大学物理(第四版)课后习题与答案量子物理

合集下载

大学物理量子力学习题附标准标准答案

大学物理量子力学习题附标准标准答案

一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。

大学物理(第四版)课后习题及答案 波动

大学物理(第四版)课后习题及答案 波动

第十四章动摇之阳早格格创做14-1 一横波再沿绳子传播时得动摇圆程为[]x m t s m y )()5.2(cos )20.0(11---=ππ.(1)供波得振幅、波速、频次及波少;(2)供绳上量面振荡时得最大速度;(3)分别绘出t=1s 战t=2s 时得波形,并指出波峰战波谷.绘出x=处量面得振荡直线并计划其与波形图得分歧.14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分解(1)已知动摇圆程(又称波函数)供动摇的特性量(波速u 、频次ν、振幅A 及彼少 等),常常采与比较法.将已知的动摇圆程按动摇圆程的普遍形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书籍写,而后通过比较决定各特性量(式中前“-”、“+”的采用分别对付应波沿x 轴正背战背背传播).比较法思路浑晰、供解烦琐,是一种常常使用的解题要领.(2)计划动摇问题,要明白振荡物理量与动摇物理量之间的内正在通联与辨别.比圆区别量面的振荡速度与波速的分歧,振荡速度是量面的疏通速度,即dt dy v =;而波速是波线上量面疏通状态的传播速度(也称相位的传播速度、波形的传播速度或者能量的传播速度),其大小由介量的本量决断.介量稳定,彼速脆持恒定.(3)将分歧时刻的t 值代人已知动摇圆程,即不妨得到分歧时刻的波形圆程)(x y y =,进而做出波形图.而将决定的x 值代进动摇圆程,即不妨得到该位子处量面的疏通圆程)(t y y =,进而做出振荡图.解(1)将已知动摇圆程表示为 与普遍表白式()[]0cos ϕω+-=u x t A y 比较,可得 则 m v u Hz v 0.2,25.12====λπω(2)绳上量面的振荡速度则1max 57.1-⋅=s m v(3) t=1s 战 t =2s 时的波形圆程分别为波形图如图14-1(a )所示.x =处量面的疏通圆程为振荡图线如图14-1(b )所示.波形图与振荡图虽正在图形上相似,但是却有着真量的辨别前者表示某决定时刻波线上所有量面的位移情况,而后者则表示某决定位子的时间变更的情况.14-2 波源做简谐疏通,其疏通圆程为t s m y )240cos()100.4(13--⨯=π,它所产死得波形以30m/s 的速度沿背去线传播.(1)供波的周期及波少;(2)写出波的圆程.14-2 t s m y )240cos()100.4(13--⨯=π分解 已知彼源疏通圆程供动摇物理量及动摇圆程,可先将疏通圆程与其普遍形式()0cos ϕω+=t A y 举止比较,供出振幅天角频次ω及初相0ϕ,而那三个物理量与动摇圆程的普遍形式()[]0cos ϕω+-=u x t A y 中相映的三个物理量是相共的.再利用题中已知的波速U 及公式T /22ππνω==战uT =λ即可供解.解(1)由已知的疏通圆程可知,量面振荡的角频次1240-=s πω.根据分解中所述,波的周期便是振荡的周期,故有 波少为(2)将已知的波源疏通圆程与简谐疏通圆程的普遍形式比较后可得故以波源为本面,沿X 轴正背传播的波的动摇圆程为 14-3 以知以动摇圆程为])2()10sin[()05.0(11x m t s m y ---=π.(1)供波少、频次、波速战周期;(2)道明x=0时圆程的意思,并做图表示.14-3])2()10sin[()05.0(11x m t s m y ---=π分解采与比较法.将题给的动摇圆程改写成动摇圆程的余弦函数形式,比较可得角频次.、波速U ,进而供出波少、频次等.当x 决定时动摇圆程即为量面的疏通圆程)(t y y =. 