y),[13x +(y -916y -z)]∶(14x +z)=3∶4.化简得x=32y,z=38y,∴该村还需种植贝母的面积与该村种植这三种中药材的总面积之比为zx+y =38y32y+y=320.三、解答题19.解析(1)原式=x2+2xy+y2-2xy-y2 =x2.(5分)(2)原式=(a2-2aa-2+9-4aa-2)÷(a-3)(a+3)a-2=(a-3)2a-2·a-2 (a-3)(a+3)=a-3a+3.(10分)20.解析(1)∵AB=AC,∴∠ABC=∠C.又∵D是BC的中点,∴AD平分∠BAC,即∠BAD=12∠BAC.(3分)∵∠C=36°,∴∠BAC=180°-2∠C=180°-2×36°=108°.∴∠BAD=54°.(5分)(2)证明:∵BE平分∠ABC,∴∠FBE=∠EBD.∵EF∥BC,∴∠FEB=∠EBD,∴∠FBE=∠FEB.(9分)∴FB=FE.(10分)21.解析(1)a=40,b=94,c=99.(3分)(2)八年级学生掌握防溺水安全知识较好,理由如下(写出其中一条即可):①七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的中位数94高于七年级学生成绩的中位数93;②七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的众数100高于七年级学生成绩的众数99.(6分)(3)∵七年级10名学生中,成绩在C,D两组中有6人,八年级10名学生中,成绩在C,D两组中有7人,∴6+7=13(人).∴1320×720=468(人).答:估计参加此次竞赛活动成绩优秀(x≥90)的学生有468人.(10分)22.解析(1)2019不是“纯数”,2020是“纯数”.(2分)理由如下:∵在计算2019+2020+2021时,个位9+0+1=10,产生了进位,∴2019不是“纯数”.∵在计算2020+2021+2022时,个位0+1+2=3,十位2+2+2=6,百位0+0+0=0,千位2+2+2=6,它们都没有产生进位,∴2020是“纯数”.(4分)(2)当“纯数”n为一位数时,n+(n+1)+(n+2)=3n+3<10,∴0≤n<73.故n=0,1,2,即在一位数的自然数中,“纯数”有3个.当“纯数”n为两位数时,设n=10b+a(其中1≤b≤9,0≤a≤9,且a,b为自然数),则n+(n+1)+(n+2)=30b+3a+3.此时a,b应满足的条件分别为3a+3<10,即a=0,1,2;1≤b≤3,即b=1,2,3.∵3×3=9(个),∴在两位数的自然数中,“纯数”有9个.∵100+101+102=303,不产生进位,∴100是“纯数”.∴3+9+1=13(个).故在不大于100的自然数中“纯数”的个数是13.(10分)23.解析(1)将x=2时,y=-4和x=0时,y=-1分别代入y=|kx-3|+b中,得{|2k-3|+b=-4, |-3|+b=-1,解得{k=32,b=-4.∴这个函数的表达式是y=|32x-3|-4.(3分)(2)函数图象如图:(5分)函数的性质(写出其中一条即可):①当x<2时,函数值y随x的增大而减小;当x>2时,函数值y随x的增大而增大;②当x=2时,函数有最小值,最小值是-4.(7分)(3)不等式的解集是1≤x≤4.(10分)24.解析(1)设该小区共有x套80平方米的住宅,则有2x套50平方米的住宅,根据题意,得2×80x+2×50×2x=90000,解这个方程,得x=250.答:该小区共有250套80平方米的住宅.(4分)(2)6月份参加活动的50平方米这部分住户将减少的物管费是500×40%(1+2a%)×50×2×310a%=20000(1+2a%)×310a%(元),6月份参加活动的80平方米这部分住户将减少的物管费是250×20%(1+6a%)×80×2×14a%=8000(1+6a%)×14a%(元),6月份参加活动的这部分住户将减少的物管费是[500×40%(1+2a%)×50×2+250×20%(1+6a%)×80×2]×518a%(元),即[20000(1+2a%)+8000(1+6a%)]×518a%(元).根据题意,得20000(1+2a%)×310a%+8000(1+6a%)×14a%=[20000(1+2a%)+8000(1+6a%)]×518a%.(8分)设a%=m,化简,得2m2-m=0.解这个方程,得m1=12,m2=0(舍).∴a=50.答:a的值是50.(10分)25.解析(1)作CQ⊥AD,垂足为Q(如图),∴∠AQC=∠DQC=90°.∵DP=2AP=4,∴AP=2,AD=6.在Rt△PQC和Rt△DQC中,由勾股定理,得CP2-PQ2=CQ2,CD2-DQ2=CQ2,∴CP2-PQ2=CD2-DQ2,∴(√17)2-PQ2=52-(4-PQ)2,解得PQ=1.在Rt△PCQ中,由勾股定理,得CQ=√CP2-PQ2=√17-1=4.∴S△ADC=12AD·CQ=12×6×4=12.(4分)(2)证明:∵BH⊥AE,AF⊥BC,∴∠AHB=∠AFC=90°.∴∠ANH+∠EAF=∠AEF+∠EAF,即∠ANH=∠AEF.∴∠ANB=∠CEA.在△ANB和△CEA中,{AN=CE,∠ANB=∠CEA,BN=AE,∴△ANB≌△CEA.∴∠BAN=∠ACE,AB=AC.∵∠ACF+∠CAF=90°,∴∠BAN+∠CAF=90°.∴△ABC为等腰直角三角形,∠ABC=45°,AF=BF=CF.∵AN=EC,∴NF=EF.连接EN(如图),则△NFE为等腰直角三角形.∴EF=√22NE,∠ENF=45°.∵四边形ABCD是平行四边形,且∠ABC=45°,∴∠ECM=135°.∵∠ANE=180°-∠ENF=135°,∴∠ANE=∠ECM.∵AE⊥EM,∴∠AEM=90°.∴∠AEF+∠EAN=∠AEF+∠MEC,即∠EAN=∠MEC.在△ANE和△ECM中,{∠EAN=∠MEC,AN=EC,∠ANE=∠ECM,∴△ANE≌△ECM,∴NE=CM.(8分)∵四边形ABCD是平行四边形,∴AD=BC=2FC.∵FC=FE+EC=√22NE+EC=√22CM+EC.∴AD=2FC=2(√22CM+EC)=√2CM+2EC.(10分)四、解答题26.解析(1)∵点A,B(点A在点B的左侧)是抛物线y=x2-2x-3与x轴的交点,点D是抛物线的顶点,∴点A(-1,0),点B(3,0),点D(1,-4).∴可求得直线BD的表达式是y=2x-6.∵点N在抛物线y=x2-2x-3上,∴可设点N的坐标为(t,t2-2t-3),则点F的坐标为(t,2t-6).∴FN=(2t-6)-(t2-2t-3)=-t2+4t-3.根据已知条件,可得△MNF∽△EBD.∴MN FN =EBDB.∵EB=2,DE=4,∴DB=2√5.∴MN=√55FN=-√55(t-2)2+√55.∴当t=2时,MN取得最大值,此时,点F(2,-2),HF=2.(2分)如图,以CP为斜边,以13CP的长为直角边,作Rt△CRP,当点F,P,R在一条直线上时,PF+13CP取得最小值,此时,PF+13CP=RF,过点F作FS⊥y轴,垂足为S.∵点F,P,R在一条直线上,∴△CPR∽△FPS.则CPRP =FPSP=3.在Rt△SPF中,SF=2,FP=3SP,∴SP=√22,FP=3√22.∴CP=CS-PS=1-√22=2-√22.∴RP=13CP=2-√26.∴RF=RP+PF=2-√26+3√22=1+4√23.∵HF=2,∴HF+PF+13CP的最小值为2+1+4√23=7+4√23.(4分)(2)满足条件的点Q'的坐标为(-4√55,-2√55),(-2√55,4√55),(4√55,2√55),(2√55,-4√55).(8分)详解:由(1)可得点P(0,-4+√22).∵把点P向上平移√22个单位得到点Q,∴点Q(0,-2).在Rt△AOQ中,∠AOQ=90°,AQ=√5,取AQ的中点G,连接OG,则OG=GQ=12AQ=√52,此时,∠AQO=∠GOQ.把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A'OQ',其中边A'Q'交坐标轴于点G.①如图.当G 点落在y 轴的负半轴上时,G (0,-√52),过点Q'作Q'I ⊥x 轴于点I,且∠GOQ'=∠Q',则∠IOQ'=∠OA'Q'=∠OAQ.∵sin ∠OAQ=OQ AQ =√5=2√55, ∴sin ∠IOQ'=IQ'OQ'=IQ'2=2√55,解得IQ'=4√55.在Rt △OIQ'中,根据勾股定理可得OI=2√55.∴点Q'的坐标为(2√55,-4√55);②如图.当G 点落在x 轴的正半轴上时,同理可得Q'(4√55,2√55).③如图.当G 点落在y 轴的正半轴上时,同理可得Q'(-2√55,4√55).④如图.当G点落在x轴的负半轴上时,同理可得Q'(-4√55,-2√55).综上所述,所有满足条件的点Q'的坐标为(2√55,-4√55),(4√55,2√55),(-2√55,4√55),(-4√55,-2√55).。
2019重庆中考数学试卷(含答案)
重庆市2019年初中学业水平暨高中招生考试试卷数 学(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.认题的答案书写在答题卡上,不得在试题卷上直接作答; 2.作答前认真阅绪答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签牛笔完成; 4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()02≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴为a b 2x -= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为DC B A 、、、的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.下列各数中,比1-小的数是( )A .2B .1C .0D .-22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A .B .C .D .3.如图,△ABO ∽△CDO ,若6=BO ,3=DO ,2=CD ,则AB 的长是( )A .2B .3C .4D .54.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若︒=∠50C ,则∠AOD 的度数为( ) A.︒40B .︒50C .︒80D .︒1005.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形3题图4题图2题图C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形6.估计()123+623⨯的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数(0,0)ky k xx=>>的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.409题图8题图10题图12题图10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:24的山坡AB上发现有一棵占树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.若关于x的一元一次不等式组11(42)42 3122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△BDC',DC与AB交于点E,连结AC',若AD=AC=2,BD=3则点D到BC的距离为()A.233B.7213C.7D.13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.计算:=+1-213-)()(π.14.今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.16题图17题图20题图18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1))2(2y x y y x +-+)( (2)292492--÷--+a a a a a )(20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF //AC 叫AD 的延长线于点F .求证:FB =FE .21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94八年抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b纵数c100方差52 50.421题图根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.321-=x y 23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面经历的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质; (3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.24.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费. (1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加%2a ,每户物管费将会减少%103a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加%6a ,每户物管费将会减少%41a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ,求a 的值.25.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 显AD 上一点,连接CP . (1)若DP =2AP =4,CP =17,CD =5,求△ACD 的面积. (2)若AE =BN ,AN =CE ,求证:AD =2CM +2CE .四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个22单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得OGQQ''∠=∠?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2。
2019年重庆中考数学题型专练-新定义阅读理解题(10道)