解(1)将题给的动摇圆程改写为与()[]0cos ϕω+-=u x t A y 比较后可得波速 角频次110-=s πω,故有 (2)由分解知x=0时,圆程表示位于坐标本面的量面的疏通圆程(图13—4).14-4 波源做简谐振荡,周期为0.02s ,若该振荡以100m/s 的速度传播,设t=0时,波源处的量面经仄稳位子背正目标疏通,供:(1)距离波源战二处量面的疏通圆程战初相;(2)距离波源战二处量面的相位好.14-4分解(1)根据题意先设法写出动摇圆程,而后代人决定面处的坐标,即得到量面的疏通圆程.并可供得振荡的初相.(2)波的传播也不妨瞅成是相位的传播.由波少A 的物理含意,可知波线上任二面间的相位好为λπϕ/2x ∆=∆.解(1)由题给条件 T =0.02 s ,u =100 m ·s -l ,可得 当t =0时,波源量面经仄稳位子背正目标疏通,果而由转动矢量法可得该量面的初相为)或2/3(2/0ππϕ-=.若以波源为坐标本面,则动摇圆程为距波源为 x 1=15.0m 战 x 2它们的初相分别为πϕπϕ5.55.152010-=-=和(若波源初相与2/30πϕ=,则初相πλπϕϕϕ=-=-=∆/)(21221x x ,.)(2)距波源 16.0 m 战 17.0 m 二面间的相位好×10-2s ,以它经仄稳位子背正目标疏通时为时间起面,若此振荡以u=400m/s 的速度沿直线传播.供:(1)距离波源处量面P 的疏通圆程战初相;(2)距离波源战处二面的相位好.14-5解分解共上题.正在确知角频次1200/2-==s T ππω、波速1400-⋅=s m u 战初相)或2/(2/30ππϕ-=的条件下,动摇圆程 位于 x P =8.0 m 处,量面 P 的疏通圆程为该量面振荡的初相2/50πϕ-=P .而距波源9.0 m 战 10.0 m 二面的相位好为如果波源初相与2/0πϕ-=,则动摇圆程为量面P 振荡的初相也形成2/90πϕ-=P ,但是波线上任二面间的相位好本去不改变. 14-6 有一仄里简谐波正在介量中传播,波速u=100m/s ,波线上左侧距波源O (坐标本面)为处的一面P 的疏通圆程为]2/)2cos[()30.0(1ππ+=-t s m y p .供(1)波背x 轴正目标传播时的动摇圆程;(2)波背x 轴背目标传播时的动摇圆程. 14-6]2/)2cos[()30.0(1ππ+=-t s m y p分解正在已知波线上某面疏通圆程的条件下,修坐动摇圆程常常采与底下二种要领:(1)先写出以波源O 为本面的动摇圆程的普遍形式,而后利用已知面P 的疏通圆程去决定该动摇圆程中各量,进而修坐所供动摇圆程.(2)修坐以面P 为本面的动摇圆程,由它去决定波源面O 的疏通圆程,进而可得出以波源面O 为本面的动摇圆程.解1(1)设以波源为本面O ,沿X 轴正背传播的动摇圆程为将 u =100 m ·s -‘代人,且与x 二75 m 得面 P 的疏通圆程为与题意中面 P 的疏通圆程比较可得 A =0.30m 、12-=s πω、πϕ20=.则所供动摇圆程为(2)当沿X 轴背背传播时,动摇圆程为将 x =75 m 、1100-=ms u 代人后,与题给面 P 的疏通圆程比较得A = 0.30m 、12-=s πω、πϕ-=0,则所供动摇圆程为解2(1)如图14一6(a )所示,与面P 为坐标本面O ’,沿O ’x 轴背左的圆背为正目标.根据分解,当波沿该正目标传播时,由面P 的疏通圆程,可得出以O ’(即面P )为本面的动摇圆程为将 x=-75 m 代进上式,可得面 O 的疏通圆程为由此可写出以面O 为坐标本面的动摇圆程为(2)当波沿河X 轴背目标传播时.如图14-6(b )所示,仍先写出以O ’(即面P )为本面的动摇圆程将 x=-75 m 代人上式,可得面 O 的疏通圆程为则以面O 为本面的动摇圆程为计划对付于仄里简谐波去道,如果已知波线上一面的疏通圆程,供其余一面的疏通圆程,也可用下述要领去处理:波的传播是振荡状态的传播,波线上各面(包罗本面)皆是沉复波源量面的振荡状态,不过初相位分歧而已.