新定义阅读理解题1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”.如:65362,362-65=297=11×27,称65362是“网红数”.材料二:对任意的自然数p 均可分解为p =100x +10y +z (x ≥0,0≤y ≤9,0≤z ≤9且想,x ,y ,z 均为整数),如:5278=52×100+10×7+8,规定:G (p )= zx x z x x -++-+112)( . (1)求证:任意两个“网红数”之和一定能被11整除;(2)已知:s =300+10b +a ,t =1000b +100a +1142(1≤a ≤7,0≤b ≤5,且a 、b 均为整数),当s +t 为“网红数”时,求G (t )的最大值.(1)证明:设两个“网红数”为mn ,ab (n ,b 分别为mn ,ab 末三位表示的数,m ,a 分别为mn ,ab 末三位之前的数字表示的数),则n -m =11k 1,b -a =11k 2, ∴mn +ab =1001m +1001a +11(k 1+k 2)=11(91m +91a +k 1+k 2).又∵k 1,k 2,m ,n 均为整数,∴91m +91a +k 1+k 2为整数,∴任意两个“网红数”之和一定能被11整除.(2)解:s =3×100+10b +a ,t =1000(b +1)+100(a +1)+4×10+2,S +t =1000(b +1)+100(a +4)+10(b +4)+a +2,①当1≤a ≤5时,s +t =))()()((2a 4b 4a 1b ++++, 则))()((2a 4b 4a +++-(b +1)能被11整除,∴101a +9b +441=11×9a +2a +11b -2b +40×11+1能被11整除,∴2a -2b +1能被11整除.∵1≤a ≤5,0≤b ≤5,∴-7≤2a -2b +1≤11,∴2a -2b +1=0或11,∴a =5,b =0,∴t =1642,G (1642)=17141, ②当6≤a ≤7时,s +t =))()()((2a 4b 6a 2b ++-+, 则))()((2a 4b 6a ++--(b +2)能被11整除, ∴101a +9b -560=11×9a +2a +11b -2b -51×11+1能被11整除,∴2a -2b +1能被11整除.∵6≤a ≤7,0≤b ≤5,∴3≤2a -2b +1≤15,∴2a -2b +1=11,∴⎩⎨⎧==1b 6a ,⎩⎨⎧==2b 7a , ∴t =2742或3842,G (2742)=28251,G (3842)=39361, 综上,G (t )的最大值为39361. 2.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P 所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1),K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3,∴⎩⎨⎧==2m 5m 21,∴⎩⎨⎧==39k 228k 21. 3.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解:(1)设A 的十位数字为a ,个位数字为b ,则A =10a +b ,它的“诚勤数”为100a +20+b ,它的“立达数”为10a +b +2, ∴100a +20+b -(10a +b +2)=90a +18=6(15a +3),∵a 为整数,∴15a +3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B =10m +n ,1≤m ≤9,0≤n ≤9(B 加上2后各数字之和变小,说明个位发生了进位),∴B +2=10m +n +2,则B 的“立达数”为10(m +1)+(n +2-10),∴m +1+n +2﹣10=21(m +n ),整理,得m +n =14,∵1≤m ≤9,0≤n ≤9,∴⎩⎨⎧==6n 8m 、⎩⎨⎧==8n 6m 、⎩⎨⎧==5n 9m 、⎩⎨⎧==9n 5m 、⎩⎨⎧==7n 7m , 经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.4.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为F (k ).如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(72)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(0≤a ≤9,0≤b ≤9,0≤c ≤9,a 、b 、c 是整数),规定:(,)a c G m n b-=.当()()24F m F n +=时,求(,)G m n的值.解:(1)∵30+2×4=38,38÷19=2,∴F(304)=2. ∵205+2×2=209,209÷19=11,∴F(2025)=11. ∴F(304)+F(2052)=13;(2)∵m=3030+101a=3000+100a+30+a,∴F(m)=19a2 3a10300+++=19a12303+=15+19a1218+. ∵m是“魅力数”,∴19a1218+是整数.∵0≤a≤9,且a是偶数,∴a=0,2,4,6,8.当a=0时,19a1218+=1918不符合题意.当a=2时,19a1218+=1942不符合题意.当a=4时,19a1218+=1966不符合题意.当a=6时,19a1218+=1990不符合题意.当a=8时,19a1218+=19114=6符合题意.∴a=8,此时m=3838,F(m)=F(3838)=6+15=21. 又∵F(m)+F(n)=24,∴F(n)=3.∵n=400+10b+c,∴F(n)=19c2b40++=3,∴b+2c=17,∵n是“魅力数”,∴c是偶数,又∵0≤c≤9,∴c=0,2,4,6,8. 当c=0时,b=17不符合题意.当c =2时,b =13不符合题意.当c =4时,b =9符合题意.此时,G (m ,n )=b c a -=948-=94. 当c =6时,b =5符合题意.此时,G (m ,n )=b c a -=568-=52. 当c =8时,b =1符合题意.此时,G (m ,n )=b c a -=188-=0. ∵ 94>52>0, ∴G (m ,n )的最大值是94. 5.已知一个正整数,把其个位数字去掉,再将余下的数加上个位数字的4倍,如果和是13的倍数,则称原数为“超越数”.如果数字和太大不能直接观察出来,就重复上述过程.如:1131:113+4×1=117,117÷13=9,所以1131是“超越数”;又如:3292:329+4×2=337,33+4×7=61,因为61不能被13整除,所以3292不是“超越数”.(1)请判断42356是否为“超越数” (填“是”或“否”),若ab +4c =13k (k 为整数),化简abc 除以13的商(用含字母k 的代数式表示).(2)一个四位正整数N =abcd ,规定F (N )=|a +d 2﹣bc |,例如:F (4953)=|4+32﹣5×9|=32,若该四位正整数既能被13整除,个位数字是5,且a =c ,其中1≤a ≤4.求出所有满足条件的四位正整数N 中F (N )的最小值. 解:(1)否,4235+4×6=4259,425+4×9=461,46+4×1=50,因为50不能被13整除,所以42356不是超越数. ∵ab +4c =13k ,∴10a +b +4c =13k ,∴10a +b =13k ﹣4c , ∵abc =100a +10b +c =10(10a +b )+c =130k ﹣40c +c =130k ﹣39c =13(10k ﹣3c ),∴13abc =10k ﹣3c ; (2)由题意得d =5,a =c ,∴N =1000a +100b +10c +5,∵N 能被13整除,∴设100a +10b +c +4×5=13k ,∴101a +10b +20=13k ,且a 为正整数,b ,k 为非负整数,1≤a ≤4,∴a =2,b =9,k =24 或a =3,b =8,k =31,或a =4,b =7,k =38, ∴F (N )=|2+25﹣18|=9,或F (N )=|3+25﹣24|=4,或F (N )=|4+25﹣28|=1,∴F (N )最小值为1.6.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n .把'n 放在n 的后面组成第一个四位数,把n 放在'n 的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为()F n ,例如:23n =时,32n '=,23323223(23)8111F -==-. (1)计算(42)_____;F = 若m 为“启航数”,()F m 是一个完全平方数,求()F m 的值;(2)s t 、为“启航数”,其中10,10s a b t x y =+=+(1≤b ≤a ≤9,1≤x 、y ≤5,且y x b a ,,,为整数) 规定:(,)s t K s t t-=,若()F s 能被7整除,且()()81162F s F t y +-=,求(,)K s t 的最大值.解:(1)F (42)=162,设m =pq (1≤p ≤q ≤9,且p 、q 为整数), 则()=81()11pqqp qppq F m p q -=-, ∵()F m 完全平方数,∴p q -为完全平方数,∵1≤p ≤q ≤9,且p 、q 为整数,∴0<p -q ≤8,∴14p q -=或,∴F (m )=81或324;(2)由题意知:s =ab ,t =xy (1≤b ≤a ≤9,1≤x 、y ≤5,且a b x y 、、、为整数), ∴()81()F s a b =-,()81()F t x y =-,∵()F s 能被7整除,∴81()7a b -为整数, 又∵1≤b ≤a ≤9,∴0<a -b ≤8,∴7a b -=,∴9,28,1a b a b ====或,∴s =92或81.又∵()()81162F s F t y +-=,∴81(a -b )+81(x -y )-81y =162,∴2y =x +5,∵1≤x ,y ≤5且x y ≠,∴1,33,4x y x y ====或,∴t =13 或34, ∴79(92,13)13K =,K (92,34)=3458,68(81,13)13K =,47(81,34)34K = K max =1379. 7.若一个三位数,其个位数加上十位数等于百位数,可表示为t =100(x +y )+10y +x(x+y≤9),则称实数t为“加成数”,将t的百位作为个位,个位作为十位,q,例如:十位作为百位,组成一个新的三位数h.规定q=t﹣h,f(m)=9 321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,108=12.得到的数h=213,∴q=321﹣213=108,f(m)=9(1)当f(m)最小时,求此时对应的“加成数”的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.q,解:(1)∵f(m)=9∴当f(m)最小时,q最小,∵t=100(x+y)+10y+x=101x+110y,h=100y+10x+x+y=101y+11x,∴q=t﹣h=101x+110y﹣(101y+11x)=9y+90x,且1≤y≤9,0≤x≤9,x、y 为正整数,当x=0,y=1时,q=9,此时对应的“加成数”是110;(2)∵f(m)是24的倍数,设f(m)=24n(n为正整数),q,q=216n,则24n=9由(1)知:q=9y+90x=9(y+10x),∴216n=9(y+10x),24n=y+10x,(x+y<10)①当n=1时,即y+10x=24,解得:x=2,y=4,则这样的“节气数”是24;②当n=2时,即y+10x=48,解得:x=4,y=8,x+y=12>10,不符合题意;③当n=3时,即y+10x=72,解得:x=7,y=2,则这样的“节气数”是72;④当n=4时,即y+10x=96,解得:x=9,y=6,x+y=15>10,不符合题意;⑤当n=5时,即y+10x=120,没有符合条件的整数解,综上,这样的“节气数”有2个,分别为24,72.8.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.(1)解:是;【解法提示】∵361568﹣315668=45900,且45900÷17=2700,∴根据最佳拍档数的定义可知,31568是“最佳拍档数”;故答案为:是设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x ﹣10y 能被17整除,①x =2,y =3时,66﹣x ﹣10y =34,能被17整除,此时N 为5326; ②x =3,y =8时,66﹣x ﹣10y =﹣17,能被17整除,此时N 为5835; ③x =5,y =1时,66﹣x ﹣10y =51,能被17整除,但x >y ,不符合题意; ④x =6,y =6时,66﹣x ﹣10y =0,能被17整除,此时N 为5662;⑤x =8,y =3时,66﹣x ﹣10y =28,不能被17整除,但x >y ,不符合题意; ⑥当x =9,y =4时,66﹣x ﹣10y =17,能被17整除,但x >y ,不符合题意; 综上,所有符合条件的N 的值为5326,5835,5662;(2)证明:设三位正整数K 的个位数字为x ,十位数字为y ,百位数字为z , 它的“顺数”:1000z +600+10y +x ,它的“逆数”:1000z +100y +60+x ,∴(1000z +600+10y +x )﹣(1000z +100y +60+x )=540﹣90y =90(6﹣y ), ∴任意三位正整数K 的“顺数”与“逆数”之差一定能被30整除,设四位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,千位数字为a , ∴(10000a +6000+100z +10y +x )﹣(10000a +1000z +100y +60+x )=5940﹣900z ﹣90y =90(66﹣10z ﹣y ),∴任意四位正整数K 的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.9.若实数a 可以表示成两个连续自然数的倒数差,即a =n 1-1n +1,那么我们称a 为第n 个“1阶倒差数”,例如21=1-21,∴21是第1个“1阶倒差数”,61=21-31,∴16是第2个“1阶倒差数”.同理,若b =n 1-2n 1 ,那么,我们称b 为第n 个“2阶倒差数”.(1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”;(2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且d 1-c 1=22,求c ,d 的值.解:(1)132不是“1阶倒差数”,235;【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴321不是“1阶倒差数”. 第5个“2阶倒差数”为51-71=352. (2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =1x 21--1x 21+=))(()(1x 21x 21x 21x 2-+--+=1x 422-. ∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =1y 422-,d =1z 422-, ∵d 1-c 1=22,∴4z 2-12-4y 2-12=22,即z 2-y 2=11,∴(z +y )(z -y )=11>0,∴z >y .∵11=1×11,∴⎩⎨⎧=-=+1y z 11y z ,解得⎩⎨⎧==6z 5y , ∴c =15422-⨯=299,d =16422-⨯=2143. 10.任意一个正整数n ,都可以表示为:n =a ×b ×c (a ≤b ≤c ,a ,b ,c 均为正整数),在n的所有表示结果中,如果|2b﹣(a+c)|最小,我们就称a×b×c是n的“阶梯三分法”,并规定:F(n)=b ca+,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)=231+=2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p是立方数,求证:对于任意一个立方数m,总有F(m)=2;(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x 和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.解:(1)∵m为立方数,∴设m=q×q×q,∴|2q﹣(q+q)|=0,∴q×q×q是m的阶梯三分法,∴F(m)=q qq+=2;(2)由已知,[23(10x+y)+x+y]能被13整除,整理得:231x+24y能被13整除,∵231x+24y=13(18x+2y)﹣(3x+2y),∴3x+2y能被13整除,∵1≤x≤9,0≤y≤9,∴3≤3x+2y≤45,∵x,y均为整数,∴3x+2y的值可能为13、26或39,①当3x +2y =13时,∵x ≥y ,x +y ≤10,∴x =3,y =2,t =32,∴32的阶梯三分法为2×4×4, ∴F (32)=23242=+; ②同理,当3x +2y =26时,可得x =8,y =1或x =6,y =4, ∴t =81或64,∴F (81)=4,F (64)=2; ③同理,当3x +2y =39时,可得x =9,y =6(不合题意舍去), ∴综合①②③,F (t )最小值为23.。