正在已知某面初相仄0的前提下,根据二面间的相位好λπϕϕϕ/2'00x ∆=-=∆,即可决定已知面的初相中小14-7 图14-7为仄里简谐波正在t=0时的波形图,设此简谐波的频次为250Hz ,且此时图中量面P 的疏通目标进与.供:(1)该波的动摇圆程;(2)正在距本面O 为处量面的疏通圆程与t=0时该面的振荡速度.14-7'λ、振幅A 战波速λν=u ;2.根据面P 的疏通趋势去推断波的传播目标,进而可决定本面处量面的疏通趋背,并利用转动闭量法决定其初相0ϕ.(2)正在动摇圆程决定后,即可得到波线上距本面O 为X 处的疏通圆程y =y (t ),及该量面的振荡速度v =dy /d t.解(1)从图 15- 8中得知,波的振幅 A = 0.10 m ,波少m 0.20=λ,则波速13100.5-⋅⨯==s m u λν.根据t =0时面P 进与疏通,可知彼沿Ox 轴背背传播,并判决此时位于本面处的量面将沿Oy 轴背目标疏通.利用转动矢量法可得其初相3/0πϕ=.故动摇圆程为(2)距本面 O 为x=7.5 m 处量面的疏通圆程为t=0时该面的振荡速度为 14-8 仄里简谐波以波速u=/s 沿Ox 轴背目标传播,正在t=2s 时的波形图如图14-8(a )所示.供本面的疏通圆程. 14-8分解上题已经指出,从波形图中可知振幅A 、波少λ战频次ν.由于图14-8(a )是t =2s 时刻的波形直线,果此决定 t = 0时本面处量面的初相便成为本题供解的易面.供t =0时的初相有多种要领.底下介绍波形仄移法、波的传播不妨局里天形貌为波形的传播.由于波是沿 Ox 轴背背传播的,所以可将 t =2 s 时的波形沿Ox 轴正背仄移m s s m uT x 0.12)50.0(1=⨯⋅==∆-,即得到t=0时的波形图14-8(b ),再根据此时面O 的状态,用转动闭量法决定其初相位.解由图 15- 9(a )得知彼少m 0.2=λ,振幅 A = 0.5 m.角频次15.0/2-==s u πλπω. 按分解中所述,从图15—9(b )可知t=0时,本面处的量面位于仄稳位子.并由转动矢量图14-8(C )得到2/0πϕ=,则所供疏通圆程为14-9 一仄里简谐波,波少为12m ,沿Ox 轴背目标传播,图14-9(a )所示为x=处量面的振荡直线,供此波的动摇圆程.14-9分解该题可利用振荡直线去获与动摇的特性量,进而修坐动摇圆程.供解的闭键是怎么样根据图14-9(a )写出它所对付应的疏通圆程.较烦琐的要领是转动矢量法(拜睹题13-10).解 由图14-9(b )可知量面振荡的振幅A =0.40 m ,t =0时位于 x =的量面正在A /2处并背Oy 轴正背移动.据此做出相映的转动矢量图14-9(b ),从图中可知30πϕ-='.又由图 14-9(a )可知,t =5 s 时,量面第一次回到仄稳位子,由图14-9(b )可瞅出65πω=t ,果而得角频次16-=s πω. 采与题14-6中的要领,将波速10.12-⋅===s m T u πλωλ代人动摇圆程的普遍形式])(cos[0ϕω++=u x t A y 中,并与上述x =处的疏通圆程做比较,可得20πϕ-=,则动摇圆程为14-10 图14-10中(I )是t=0时的波形图,(II )是t=0.1s 时的波形图,已知T>0.1s ,写出动摇圆程的表白式. 14-10分解 已知动摇圆程的形式为从如图15—11所示的t =0时的波形直线Ⅰ,可知彼的振幅A 战波少λ,利用转动矢量法可决定本面处量面的初相0ϕ.果此,决定波的周期便成为相识题的闭键.从题给条件去瞅,周期T 只可从二个分歧时刻的波形直线之间的通联去得到.为此,不妨从底下二个分歧的角度去分解.(l )由直线(Ⅰ)可知,正在 tzo 时,本面处的量面处正在仄稳位子且背 Oy 轴背背疏通,而直线(Ⅱ)则标明,通过0.1s 后,该量面已疏通到 Oy 轴上的一A 处.