重庆市中考数学 第二部分 题型研究 二、解答题重难点突破 题型二 新定义问题-人教版初中九年级全册数
新定义问题针对演练1. (2015某某)平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x |,纵坐标y 的绝对值表示为|y |,我们把点P (x ,y)的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记为[P ],即[P ]=|x |+|y |.(其中的“+”是四则运算中的加法) (1)求点A (-1,3),B (3+2,3-2)的勾股值[A ],[B ]; (2)点M 在反比例函数y =x3的图象上,且[M ]=4,求点M 的坐标; (3)求满足条件[N ]=3的所有点N 围成的图形的面积.2. (2014某某)对x ,y 定义一种新运算T ,规定:T (x ,y )=yx byax ++2(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=10210+⨯⨯+⨯b a =b .(1)已知T (1,-1)=-2,T (4,2)=1. ①求a ,b 的值; ②若关于m 的不等式组⎩⎨⎧>≤pm m T m m T )2-,3(4)4-,5(2恰好有3个整数解,某某数p 的取值X 围;(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立(这里T (x ,y )和T (y ,x )均有意义),则a ,b 应满足怎样的关系式?3. 先阅读下列材料,并解决后面的问题. 材料:一般地,n 个相同的因数a 相乘:记为a n ,如23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为:log a b (即log a b =n ). 如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).问题:(1)计算以下各对数的值:log24=;log216=;log264=;(2)观察(1)中三个数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则:a n·a m=a n+m以及对数的含义证明上述结论.4. (2015某某)观察下表我们把表格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为.;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,①求x,y的值;②在此条件下,第n格的“特征多项式”是否有最小值?若有,求出最小值和相应的n值;若没有,说明理由.5. (2014某某)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.第5题图6. 阅读下面的情景对话,然后解答问题:(1)①根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,请判断小红提出的命题是否正确,并填空(填“正确”或“不正确”);②若某三角形的三边长分别是2、4、10,则△ABC 是奇异三角形吗?(填“是”或“不是”);(2)①若Rt△ABC 是奇异三角形,且其两边长分别为2、22,则第三边的边长为;且此直角三角形的三边之比为(请按从小到大排列);②在Rt△ABC 中,∠ACB =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt△ABC 是奇异三角形,求a ∶b ∶c ;(3)在Rt△ABC 中,∠ACB =90°,以AB 为斜边作等腰直角三角形ABD ,点E 是AC 上方的一点,且满足AE =AD ,CE =CB .求证:△ACE 是奇异三角形.7. 阅读材料:关于三角函数还有如下的公式: sin (α±β)=sin αcos β±cos αsin β tan (α±β)=βαβαtan tan 1tan tan ⋅±利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan(45°-30°)=︒⋅︒+︒︒tan30tan451tan30-tan45=331133-1⨯+=)3-)(33(3)3-)(33-(3+=636-12=2-3.根据以上阅读材料,请选择适当的公式解答下面问题: (1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图①),小华想用所学知识来测量该铁塔的高度,如图②,小华站在离塔底A 距离7米的C 处,测得塔顶B 的仰角为75°,小华的眼睛离地面的距离DC 为,请帮助小华求出乌蒙铁塔的高度.(精确到,参考数据3≈1.732,2≈1.414)第7题图8. 对于非负实数x “四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如果n -21≤x <n +21,则<x >=n .如:<0>=<0.46>=0,<0.64>=<1.49>=1,<3.5>=<4.28>=4,…,试解决下列问题: (1)填空:①<π>=(π为圆周率); ②如果<2x -1>=3,则实数x 的取值X 围为;(2)试举例说明:当x =,y =时,<x +y >=<x >+<y >不恒成立;(3)求满足<x >=34x 的所有非负实数x 的值.9. 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).图① 图② 第9题图 (1)已知点A (-21,0),B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②写出点A 与点B 的“非常距离”的最小值; (2)如图②,已知C 是直线y =43x +3上的一个动点,点D 的坐标是(0,1),求点C 与点D的“非常距离”的最小值及相应的点C 的坐标. 【答案】 针对演练1.解:(1)[A ]=|-1|+|3|=4,[B ]=|2+3|+|3-2|=2+3+2-3=4. (2)设点M 的横坐标为x ,则它的纵坐标是y =x3, 由[M ]=4得:|x |+|x3|=4, 即|x |2-4|x |+3=0, 解之得:|x |=3或|x |=1,∴x =3或x =-3或x =1或x =-1, ∴满足条件的点M 有4个:M 1(3,1),M 2(-3,-1),M 3(1,3),M 4(-1,-3).(3)满足条件[N ]=3的所有点组成的图形是正方形, 正方形的4个顶点依次为(3,0)(0,3)(-3,0)(0,-3), ∴所有点N 围成的图形面积为18.2.解:(1)①根据题意得:T (1,-1)=1-2-ba =-2,即a -b =-2; T =(4,2)=2824++ba =1,即2a +b =5,解得:a =1,b =3.②由①得T (x ,y )=yx yx ++23.根据题意得:⎪⎪⎩⎪⎪⎨⎧>++≤++②① 2-32)2-3(3 44-54)4-3(52p mm m m mm m m ,解①得:m ≥-21,解②得:m <53-9p .∴不等式组的解集为-21≤m <53-9p,∵不等式组恰好有3个整数解,即m =0,1,2, ∴2<53-9p≤3,解得:-2≤p <-31. (2)由T (x ,y )=T (y ,x ),得到y x by ax ++2=yx byax ++2,整理得:(x 2-y 2)(2b -a )=0,∵T (x ,y )=T (y ,x )对任意实数x ,y 都成立, ∴2b -a =0,即a =2b . 3.(1)解:2;4;6. 【解法提示】∵22=4,∴log 24=2,∵24=16,∴log 216=4, ∵26=64,∴log 264=6.(2)解:4×16=64,log 24+log 216=log 264. (3)解:log a (MN ).(4)证明:设log a M =b 1,log a N =b 2,则a b 1=M ,a b 2=N ,∵a b 1·a b 2=ab b +12, ∴b 1+b 2=log a (a b 1·a b 2)=log a(MN ),即log a M +log a N =log a (MN ).4.解:(1)16x +9y ;25x +16y;(n +1)2x +n 2y (n 为正整数).【解法提示】仔细观察每格的特征多项式的特点,找到规律,利用规律求得答案即可.观察图形发现:第1格的“特征多项式”为 4x +y , 第2格的“特征多项式”为 9x +4y , 第3格的“特征多项式”为 16x +9y , 第4格的“特征多项式”为25x +16y , …第n 格的“特征多项式”为(n +1)2x +n 2y (n 为正整数). (2)①∵第1格的“特征多项式”的值为-10, 第2格的“特征多项式”的值为-16,∴⎩⎨⎧=+=+-1649-104y x y x ,解得:⎪⎪⎩⎪⎪⎨⎧==726724-y x ,∴x 、y 的值分别为724-, 726. ②设最小值为W ,则依题意得:W =(n +1)2x +n 2y =724- (n +1)2+726n 2=72 (n 2-24n -12)= 72 (n -12)2-7312.∴第n 格的“特征多项式”有最小值为-7312,相应的n 值为12. 5.(1)解:正方形、矩形、直角梯形任选两个均可. (2)证明:①∵△ABC ≌△DBE , ∴BC =BE , ∵∠CBE =60°, ∴△BCE 是等边三角形. ②∵△ABC ≌△DBE , ∴BC =BE ,AC =ED . ∵△BCE 为等边三角形, ∴BC =CE ,∠BCE =60°, ∵∠DCB =30°,∴∠DCE=∠BCE+∠DCB=90°,∴在Rt△DCE中,DC2+CE2=DE2,又∵BC=CE,AC=DE,∴DC2+BC2=AC2,即四边形ABCD是勾股四边形.6.解:(1)①正确;【解法提示】设等边三角形的边长为a,则a2+a2=2a2,∴符合“奇异三角形”的定义,∴小红提出的命题是正确的.②是.【解法提示】∵22+42=2×(10)2,∴符合“奇异三角形”的定义,∴△ABC是奇异三角形.(2)①23;1∶2∶3.【解法提示】∵22+(23)2=2×(22)2,且22+(22)2=(23)2,∴第三边的边长为23,∴此直角三角形的三边之比为2∶22∶23=1∶2∶3.②∵∠ACB=90°,则a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=2a,c=3a,∴a∶b∶c=1∶2∶3.(3)∵以AB为斜边分别在AB的两侧作直角三角形,利用直角三角形外接圆直径就是斜边,AD=BD,∴AB 是⊙O 的直径,∴AB 2=AD 2+BD 2=2AD 2,∴AC 2+CB 2=AB 2=2AD 2,又∵CB=CE ,AE=AD , ∴AC 2+CE 2=2AE 2,∴△ACE 是奇异三角形.7.解:(1)sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30° =22×23-22×21 =46-42=42-6. (2)在Rt△BDE 中,∵∠BED =90°,∠BDE =75°,DE =AC =7米,∴BE =DE ·tan∠BDE =DE ·tan75°.∵tan75°=tan(45°+30°) =︒⋅︒︒+︒tan30tan45-1tan30tan45 =331-1331⨯+ =2+3,∴BE =7(2+3)=14+73,∴AB =AE +BE =1.62+14+73≈27.7(米).∴乌蒙铁塔的高度约为.8.解:(1)①3; ②47≤x <49.【解法提示】如果<2x -1>=3,可得3-21≤2x -1<3+21, 解得:47≤x <49. (2)0.6;0.7.【解法提示】说明:设x =n +a ,其中n 为x 的整数部分(n 为非负整数),a 为x 的小数部分(0≤a <1). 分两种情况:(Ⅰ)当0≤a <21时,有<x >=n , ∵x +y =(n +y )+a ,这时(n +y )为(x +y )的整数部分,a 为(x +y )的小数部分,∴<x +y >=n +y ,又<x >+y =n +y ,∴<x +y >=<x >+y . (Ⅱ)当21≤a <1时,有<x >=n +1, ∵x +y =(n +y )+a ,这时(n +y )为(x +y )的整数部分,a 为(x +y )的小数部分,∴<x +y >=n +y +1,又<x >+y =n +1+y =n +y +1,∴<x +y >=<x >+y .综上所述:<x +y >=<x >+y ,∴x 可取0.6,y 取0.7(x 可取0.4,y 取0.4,答案不唯一).(3)设34x =k (k 为非负整数),则x =43k ,根据题意可得: k -21≤43k <k +21, 即-2<k ≤2,∵k 为非负整数,∴k =0,1,2, ∴x =0,43,23. 9.解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵|-21-0|=21≠2, ∴|0-y |=2,解得,y =2或y =-2.∴点B 的坐标是(0,2)或(0,-2).②点A 与点B 的“非常距离”的最小值为21. (2)如解图,取点C 与点D 的“非常距离”的最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|,即AC =AD .∵C 是直线y =43x +3上的一个动点,点D 的坐标是(0,1), ∴设点C 的坐标为(x 0,43x 0+3), ∴-x 0=43x 0+2,此时,x 0=-78, ∴点C 与点D 的“非常距离”的最小值为:|x 0|=78, 此时C (-78,715).第9题。
中考数学压轴题新定义和阅读理解型问题17个填空题解析版
01.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=_____________.【答案】60【解析】由题意可知:,解得:.∵x<y,∴原式=5×12=60.故答案为:60.【关键点拨】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.02.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①,①×3得3S=3+32+33+…+32018+32019 ②,②﹣①得2S=32019﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52018=____.【答案】【解析】设S=1+5+52+53+…+52018 ①,则5S=5+52+53+54…+52019②,②﹣①得:4S=52019﹣1,所以S=,故答案为:.【关键点拨】本题考查了规律型——数字的变化类,涉及了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.03.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2= .【答案】6.【解析】∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为:6.【关键点拨】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.04.规定:,如:,若,则=__.【答案】1或-3【解析】依题意得:(2+x)x=3,整理,得x2+2x=3,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-3.故答案是:1或-3.【关键点拨】用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.05.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.【答案】1【解析】由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.【关键点拨】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.06.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为______.【答案】1【解析】∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【关键点拨】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.07.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是_____.【答案】【解析】在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=x,在Rt△CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF2,即:12=(x-1)2+(x)2,解得:x=或0(舍),即它的宽的值是,故答案为:.【关键点拨】本题考查了新定义题,矩形的性质、勾股定理等,根据题意正确画出图形,熟练应用相关的知识进行解答是关键.08.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【关键点拨】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.09.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P 作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为_____.【答案】(﹣2,5)【解析】如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.∵NK=MK,∠DNK=∠BMK,∠NKD=∠MKB,∴△NDK≌△MBK,∴DN=BM=OC=2,DK=BK,在Rt△KBM中,BM=2,∠MBK=60°,∴∠BMK=30°,∴DK=BK=BM=1,∴OD=5,∴N(-2,5),故答案为(-2,5)【关键点拨】本题考查坐标与图形变化,轴对称等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是_____;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____.【答案】14 21【解析】图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:,以∠APB为内角的正多边形的边数为:,∴图案外轮廓周长是=﹣2+﹣2+﹣2=+﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则则会标的外轮廓周长是=﹣6=21,故答案为:14,21.【关键点拨】本题考查了阅读理解问题和正多边形的边数与内角、外角的关系,明确正多边形的各内角相等,各外角相等,且外角和为360°是关键,并利用数形结合的思想解决问题.11.若为实数,则表示不大于的最大整数,例如,,等.是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【关键点拨】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.12.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.【答案】.【解析】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥C F,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案为:.【关键点拨】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.13.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9. 故答案为:9或13或49.【关键点拨】本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.14.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=_____.(结果保留根号)【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6×××1=2.故答案为:2.【关键点拨】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.15.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=_____.【答案】4【解析】∵4※x=42+x=20,∴x=4.故答案为:4.【关键点拨】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x的一元一次方程是解题的关键.16.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.【答案】【解析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(-,-),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(-,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(-+2,+2).又∵点P′在双曲线y=上,∴(-+2)•(+2)=k,解得:k=.故答案为:.【关键点拨】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.17.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC=_____.【答案】1+.【解析】作CH⊥AB于H.∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠PAC=∠PCB=∠PBA,∴∠PAB=∠PBC,∴△PAB∽△PBC,∴,∵PA=,∴PB=1,PC=,∴PB+PC=1+.故答案为1+.【关键点拨】本题考查等腰三角形的性质、相似三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是准确寻找相似三角形解决问题.。
2019年重庆(B)中考数学试题(解析版)
重庆市2019年初中毕业水平暨高中招生考试数学试题(B 卷)考试时间:120分钟 满分:150分{题型:1-选择题}一、选择题:本大题共12 小题,每小题4分,合计48分.{题目}1.(2019年重庆B 卷)5的绝对值是A .5B .-5C .15D .-15{答案}A{解析}本题考查了绝对值的意义,利用了绝对值的性质是解题关键,一个正数的绝对值是它本身,所以5的绝对值是5,因此本题选A . {分值}4{章节: [1-1-2-4]绝对值} {考点: 绝对值的意义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年重庆B 卷)如图是一个由5个相同正方体组成的立体图形,它的主视图是A .B .C .D .{答案}D{解析}本题考查了简单组合体的三视图,从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形可知:从正面看所得到的图形为D .因此本题选D . {分值}4{章节: [1-29-2]三视图}{考点: 简单组合体的三视图} {类别:常考题}{题目}3.(2019年重庆B 卷)下列命题是真命题的是 A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3 B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9 C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3 D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶9{答案}B{解析}本题考查了相似三角形的性质,相似三角形周长的比等于相似比;相似三角形的面积比等于相似比的平方.因此在所给四个选项中只有B 是正确的,因此本题选B . {分值}4{章节: [1-27-1-2]相似三角形的性质}{考点:相似三角形周长的性质}{考点:相似三角形面积的性质} {类别:常考题} {难度:1-最简单} {题目}4.(2019年重庆B 卷)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为2题图A .60°B .50°C .40°D .30°{答案}B{解析}本题考查了切线的性质和直角三角形两直角互余,∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠B =50°,因此本题选B . {分值}4{章节: [1-24-2-2]直线和圆的位置关系}{考点:切线的性质}{考点:直角三角形两锐角互余} {类别:常考题} {难度:1-最简单}{题目}5.(2019年重庆B 卷)抛物线y =-3x 2+6x +2的对称轴是 A .直线x =2 B .直线x =-2 C .直线x =1 D .直线x =-1 {答案}C{解析}本题考查了二次函数的性质,∵y =-3x 2+6x +2=-3(x -1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x =1.因此本题选C . {分值}4{章节: [1-22-1-4]二次函数y =ax 2+bx +c 的图象和性质} {考点:二次函数y =ax 2+bx +c 的性质} {类别:常考题} {难度:1-最简单}{题目}6.(2019年重庆B 卷)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为 A .13 B .14 C .15 D .16 {答案}C{解析}本题考查了一元一次不等式的应用,设小玉答对了x 道题,依题意,可得10x -5(20-x )>120,解得,x >1423,∴小玉至少答对15道,因此本题选C . {分值}4{章节:[1-9-2]一元一次不等式}{考点:一元一次不等式的应用}{考点:一元一次不等式的整数解} {难度:2-简单}{题目}7.(2019年重庆BA .5和6之间B .6和7之间C .7和8之间D .8和9之间{答案}B{解析}本题考查了估算无理数的大小,正确进行二次根式的计算是解题关键.=6<7,因此本题选B . {分值}4{章节:[1-6-3]实数} {考点:无理数的估值} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}8.(2019年重庆B 卷)根据如图所示的计算程序计算函数y 的值,若输入x 的值是7,则输C4题图出y 的值是-2,若输入x 的值是-8,则输出y 的值是 A .5 B .10 C .19 D .21{答案}C{解析}本题考查了函数值的计算,由于输入x 的值是7时,输出y 的值是-2,则有-2=72b-+,解得b =3,因此当x <3时,y =-2x +3,所以当输入的x 的值是-8时,y =-2×(-8)+3=19,因此本题选C . {分值}4{章节:[1-19-1-1]变量与函数} {考点:函数值} {类别:易错题} {难度:2-简单}{题目}9.(2019年重庆B 卷)如图,在平面直角坐标系中,菱形OABC的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =kx(k >0,x >0)经过点C ,则k 的值等于A .10B .24C .48D .50 {答案}C{解析}本题考查了反比例函数的图像和性质,在这里根据A 点的坐标和菱形的性质求得点C 的坐标是解题的关键.由于点A 的坐标是(10,0),所以OA =OC =10,设C 点的坐标为(m ,n ),因为OC =10,sin ∠COA =45,则有4105n =,m 2+n 2=102,解得m =6,n =8,即C (6,8),由于C在反比例函数图像上,所以8=6k,解得k =48,因此本题选B .{分值}4{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的几何意义} {考点:菱形的性质} {考点:正弦}{考点:双曲线与几何图形的综合} {类别:常考题} {难度:2-简单}{题目}10.(2019年重庆B 卷)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC =B C .在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =162.4,那么建筑物AB 的高度约为(参考数据sin27°≈0.45,cos 27°≈0.89,tan27°≈0.51) A .65.8米 B .71.8米 C .73.8米 D .119.8米8题图9题图{答案}B{解析}本题考查了解直角三角形的应用,涉及到了仰角、与坡度两类问题.延长EF 交AB 于点M ,过D 作BC 的垂线交BC 的延长线于点H ,如下图 则ME =BH =BC +CH ,BM =EH =ED +DH ,设DH =x (x >0),由于斜坡CD 的坡度(或坡比)i =1∶2.4,则有CH =2.4x , ∵CD =BC =52,∴x 2+(2.4x )2=522,解得x =20∴BM =EH =ED +DH =20+0.8=20.8(米) CH =2.4x =48(米)∴ME =BH =BC +CH =52+48=100(米) 在Rt △AME 中,由于∠AEM =∠AE F =27°, ∴AM =ME ·tan27°≈100×0.51≈51,∴AB =AM +BM ≈51+20.8≈71.8(米),因此本题选B . {分值}4{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用-坡度}{考点:解直角三角形的应用-仰角} {类别:常考题} {难度:2-简单}{题目}11.(2019年重庆B 卷)若数a 使关于x 的不等式组12(7)34625(1)xx x a x ⎧-≤-⎪⎨⎪->-⎩有且仅有三个整数解,且使关于y 的分式方程12311y ay y --=---的解为正数,则所有满足条件的整数a 的值之和是 A .-3B .-2C .-1D .1{答案}A{解析}本题考查了分式方程的解以及一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.12(7)34625(1)x x x a x ⎧-≤-⎪⎨⎪->-⎩①② 解不等式①得:x ≤3,解不等式②得:x >5211a+, ∴该不等式组的解集为:5211a+<x ≤3∵该不等式组有且仅有三个整数解,∴0<5211a+<1,解得-52<a <3,方程12311y ay y--=---的两边同乘以(y -1)得: M H1-2y +a =-3(y -1),解得y =2-a ,∵方程12311y ay y --=---的解为正数,且y ≠1,∴2-a >0,且2-a ≠1,即a <2且a ≠1又-52<a <3, ∴满足条件的整数a 为:-2,-1,0, 则所有满足条件的整数a 的值之和是-3, 因此本题选A . {分值}4{章节:[1-15-3]分式方程}{考点:分式方程的解}{考点:一元一次不等式组的整数解} {类别:易错题} {难度:2-简单}{题目}12.(2019年重庆B 卷)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为 A .8 B .42 C .22+4 D .32+2{答案}D{解析}本题考查了平行四边形的判定与性质,三角形全等的判定,轴对称的性质,以及勾股定理等内容,准确求出DE 和EG 的长是解题的关键. ∵∠ABC =45°,AB =3,AD ⊥BC 于点D , ∴△ADB 是等腰直角三角形,即AD =BD , 又BE ⊥AC ,DG ⊥DE ,∴∠GBD =∠EAD ,∠GDB =∠EDA ∴△GBD ≌△EAD ,∴GD =ED , BG =AE =1∵DG ⊥DE ,∴∠DGE =∠DEG =45° ∵BE ⊥AC ,∴∠DEC =45°又△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF , ∴ED =EF ,∠DEC =∠FEC ,即GD =EF ,∠FEC =45°, ∴∠DEF =∠DEC +∠FEC =90°,即DE ⊥EF , ∴GD ∥EF∴DFEG 是平行四边形,又AB =3,AE =1,BE ⊥AC 于点E , ∴BE 22AB AE -2, ∴EG =2-1,又DE ⊥EF ,ED =EF ,∴EF=2∴四边形DFEG 的周长=2(EG +EF )=+2, 因此本题选D . {分值}4{章节:[1-18-1-2]平行四边形的判定}{考点:一组对边平行且相等的四边形是平行四边形} {考点:平行四边形边的性质} {考点:勾股定理} {考点:轴对称的性质} {考点:几何选择压轴}{考点:全等三角形的判定ASA ,AAS } {类别:高度原创} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共 6小题,每小题4分,合计24分.{题目}13.(2019年重庆B卷)计算:0111)()2-+= .{答案}3{解析}本题考查了实数的运算、零指数幂、负整数指数幂.原式=1+2=3,因此本题应填3. {分值}4{章节:[1-6-3]实数}{考点:简单的实数运算}{考点:零次幂}{考点:负指数参与的运算} {类别:常考题} {难度:1-最简单}{题目}14.(2019年重庆B 卷)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1 180 000,参学覆盖率达71%,稳居全国前列.将数据1 180 000用科学记数法表示为 .{答案}1.18×106{解析}本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.1 180 000=1.18×106,因此本题应填:1.18×106. {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}15.(2019年重庆B 卷)一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的概率是 .{答案}112{解析}本题考查了概率的计算,掷二次骰子,共有36种情况,其中在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的有3种,故在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的概率是:336=112.因此本题应填:112.{分值}4{章节:[1-25-2]用列举法求概率}{考点:两步事件放回}{类别:常考题} {难度:2-简单} {题目}16.(2019年重庆B 卷)如图,四边形ABCD 是矩形,AB =4,AD16题图D=22,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是.{答案}82-8{解析}本题考查了扇形面积的计算以及特殊角的三角函数值. 如答图,连接AE ,则AE =AB =4,∴cos ∠EAD =222AD AE ==,∴∠EAD =45°, ∴AD =ED =22,CE =4-22S 阴影=(S 梯形ABCE -S 扇形ABE )+(S 扇形AEF -S △ADE )=(2AB CE BC +⨯-245360πAB ⨯⨯)+(245360πAB ⨯⨯-12AD ED ⨯) =442222+-⨯-122222⨯⨯=82-8因此本题应填:82-8. {分值}4{章节:[1-24-4]弧长和扇形面积} {考点:扇形的面积}{考点:特殊角的三角函数值} {类别:常考题} {难度:3-中等难度}{题目}17.(2019年重庆B 卷)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流的时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.{答案}2080{解析}本题考查了距离时间图象,充分挖掘函数图象中隐含的等量关系是解题的关键. 设小明的速度是m 米/分,爸爸的速度是n 米/分,由图象可知,爸爸追上小明所用的时间为16-11=5分钟,爸爸跑5分钟的路程是小明走11分钟的ED AC路程,爸爸以原速跑回家时,小明以54m 米/分速度走向学校,两人5分钟共行了1380米,所以有51155513804n m n m =⎧⎪⎨+⨯=⎪⎩,解得m =80,n =176, 所以小明家到学校的距离是80×11+54×80×(23-11)=2080(米)因此本题应填:2080. {分值}4{章节:[1-19-1-2] 函数的图象} {考点:距离时间图象} {类别:常考题} {类别:易错题} {难度:3-中等难度}{题目}18.(2019年重庆B 卷)某磨具厂共有6个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .{答案}1819{解析}本题考查了列代数式、分式以及等式的性质,设每个车间原有的产品数量为x ,第一车间每天生产的数量为y ,甲组检验员的人数为m ,乙组检验员的人数为n ,由于甲组用了6天时间将第一、二、三车间所有成品同时检验完,所以甲组检验员的速度为3366x ym+⨯,乙组先用2天将第四、五车间的所有成品同时检验完,此时乙组检验员的速度为322242x y yn ++⨯,又乙组再用了4天检验完第六车间的所有成品,此时乙组检验员的速度为8634x yn+⨯,由于每个检验员的检验速度一样,所以3366x y m +⨯=322242x y y n ++⨯=8634x y n +⨯,由3366x y m +⨯=322242x y yn ++⨯可得m n=6722x y x y++=21247x y x y ++,由322242x y yn ++⨯=8634x y n +⨯可得4x +7y =x +16y ,即x =3y ,将x =3y 带入m n =21247x y x y ++中,可得m n =1819,因此本题应填1819.{分值}4{章节:[1-15-1]分式} {考点:列代数式} {考点:等式的性质} {考点:代数填空压轴} {类别:高度原创}{难度:3-中等难度}{题型:3-解答题}三、解答题:本大题共 7小题,合计70分.{题目}19.(2019年重庆B 卷)计算:(1)(a +b )2+a (a -2b );(2)m -1+2269m m --÷223m m ++{解析}本题考查了分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.. {答案}解: (1)(a +b )2+a (a -2b )=a 2+2ab +b 2+a 2-2ab =2a 2+b 2;(2)m -1+2269m m --÷223m m ++=m -1+2(3)(3)(3)m m m -+-×32(1)m m ++=m -1+11m +=2111m m -++=21m m +{分值}10{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算} {考点:完全平方公式} {考点:单项式乘以多项式} {考点:因式分解-提公因式法} {考点:因式分解-平方差}{题目}20.(2019年重庆B 卷)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D . (1)若∠C =42°,求∠BAD 的度数; (2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F , 求证:AE =FE .{解析}本题考查了等腰三角形的性质“等腰三角形三线合一”以及平行线的性质. {答案}解:(1)在△ABC 中,由于AB =AC ,AD ⊥BC 于点D .∴△ABC 是等腰三角形,且AD 为顶角∠BAC 的角平分线,∴∠BAD =12∠BAC , 又∠C =42°,∴∠BAC =180°-2∠C =96°,∴∠BAD =12∠BAC =48°;(2)由(1)可知,∠FAC =∠BAD =12∠BAC ,B20题图∵EF∥AC交AD的延长线于点F,∴∠AFE=∠FAC,∴∠AFE=∠BAD,∴AE=FE.{分值}10{章节:[1-13-2-1]等腰三角形}{难度:2-简单}{类别:常考题}{考点:三线合一}{考点:两直线平行内错角相等}{题目}21.(2019年重庆B卷)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30明学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.{解析}本题考查了频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、合格率等概念,属于基础题.{答案}解:(1)∵频数之和为30,∴3+4+a+7+8+3=30,解得a=5;1+2+b+7+12+4=30,解得b=4;将活动前、后被测查学生数据由小到大排列可知:活动前被测查学生视力样本数据的中位数是4.6 4.74.652+=,活动后被测查学生视力样本数据的众数是4.8;因此,各空依次填入:5;4;4.65;4.8(2)活动前该校学生的视力达标率=12430+×100%≈53.33%,活动前被测查学生视力频数分布直方图注:每组数据包括左端值,不包括右端值活动后被测查学生视力频数分布表七年级600名学生活动后视力达标的人数600×1630=320(人)(3)答案不唯一,能说明问题即可,比如:①视力4.8≤x<5.0之间活动前有8人,活动后只有12人,人数明显增加.说明视力保健活动的效果比较好.②活动前合格率1430×100%≈46.67%,活动后合格率53.33%,合格率显著提升.说明视力保健活动的效果比较好.{分值}10{章节:[1-10-2]直方图}{难度:3-中等难度}{类别:常考题}{考点:频数(率)分布直方图}{考点:中位数}{考点:众数}{考点:用样本估计总体}{考点:统计量的选择}{题目}22.(2019年重庆B卷)在数学学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式进行计算时个位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式进行计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”个数,并说明理由.{解析}本题考查了新定义的理解与分析,新定义中的“不产生进位”是分析的关键,即和不能大于10,在列举时要注意“不重不漏”.{答案}解:(1)依题意n+(n+1)+(n+2)<10,即n<2.3 ,所以个位上的数字只能取0,1,2,由于十位、百位、千位上的数字可以相同,因此可取值为0,1,2,3,又所求数字在1949~2019之间,因此千位只能取2,百位只能取0,十位可取0,1,个位可取0,1,2.因此满足条件的数有六个,即:2000,2001,2002,2010,2011,2012.(2)依题意n+(n+1)+(n+2)<10,即n<2.3 ,即个位可取0,1,2由于十位、百位上的数字可以相同,所以该数字小于103,即可取值为0,1,2,3又该纯数不大于100,因此该纯数可以是单一数字、两位数字或3位数字,当“纯数”为单一数字时,“纯数”为0,1,2;当“纯数”为两位数字时,“纯数”为10,11,12,20,21,22,30,31,32;当“纯数”为三位数字时,“纯数”为100;因此不大于100的“纯数”有13个.{分值}10{章节:[1-2-2]整式的加减}难度:3-中等难度}{类别:新定义}{考点:新定义}{考点:整式加减}{考点:整式加减的实际应用}{题目}23.(2019年重庆B卷)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如右图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A、B 的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给平面坐标系内画出函数y=-2|x+3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.{解析}本题考查了绝对值函数,绝对值函数是轴对称图形,k>0时,函数有最低点,k<0时,函数有最高点.{答案}解:(1)点A的坐标(0,2),点B的坐标为(-2,0),函数y=-2|x+2|的对称轴是x =-2;(2)y=-2|x|的图象向上平移2个单位可得到函数y=-2|x|+2的图象;y=-2|x|的图象向左平移2个单位可得到函数y=-2|x+2|的图象;(3)函数y=-2|x+3|+1的图象如下图中的红色线条由于点(x1,y1)和(x2,y2)在该函数图象上,所以函数随x的增大而减小,∵x2>x1>3,∴y1>y2.{分值}10{章节:[1-19-2-2]一次函数}{难度:3-中等难度}{类别:北京作图}{类别:发现探究}{考点:一次函数的图象}{考点:一次函数的性质}{考点:一次函数图象与几何变换}{题目}24.(2019年重庆B卷)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为了提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少3%10a;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少1%4a.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a,求a的值.{解析}本题考查了列代数式以及利用利用一元一次方程和一元二次方程解决实际问题.{答案}解:(1)设4平方米的摊位共有x 个,则2.5平方米的摊位有2x 个 . 依题意,得20×2.5×2x +20×4x =4500,即100x +80x =4500,解得x =25, 答:4平方米的摊位共有25个. (2)由(1)知,2.5平方米的摊位有50个,4平方米的摊位有25个, ∴参加活动一的2.5平方米摊位有50×40%=20个, 参加活动一的4平方米摊位有25×20%=5个, ∴参加活动二的2.5平方米摊位有20(1+2a %)个, 参加活动二的4平方米摊位有5(1+6a %)个, ∴2.5平方米摊位少收管理费20×2.5×3%10a ×20(1+2a %) 4平方米摊位少收管理费20×4×1%4a ×5(1+6a %)这部分商户减少的管理费〔20×2.5×20(1+2a %)+20×4×5(1+6a %)〕×5%18a ∴20×2.5×3%10a ×20(1+2a %)+20×4×1%4a ×5(1+6a %)=〔20×2.5×20(1+2a %)+20×4×5(1+6a %)〕×5%18a整理得2(a %)2-a %=0∴a %=12或a %=0(不合题意,舍去)由于a %=12,∴a =50{分值}10{章节:[1-21-4]实际问题与一元二次方程} {难度:3-中等难度} {类别:易错题}{考点:其他一元二次方程的应用问题} {考点:一元一次方程的应用(其他问题)} {考点:代数式求值}{题目}25.(2019年重庆B 卷)在□ABCD 中,BE 平分∠ABC 交AD 于点E . (1)如图1,若∠D =30°,ABABE 的面积; (2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB =AF .求证:ED -AG =F C .{解析}本题考查了三角形全等的判定与性质,线段和差的证明方法以及三角形面积的计算,解题的关键是将分散的条件通过作辅助线“作AK ⊥BE 交BE 于点K ,交DF 的延长线于点N ”使所证问题结论中的线段集中到一起.{答案}解:(1)如答图1,过点E 作AB 的垂线教BA 的延长线于点M25题图1 D25题图2 D在□ABCD 中,∵∠D =30°,∴∠ABC =30°, 又BE 平分∠ABC 交AD 于点E .∴∠ABE =∠CBE =∠AEB =12∠ABC =15°, ∴AE =ABMAE =∠ABE +∠AEB =30°∴ME =12AE,∴S △ABE =12AB ·ME =12=32.(2)如答图2,作AK ⊥BE 交BE 于点K ,交DF 的延长线于点N ,则∠NAF =∠GBA ,∵∠NAF =∠GBA ,AB =AF ,,∠BAG =∠AFN =90° ∴△ABG ≌△FAN∴AG =FN ,∠N =∠AGB ∵∠AGB =∠GAE +∠AEG∴∠AGB =∠GAE +∠KAG =∠KAE ∴∠KAE =∠N ∴DA =DN∵DE =DA -AE ,CN =DN -DC =DN -AB =DN -AE ∴DE =CN =FC +FN =FC +AG 即DE -AG =FC{分值}10{章节:[1-12-2]三角形全等的判定} {难度:4-较高难度} {类别:常考题}{考点:全等三角形的判定ASA ,AAS } {考点:全等三角形的性质}{考点:与线段和差倍分有关的问题} {考点:三角形的面积} {考点:几何综合}{题型:4-解答题}四、解答题:本大题共1小题,计8分.DB25题答图125题答图2DB{题目}26.(2019年重庆B 卷)在平面直角坐标系中,抛物线y2+x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q . (1)如图1,连接AC ,B C .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标.(2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线的顶点记为D ′,N 为直线DQ 上一点,连接D ′,C ,N ,△D ′CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.{解析}本题考查了二次函数综合题、一次函数的应用、锐角三角函数、对称的性质、等腰三角形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用轴对称的性质解决线段和的最短问题,学会用分类讨论的思想思考问题是解决问题的关键.{答案}解:(1)∵PE 平行于y 轴,PF ⊥BC ,∴∠FPE =∠OBC 为一定值,∴当PE 取得最大值时,EF ,PF 取得最大值,即△PEF 的周长也取得最大值。
中考数学 阅读理解题及答案
阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3. (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019=2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019 =2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x2-x+3x+1=x(x+1)-2(x+1)+5x+1=x(x+1)x+1-2(x+1)x+1+5x+1=x-2+5x+1.这样,分式x2-x+3x+1就拆分成一个整式x-2与一个分式5x+1的和的形式.解决问题:(1)将分式x2+6x-3x-1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;(2)已知整数x使分式2x2+5x-20x-3的值为整数,则满足条件的整数x=________;(3)若关于x的方程2x2+(1-2a)x+(4-3a)=0有整数解,求正整数a的值.解(1)x+7+4x-1[解法提示]x2+6x-3x-1=(x-1)2+8(x-1)+4x-1=x-1+8+4x-1=x+7+4x-1.故结果为x+7+4x-1.(2)2,4,16,-10 [解法提示]2x2+5x-20x-3=2x2-6x+11x-33+13x-3=2x(x-3)+11(x-3)+13x-3=2x+11+13x-3.要使原式的值为整数,则13x-3为整数,故x=2,4,16,-10.(3)∵2x2+(1-2a)x+(4-3a)=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎨⎧ x =-1,a =5或⎩⎨⎧ x =-2,a =-10或⎩⎨⎧ x =2,a =2或⎩⎨⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值. 解:设2m 2+n 2=t ,则原方程变为(t +1)(t -1)=80,整理得t 2-1=80,t 2=81,∴t =±9,因为2m 2+n 2>0,所以2m 2+n 2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x ,y 满足(2x 2+2y 2+3)(2x 2+2y 2-3)=27,求x 2+y 2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解 (1)令2x 2+2y 2=t ,则原方程变为(t +3)(t -3)=27,整理得,t 2-9=27,t 2=36.t =±6.∵2x 2+2y 2≥0,∴2x 2+2y 2=6,∴x 2+y 2=3.(2)设四个连续正整数为k -1,k ,k +1,k +2(k ≥2且k 为整数).由题得(k -1)k (k +1)(k +2)=11880,∴(k -1)(k +2)k (k +1)=11880,∴(k 2+k -2)(k 2+k )=11880.令t =k 2+k ,则(t -2)·t =11880,t 2-2t -11880=0,∴t 1=110,t 2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x-4因式分解的结果为(x +1)(x +2)(x -2),当x =15时,x +1=16,x +2=17,x -2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎨⎧ m -3n =5,n =17,解得⎩⎨⎧ m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎨⎧ m =1,n =2或⎩⎨⎧ m =5,n =1,∴a 的值为734或770.8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17. (1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎨⎧ a +b =3,a -b =2或⎩⎨⎧ a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =15,a -b =3或⎩⎨⎧ a +b =9,a -b =5或⎩⎨⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎨⎧ a =9,b =6或⎩⎨⎧ a =7,b =2或⎩⎨⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =71,a -b =1,解得⎩⎨⎧ a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =92,a -b =1或⎩⎨⎧ a +b =46,a -b =2或⎩⎨⎧ a +b =23,a -b =4. 解得⎩⎨⎧ a =24,b =22.∴F (t )=1112. ③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =24,a -b =1或⎩⎨⎧ a +b =12,a -b =2或⎩⎨⎧ a +b =8,a -b =3或⎩⎨⎧ a +b =6,a -b =4.解得⎩⎨⎧ a =7,b =5或⎩⎨⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15. ∴F (t )的最大值为3536. 9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接EC ,请写出∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC 中,∠ABC =∠ACB =45°,∠BDC =90°.若BD =3,CD =5,请直接写出AD 的长.解 (1)①60° ②AC =CD +CE[解法提示] 由题意,得△ABC 和△ADE 均为等边三角形,∴AB =AC =BC ,AD =AE ,∠BAC =∠DAE =∠B =60°.∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE .∴△BAD ≌△CAE (SAS).∴∠ACE =∠B =60°,BD =CE .∴AC =BC =CD +BD =CD +CE .(2)∠ACE =45°,2AC =CD +CE .理由:由题意,得∠BAC =∠DAE =90°,AB =AC ,AD =AE .∴∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE .∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示] 过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
重庆市2019年中考数学实现试题研究新定义阅读理解题题库
新定义阅读理解题1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”.如:65362,362-65=297=11×27,称65362是“网红数”.材料二:对任意的自然数p 均可分解为p =100x +10y +z (x ≥0,0≤y ≤9,0≤z ≤9且想,x ,y ,z 均为整数),如:5278=52×100+10×7+8,规定:G (p )= zx x z x x -++-+112)( . (1)求证:任意两个“网红数”之和一定能被11整除;(2)已知:s =300+10b +a ,t =1000b +100a +1142(1≤a ≤7,0≤b ≤5,且a 、b 均为整数),当s +t 为“网红数”时,求G (t )的最大值.(1)证明:设两个“网红数”为mn ,ab (n ,b 分别为mn ,ab 末三位表示的数,m ,a 分别为mn ,ab 末三位之前的数字表示的数),则n -m =11k 1,b -a =11k 2, ∴mn +ab =1001m +1001a +11(k 1+k 2)=11(91m +91a +k 1+k 2).又∵k 1,k 2,m ,n 均为整数,∴91m +91a +k 1+k 2为整数,∴任意两个“网红数”之和一定能被11整除.(2)解:s =3×100+10b +a ,t =1000(b +1)+100(a +1)+4×10+2,S +t =1000(b +1)+100(a +4)+10(b +4)+a +2,①当1≤a ≤5时,s +t =))()()((2a 4b 4a 1b ++++, 则))()((2a 4b 4a +++-(b +1)能被11整除,∴101a +9b +441=11×9a +2a +11b -2b +40×11+1能被11整除,∴2a -2b +1能被11整除.∵1≤a ≤5,0≤b ≤5,∴-7≤2a -2b +1≤11,∴2a -2b +1=0或11,∴a =5,b =0,∴t =1642,G (1642)=17141, ②当6≤a ≤7时,s +t =))()()((2a 4b 6a 2b ++-+, 则))()((2a 4b 6a ++--(b +2)能被11整除,∴101a +9b -560=11×9a +2a +11b -2b -51×11+1能被11整除,∴2a -2b +1能被11整除.∵6≤a ≤7,0≤b ≤5,∴3≤2a -2b +1≤15,∴2a -2b +1=11,∴⎩⎨⎧==1b 6a ,⎩⎨⎧==2b 7a ,∴t =2742或3842,G (2742)=28251,G (3842)=39361, 综上,G (t )的最大值为39361. 2.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P 所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1), K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3, ∴⎩⎨⎧==2m 5m 21, ∴⎩⎨⎧==39k 228k 21.3.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解:(1)设A 的十位数字为a ,个位数字为b ,则A =10a +b ,它的“诚勤数”为100a +20+b ,它的“立达数”为10a +b +2,∴100a +20+b -(10a +b +2)=90a +18=6(15a +3),∵a 为整数,∴15a +3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B =10m +n ,1≤m ≤9,0≤n ≤9(B 加上2后各数字之和变小,说明个位发生了进位), ∴B +2=10m +n +2,则B 的“立达数”为10(m +1)+(n +2-10),∴m +1+n +2﹣10=21(m +n ), 整理,得m +n =14,∵1≤m ≤9,0≤n ≤9,∴⎩⎨⎧==6n 8m 、⎩⎨⎧==8n 6m 、⎩⎨⎧==5n 9m 、⎩⎨⎧==9n 5m 、⎩⎨⎧==7n 7m , 经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.4.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为F (k ).如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(0≤a ≤9,0≤b ≤9,0≤c ≤9,a 、b 、c 是整数),规定:(,)a c G m n b -=.当()()24F m F n +=时,求(,)G m n 的值.解:(1)∵30+2×4=38,38÷19=2,∴F (304)=2.∵205+2×2=209,209÷19=11, ∴F (2025)=11.∴F (304)+F (2052)=13;(2)∵m =3030+101a =3000+100a +30+a ,∴F (m )=19a 23a 10300+++=19a 12303+=15+19a 1218+. ∵m 是“魅力数”, ∴19a 1218+是整数. ∵0≤a ≤9,且a 是偶数,∴a =0,2,4,6,8.当a =0时,19a1218+=1918不符合题意. 当a =2时,19a 1218+=1942不符合题意. 当a =4时,19a 1218+=1966不符合题意. 当a =6时,19a 1218+=1990不符合题意. 当a =8时,19a 1218+=19114=6符合题意. ∴a =8,此时m =3838,F (m )=F (3838)=6+15=21.又∵F (m )+F (n )=24,∴F (n )=3.∵n =400+10b +c ,∴F (n )=19c 2b 40++=3, ∴b +2c =17,∵n 是“魅力数”,∴c 是偶数,又∵0≤c ≤9,∴c =0,2,4,6,8.当c =0时,b =17不符合题意.当c =2时,b =13不符合题意.当c =4时,b =9符合题意.此时,G (m ,n )=b c a -=948-=94. 当c =6时,b =5符合题意.此时,G (m ,n )=b c a -=568-=52. 当c =8时,b =1符合题意.此时,G (m ,n )=b c a -=188-=0. ∵ 94>52>0, ∴G (m ,n )的最大值是94. 5.已知一个正整数,把其个位数字去掉,再将余下的数加上个位数字的4倍,如果和是13的倍数,则称原数为“超越数”.如果数字和太大不能直接观察出来,就重复上述过程.如:1131:113+4×1=117,117÷13=9,所以1131是“超越数”;又如:3292:329+4×2=337,33+4×7=61,因为61不能被13整除,所以3292不是“超越数”.(1)请判断42356是否为“超越数” (填“是”或“否”),若ab +4c =13k (k 为整数),化简abc 除以13的商(用含字母k 的代数式表示).(2)一个四位正整数N =abcd ,规定F (N )=|a +d 2﹣bc |,例如:F (4953)=|4+32﹣5×9|=32,若该四位正整数既能被13整除,个位数字是5,且a =c ,其中1≤a ≤4.求出所有满足条件的四位正整数N 中F (N )的最小值.解:(1)否,4235+4×6=4259,425+4×9=461,46+4×1=50,因为50不能被13整除,所以42356不是超越数. ∵ab +4c =13k ,∴10a +b +4c =13k ,∴10a +b =13k ﹣4c ,∵abc =100a +10b +c =10(10a +b )+c =130k ﹣40c +c =130k ﹣39c =13(10k ﹣3c ), ∴13abc =10k ﹣3c ; (2)由题意得d =5,a =c ,∴N =1000a +100b +10c +5,∵N 能被13整除,∴设100a +10b +c +4×5=13k ,∴101a +10b +20=13k ,且a 为正整数,b ,k 为非负整数,1≤a ≤4,∴a =2,b =9,k =24 或a =3,b =8,k =31,或a =4,b =7,k =38,∴F (N )=|2+25﹣18|=9,或F (N )=|3+25﹣24|=4,或F (N )=|4+25﹣28|=1,∴F (N )最小值为1.6.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n .把'n 放在n 的后面组成第一个四位数,把n 放在'n 的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为()F n ,例如:23n =时,32n '=,23323223(23)8111F -==-. (1)计算(42)_____;F = 若m 为“启航数”,()F m 是一个完全平方数,求()F m 的值;(2)s t 、为“启航数”,其中10,10s a b t x y =+=+(1≤b ≤a ≤9,1≤x 、y ≤5,且y x b a ,,,为整数) 规定:(,)s t K s t t-=,若()F s 能被7整除,且()()81162F s F t y +-=,求(,)K s t 的最大值.解:(1)F (42)=162,设m =pq (1≤p ≤q ≤9,且p 、q 为整数), 则()=81()11pqqp qppq F m p q -=-, ∵()F m 完全平方数,∴p q -为完全平方数,∵1≤p ≤q ≤9,且p 、q 为整数,∴0<p -q ≤8,∴14p q -=或,∴F (m )=81或324;(2)由题意知:s =ab ,t =xy (1≤b ≤a ≤9,1≤x 、y ≤5,且a b x y 、、、为整数), ∴()81()F s a b =-,()81()F t x y =-,∵()F s 能被7整除,∴81()7a b -为整数, 又∵1≤b ≤a ≤9,∴0<a -b ≤8,∴7a b -=,∴9,28,1a b a b ====或,∴s =92或81.又∵()()81162F s F t y +-=,∴81(a -b )+81(x -y )-81y =162,∴2y =x +5,∵1≤x ,y ≤5且x y ≠,∴1,33,4x y x y ====或,∴t =13 或34, ∴79(92,13)13K =,K (92,34)=3458,68(81,13)13K =,47(81,34)34K = K max =1379. 7.若一个三位数,其个位数加上十位数等于百位数,可表示为t =100(x +y )+10y +x (x +y≤9),则称实数t 为“加成数”,将t 的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h .规定q =t ﹣h ,f (m )=9q ,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h =213,∴q =321﹣213=108,f (m )=9108=12. (1)当f (m )最小时,求此时对应的“加成数”的值;(2)若f (m )是24的倍数,则称f (m )是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.解:(1)∵f (m )=9q , ∴当f (m )最小时,q 最小,∵t =100(x +y )+10y +x=101x+110y ,h =100y +10x +x +y =101y +11x ,∴q =t ﹣h =101x+110y ﹣(101y +11x )=9y +90x ,且1≤y ≤9,0≤x ≤9,x 、y 为正整数, 当x =0,y =1时,q =9,此时对应的“加成数”是110;(2)∵f (m )是24的倍数,设f (m )=24n (n 为正整数),则24n =9q ,q =216n , 由(1)知:q =9y +90x =9(y +10x ),∴216n =9(y +10x ),24n =y +10x ,(x +y <10)①当n =1时,即y +10x =24,解得:x =2,y =4,则这样的“节气数”是24;②当n =2时,即y +10x =48,解得:x =4,y =8,x +y =12>10,不符合题意;③当n =3时,即y +10x =72,解得:x =7,y =2,则这样的“节气数”是72;④当n =4时,即y +10x =96,解得:x =9,y =6,x +y =15>10,不符合题意;⑤当n =5时,即y +10x =120,没有符合条件的整数解,综上,这样的“节气数”有2个,分别为24,72.8.在任意n (n >1且为整数)位正整数K 的首位后添加6得到的新数叫做K 的“顺数”,在K 的末位前添加6得到的新数叫做K 的“逆数”.若K 的“顺数”与“逆数”之差能被17整除,称K 是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N ,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N 的值.(2)证明:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.(1)解:是;【解法提示】∵361568﹣315668=45900,且45900÷17=2700,∴根据最佳拍档数的定义可知,31568是“最佳拍档数”;故答案为:是设“最佳拍档数”N 的十位数字为x ,百位数字为y ,则个位数字为8﹣x ,y ≥x , N =5000+100y +10x +8﹣x =100y +9x +5008,∵N 是四位“最佳拍档数”,∴50000+6000+100y +10x +8﹣x ﹣[50000+1000y +100x +60+8﹣x ],=6000+100y +9x +8﹣1000y ﹣100x ﹣68+x ,=5940﹣90x ﹣900y ,=90(66﹣x ﹣10y ),∴66﹣x ﹣10y 能被17整除,①x =2,y =3时,66﹣x ﹣10y =34,能被17整除,此时N 为5326;②x =3,y =8时,66﹣x ﹣10y =﹣17,能被17整除,此时N 为5835;③x =5,y =1时,66﹣x ﹣10y =51,能被17整除,但x >y ,不符合题意;④x =6,y =6时,66﹣x ﹣10y =0,能被17整除,此时N 为5662;⑤x =8,y =3时,66﹣x ﹣10y =28,不能被17整除,但x >y ,不符合题意;⑥当x =9,y =4时,66﹣x ﹣10y =17,能被17整除,但x >y ,不符合题意;综上,所有符合条件的N 的值为5326,5835,5662;(2)证明:设三位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,它的“顺数”:1000z +600+10y +x ,它的“逆数”:1000z +100y +60+x ,∴(1000z +600+10y +x )﹣(1000z +100y +60+x )=540﹣90y =90(6﹣y ),∴任意三位正整数K 的“顺数”与“逆数”之差一定能被30整除,设四位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,千位数字为a ,∴(10000a +6000+100z +10y +x )﹣(10000a +1000z +100y +60+x )=5940﹣900z ﹣90y =90(66﹣10z ﹣y ),∴任意四位正整数K 的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.9.若实数a 可以表示成两个连续自然数的倒数差,即a =n1-1n +1,那么我们称a 为第n 个“1阶倒差数”,例如21=1-21,∴21是第1个“1阶倒差数”,61=21-31,∴16是第2个“1阶倒差数”.同理,若b =n 1-2n 1+,那么,我们称b 为第n 个“2阶倒差数”. (1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”; (2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且d 1-c1=22,求c ,d 的值. 解:(1)132不是“1阶倒差数”,235; 【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴321不是“1阶倒差数”. 第5个“2阶倒差数”为51-71=352. (2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =1x 21--1x 21+=))(()(1x 21x 21x 21x 2-+--+=1x 422-. ∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =1y 422-,d =1z 422-, ∵d 1-c1=22, ∴4z 2-12-4y 2-12=22, 即z 2-y 2=11,∴(z +y )(z -y )=11>0,∴z >y .∵11=1×11,∴⎩⎨⎧=-=+1y z 11y z ,解得⎩⎨⎧==6z 5y ,∴c =15422-⨯=299,d =16422-⨯=2143. 10.任意一个正整数n ,都可以表示为:n =a ×b ×c (a ≤b ≤c ,a ,b ,c 均为正整数),在n 的所有表示结果中,如果|2b ﹣(a +c )|最小,我们就称a ×b ×c 是n 的“阶梯三分法”,并规定:F (n )=bc a +,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F (6)=231+=2. (1)如果一个正整数p 是另一个正整数q 的立方,那么称正整数p 是立方数,求证:对于任意一个立方数m ,总有F (m )=2;(2)t 是一个两位正整数,t =10x +y (1≤x ≤9,0≤y ≤9,且x ≥y ,x +y ≤10,x 和y 均为整数),t 的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t 为“满意数”,求所有“满意数”中F (t )的最小值.解:(1)∵m 为立方数,∴设m =q ×q ×q ,∴|2q ﹣(q +q )|=0,∴q ×q ×q 是m 的阶梯三分法,∴F (m )=q qq +=2;(2)由已知,[23(10x +y )+x +y ]能被13整除,整理得:231x +24y 能被13整除,∵231x +24y =13(18x +2y )﹣(3x +2y ),∴3x +2y 能被13整除,∵1≤x ≤9,0≤y ≤9,∴3≤3x +2y ≤45,∵x ,y 均为整数,∴3x +2y 的值可能为13、26或39,①当3x +2y =13时,∵x ≥y ,x +y ≤10,∴x =3,y =2,t =32,∴32的阶梯三分法为2×4×4,∴F (32)=23242=+;②同理,当3x +2y =26时,可得x =8,y =1或x =6,y =4,∴t =81或64,∴F (81)=4,F (64)=2; ③同理,当3x +2y =39时,可得x =9,y =6(不合题意舍去), ∴综合①②③,F (t )最小值为23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新定义阅读理解题1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”.如:65362,362-65=297=11×27,称65362是“网红数”.材料二:对任意的自然数p 均可分解为p =100x +10y +z (x ≥0,0≤y ≤9,0≤z ≤9且想,x ,y ,z 均为整数),如:5278=52×100+10×7+8,规定:G (p )= zx x z x x -++-+112)( . (1)求证:任意两个“网红数”之和一定能被11整除;(2)已知:s =300+10b +a ,t =1000b +100a +1142(1≤a ≤7,0≤b ≤5,且a 、b 均为整数),当s +t 为“网红数”时,求G (t )的最大值.(1)证明:设两个“网红数”为mn ,ab (n ,b 分别为mn ,ab 末三位表示的数,m ,a 分别为mn ,ab 末三位之前的数字表示的数),则n -m =11k 1,b -a =11k 2, ∴mn +ab =1001m +1001a +11(k 1+k 2)=11(91m +91a +k 1+k 2).又∵k 1,k 2,m ,n 均为整数,∴91m +91a +k 1+k 2为整数,∴任意两个“网红数”之和一定能被11整除.(2)解:s =3×100+10b +a ,t =1000(b +1)+100(a +1)+4×10+2,S +t =1000(b +1)+100(a +4)+10(b +4)+a +2,①当1≤a ≤5时,s +t =))()()((2a 4b 4a 1b ++++, 则))()((2a 4b 4a +++-(b +1)能被11整除,∴101a +9b +441=11×9a +2a +11b -2b +40×11+1能被11整除,∴2a -2b +1能被11整除.∵1≤a ≤5,0≤b ≤5,∴-7≤2a -2b +1≤11,∴2a -2b +1=0或11,∴a =5,b =0,∴t =1642,G (1642)=17141, ②当6≤a ≤7时,s +t =))()()((2a 4b 6a 2b ++-+, 则))()((2a 4b 6a ++--(b +2)能被11整除,∴101a +9b -560=11×9a +2a +11b -2b -51×11+1能被11整除,∴2a -2b +1能被11整除.∵6≤a ≤7,0≤b ≤5,∴3≤2a -2b +1≤15,∴2a -2b +1=11,∴⎩⎨⎧==1b 6a ,⎩⎨⎧==2b 7a ,∴t =2742或3842,G (2742)=28251,G (3842)=39361, 综上,G (t )的最大值为39361. 2.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P 所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1), K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3, ∴⎩⎨⎧==2m 5m 21, ∴⎩⎨⎧==39k 228k 21.3.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解:(1)设A 的十位数字为a ,个位数字为b ,则A =10a +b ,它的“诚勤数”为100a +20+b ,它的“立达数”为10a +b +2,∴100a +20+b -(10a +b +2)=90a +18=6(15a +3),∵a 为整数,∴15a +3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B =10m +n ,1≤m ≤9,0≤n ≤9(B 加上2后各数字之和变小,说明个位发生了进位), ∴B +2=10m +n +2,则B 的“立达数”为10(m +1)+(n +2-10),∴m +1+n +2﹣10=21(m +n ), 整理,得m +n =14,∵1≤m ≤9,0≤n ≤9,∴⎩⎨⎧==6n 8m 、⎩⎨⎧==8n 6m 、⎩⎨⎧==5n 9m 、⎩⎨⎧==9n 5m 、⎩⎨⎧==7n 7m , 经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.4.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为F (k ).如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(0≤a ≤9,0≤b ≤9,0≤c ≤9,a 、b 、c 是整数),规定:(,)a c G m n b -=.当()()24F m F n +=时,求(,)G m n 的值.解:(1)∵30+2×4=38,38÷19=2,∴F (304)=2.∵205+2×2=209,209÷19=11, ∴F (2025)=11.∴F (304)+F (2052)=13;(2)∵m =3030+101a =3000+100a +30+a ,∴F (m )=19a 23a 10300+++=19a 12303+=15+19a 1218+. ∵m 是“魅力数”, ∴19a 1218+是整数. ∵0≤a ≤9,且a 是偶数,∴a =0,2,4,6,8.当a =0时,19a1218+=1918不符合题意. 当a =2时,19a 1218+=1942不符合题意. 当a =4时,19a 1218+=1966不符合题意. 当a =6时,19a 1218+=1990不符合题意. 当a =8时,19a 1218+=19114=6符合题意. ∴a =8,此时m =3838,F (m )=F (3838)=6+15=21.又∵F (m )+F (n )=24,∴F (n )=3.∵n =400+10b +c ,∴F (n )=19c 2b 40++=3, ∴b +2c =17,∵n 是“魅力数”,∴c 是偶数,又∵0≤c ≤9,∴c =0,2,4,6,8.当c =0时,b =17不符合题意.当c =2时,b =13不符合题意.当c =4时,b =9符合题意.此时,G (m ,n )=b c a -=948-=94. 当c =6时,b =5符合题意.此时,G (m ,n )=b c a -=568-=52. 当c =8时,b =1符合题意.此时,G (m ,n )=b c a -=188-=0. ∵ 94>52>0, ∴G (m ,n )的最大值是94. 5.已知一个正整数,把其个位数字去掉,再将余下的数加上个位数字的4倍,如果和是13的倍数,则称原数为“超越数”.如果数字和太大不能直接观察出来,就重复上述过程.如:1131:113+4×1=117,117÷13=9,所以1131是“超越数”;又如:3292:329+4×2=337,33+4×7=61,因为61不能被13整除,所以3292不是“超越数”.(1)请判断42356是否为“超越数” (填“是”或“否”),若ab +4c =13k (k 为整数),化简abc 除以13的商(用含字母k 的代数式表示).(2)一个四位正整数N =abcd ,规定F (N )=|a +d 2﹣bc |,例如:F (4953)=|4+32﹣5×9|=32,若该四位正整数既能被13整除,个位数字是5,且a =c ,其中1≤a ≤4.求出所有满足条件的四位正整数N 中F (N )的最小值.解:(1)否,4235+4×6=4259,425+4×9=461,46+4×1=50,因为50不能被13整除,所以42356不是超越数. ∵ab +4c =13k ,∴10a +b +4c =13k ,∴10a +b =13k ﹣4c ,∵abc =100a +10b +c =10(10a +b )+c =130k ﹣40c +c =130k ﹣39c =13(10k ﹣3c ), ∴13abc =10k ﹣3c ; (2)由题意得d =5,a =c ,∴N =1000a +100b +10c +5,∵N 能被13整除,∴设100a +10b +c +4×5=13k ,∴101a +10b +20=13k ,且a 为正整数,b ,k 为非负整数,1≤a ≤4,∴a =2,b =9,k =24 或a =3,b =8,k =31,或a =4,b =7,k =38,∴F (N )=|2+25﹣18|=9,或F (N )=|3+25﹣24|=4,或F (N )=|4+25﹣28|=1,∴F (N )最小值为1.6.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n .把'n 放在n 的后面组成第一个四位数,把n 放在'n 的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为()F n ,例如:23n =时,32n '=,23323223(23)8111F -==-. (1)计算(42)_____;F = 若m 为“启航数”,()F m 是一个完全平方数,求()F m 的值;(2)s t 、为“启航数”,其中10,10s a b t x y =+=+(1≤b ≤a ≤9,1≤x 、y ≤5,且y x b a ,,,为整数) 规定:(,)s t K s t t-=,若()F s 能被7整除,且()()81162F s F t y +-=,求(,)K s t 的最大值.解:(1)F (42)=162,设m =pq (1≤p ≤q ≤9,且p 、q 为整数), 则()=81()11pqqp qppq F m p q -=-, ∵()F m 完全平方数,∴p q -为完全平方数,∵1≤p ≤q ≤9,且p 、q 为整数,∴0<p -q ≤8,∴14p q -=或,∴F (m )=81或324;(2)由题意知:s =ab ,t =xy (1≤b ≤a ≤9,1≤x 、y ≤5,且a b x y 、、、为整数), ∴()81()F s a b =-,()81()F t x y =-,∵()F s 能被7整除,∴81()7a b -为整数, 又∵1≤b ≤a ≤9,∴0<a -b ≤8,∴7a b -=,∴9,28,1a b a b ====或,∴s =92或81.又∵()()81162F s F t y +-=,∴81(a -b )+81(x -y )-81y =162,∴2y =x +5,∵1≤x ,y ≤5且x y ≠,∴1,33,4x y x y ====或,∴t =13 或34, ∴79(92,13)13K =,K (92,34)=3458,68(81,13)13K =,47(81,34)34K = K max =1379. 7.若一个三位数,其个位数加上十位数等于百位数,可表示为t =100(x +y )+10y +x (x +y ≤9),则称实数t 为“加成数”,将t 的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h .规定q =t ﹣h ,f (m )=9q ,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h =213,∴q =321﹣213=108,f (m )=9108=12. (1)当f (m )最小时,求此时对应的“加成数”的值;(2)若f (m )是24的倍数,则称f (m )是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.解:(1)∵f (m )=9q , ∴当f (m )最小时,q 最小,∵t =100(x +y )+10y +x=101x+110y ,h =100y +10x +x +y =101y +11x ,∴q =t ﹣h =101x+110y ﹣(101y +11x )=9y +90x ,且1≤y ≤9,0≤x ≤9,x 、y 为正整数, 当x =0,y =1时,q =9,此时对应的“加成数”是110;(2)∵f (m )是24的倍数,设f (m )=24n (n 为正整数),则24n =9q ,q =216n , 由(1)知:q =9y +90x =9(y +10x ),∴216n =9(y +10x ),24n =y +10x ,(x +y <10)①当n =1时,即y +10x =24,解得:x =2,y =4,则这样的“节气数”是24;②当n =2时,即y +10x =48,解得:x =4,y =8,x +y =12>10,不符合题意; ③当n =3时,即y +10x =72,解得:x =7,y =2,则这样的“节气数”是72;④当n =4时,即y +10x =96,解得:x =9,y =6,x +y =15>10,不符合题意; ⑤当n =5时,即y +10x =120,没有符合条件的整数解,综上,这样的“节气数”有2个,分别为24,72.8.在任意n (n >1且为整数)位正整数K 的首位后添加6得到的新数叫做K 的“顺数”,在K 的末位前添加6得到的新数叫做K 的“逆数”.若K 的“顺数”与“逆数”之差能被17整除,称K 是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N ,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N 的值.(2)证明:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.(1)解:是;【解法提示】∵361568﹣315668=45900,且45900÷17=2700,∴根据最佳拍档数的定义可知,31568是“最佳拍档数”;故答案为:是设“最佳拍档数”N 的十位数字为x ,百位数字为y ,则个位数字为8﹣x ,y ≥x , N =5000+100y +10x +8﹣x =100y +9x +5008,∵N 是四位“最佳拍档数”,∴50000+6000+100y +10x +8﹣x ﹣[50000+1000y +100x +60+8﹣x ],=6000+100y +9x +8﹣1000y ﹣100x ﹣68+x ,=5940﹣90x ﹣900y ,=90(66﹣x ﹣10y ),∴66﹣x ﹣10y 能被17整除,①x =2,y =3时,66﹣x ﹣10y =34,能被17整除,此时N 为5326;②x =3,y =8时,66﹣x ﹣10y =﹣17,能被17整除,此时N 为5835;③x =5,y =1时,66﹣x ﹣10y =51,能被17整除,但x >y ,不符合题意;④x =6,y =6时,66﹣x ﹣10y =0,能被17整除,此时N 为5662;⑤x =8,y =3时,66﹣x ﹣10y =28,不能被17整除,但x >y ,不符合题意;⑥当x =9,y =4时,66﹣x ﹣10y =17,能被17整除,但x >y ,不符合题意; 综上,所有符合条件的N 的值为5326,5835,5662;(2)证明:设三位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,它的“顺数”:1000z +600+10y +x ,它的“逆数”:1000z +100y +60+x ,∴(1000z +600+10y +x )﹣(1000z +100y +60+x )=540﹣90y =90(6﹣y ),∴任意三位正整数K 的“顺数”与“逆数”之差一定能被30整除,设四位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,千位数字为a ,∴(10000a +6000+100z +10y +x )﹣(10000a +1000z +100y +60+x )=5940﹣900z ﹣90y =90(66﹣10z ﹣y ),∴任意四位正整数K 的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.9.若实数a 可以表示成两个连续自然数的倒数差,即a =n1-1n +1,那么我们称a 为第n 个“1阶倒差数”,例如21=1-21,∴21是第1个“1阶倒差数”,61=21-31,∴16是第2个“1阶倒差数”.同理,若b =n 1-2n 1+,那么,我们称b 为第n 个“2阶倒差数”. (1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”; (2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且d 1-c1=22,求c ,d 的值. 解:(1)132不是“1阶倒差数”,235; 【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴321不是“1阶倒差数”. 第5个“2阶倒差数”为51-71=352. (2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =1x 21--1x 21+=))(()(1x 21x 21x 21x 2-+--+=1x 422-. ∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =1y 422-,d =1z 422-, ∵d 1-c1=22, ∴4z 2-12-4y 2-12=22, 即z 2-y 2=11,∴(z +y )(z -y )=11>0,∴z >y .∵11=1×11,∴⎩⎨⎧=-=+1y z 11y z ,解得⎩⎨⎧==6z 5y ,∴c =15422-⨯=299,d =16422-⨯=2143. 10.任意一个正整数n ,都可以表示为:n =a ×b ×c (a ≤b ≤c ,a ,b ,c 均为正整数),在n 的所有表示结果中,如果|2b ﹣(a +c )|最小,我们就称a ×b ×c 是n 的“阶梯三分法”,并规定:F (n )=b c a +,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F (6)=231+=2. (1)如果一个正整数p 是另一个正整数q 的立方,那么称正整数p 是立方数,求证:对于任意一个立方数m ,总有F (m )=2;(2)t 是一个两位正整数,t =10x +y (1≤x ≤9,0≤y ≤9,且x ≥y ,x +y ≤10,x 和y 均为整数),t 的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t 为“满意数”,求所有“满意数”中F (t )的最小值.解:(1)∵m 为立方数,∴设m =q ×q ×q ,∴|2q ﹣(q +q )|=0,∴q ×q ×q 是m 的阶梯三分法,∴F (m )=qq q +=2; (2)由已知,[23(10x +y )+x +y ]能被13整除,整理得:231x +24y 能被13整除,∵231x +24y =13(18x +2y )﹣(3x +2y ),∴3x +2y 能被13整除,∵1≤x ≤9,0≤y ≤9,∴3≤3x +2y ≤45,∵x ,y 均为整数,∴3x +2y 的值可能为13、26或39,①当3x +2y =13时,∵x ≥y ,x +y ≤10,∴x =3,y =2,t =32,∴32的阶梯三分法为2×4×4,∴F (32)=23242=+; ②同理,当3x +2y =26时,可得x =8,y =1或x =6,y =4,∴t =81或64,∴F (81)=4,F (64)=2; ③同理,当3x +2y =39时,可得x =9,y =6(不合题意舍去), ∴综合①②③,F (t )最小值为23.。