果此,可列圆程s T kT 1.04=+,正在普遍情形下,k= 0, 1,2,…那便是道,量面正在 0.1 s 内,不妨经历 k 个周期振荡后再回到A 处,故有)25.0()1.0(+=k s T .(2)从波形的移动去分解.果波沿Ox 轴正目标传播,波形直线(Ⅱ)可视为直线(Ⅰ)背左脚移了T t t u x ∆=∆=∆λ.由图可知,4λλ+=∆k x ,故有t k ∆=+λλλ4,共样也得)25.0)1.0(+=k s T .应当注意,k 的与值由题给条件 T >0.1s 所决断.解 从图中可知波少m 0.2=λ,振幅A =0.10 m.由波形直线(Ⅰ)得知正在t=0时,本面处量面位于仄稳位子且背 Oy 轴背背疏通,利用转动矢量法可得2/0πϕ=.根据上头的分解,周期为由题意知 T >0.1s ,故上式创造的条件为,可得 T =0.4s.那样,动摇圆程可写成14-11 仄里简谐波的动摇圆程为])2()4cos[()08.0(11x m t sm y ---=ππ二处的相位;(2)离波源处及二处的相位.14-11()[]x m t s m y 112)4(cos )08.0(---=ππ 解(1)将t =2.1s 战x=0代人题给动摇圆程,可得波源处的相位将t =2.1s 战x =0.10 m 代人题给动摇圆程,得 0.10 m 处的相位为从动摇圆程可知波少.那样, m 与 m 二面间的相位好14-12 为了脆持波源的振荡稳定,需要消耗4.0W 的功率.若波源收出的是球里波(设介量不吸支波的能量).供距离波源战处的能流稀度.14-12分解波的传播伴伴着能量的传播.由于波源正在单位时间内提供的能量恒定,且介量不吸支能量,敌对付于球里波而止,单位时间内通过任性半径的球里的能量(即仄稳能流)相共,皆等于波源消耗的功率户.而正在共一个球里上各处的能流稀度相共,果此,可供出分歧位子的能流稀度 S P I =.解由分解可知,半径户处的能疏稀度为当 r 1=5.0 m 、r 2=10.0 m 时,分别有×103m ×10-4m ,频次ν×103Hz.若介量的稀度为ρ×102kg/m 3×10-4m 2的总能量.14-1313100.1-⋅⨯=s m u解(1)由能流稀度I 的表白式得2)正在时间隔断s t 60=∆内笔直通过里积 S 的能量为14-14 如图14-14所示,二振荡目标相共的仄里简谐波波源分别位于A 、B 二面.设它们的相位相共,且频次均为ν=30Hz ,波速u=/s ,供正在面P 处二列波的相位好. 14-14 v=30Hz分解正在匀称介量中,二列波相逢时的相位好ϕ∆,普遍由二部分组成,即它们的初出进B A ϕϕ-战由它们的波程好而引起的相位好λπr ∆2.本题果B =ϕϕA ,故它们的相位好只与决于波程好.解正在图14-14的APB ∆中,由余弦定理可得二列波正在面P 处的波程好为BP AP r -=∆,则相位好为14-15 二波正在共一细绳上传播,它们的圆程分别为])4[()cos()06.0(111t s x m m y ---=ππ战])4[()cos()06.0(112t s x m m y --+=ππ.(1)道明那细绳是做驻波式振荡,并供节面战波背的位子;(2)波背处的振幅有多大?正在x=处,振幅多大?14-15分解只需道明那二列波会成后具备驻波圆程 的形式即可.由驻波圆程可决定波背、波节的位子战任性位子处的 振幅.解(l )将已知二动摇圆程分别改写为可睹它们的振幅 A 二0.06 m ,周期 T 二0.5 s (频次.二2 Hi ),波少八二2 m.正在波线上任与一面P ,它距本面为P.则该面的合疏通圆程为k 式与驻波圆程具备相共形式,果此,那便是驻波的疏通圆程由得波节位子的坐标为由得波背位子的坐标为门)驻波振幅,正在波背处A ’二ZA 二0.12 m ;正在x 二 0.12 m 处,振幅为14-16 一弦上的驻波圆程式为t s x m m y )550cos()6.1cos()100.3(112---⨯=ππ×10-3s 时位于x=处量面的振荡速度.14-16分解(1)采与比较法.将本题所给的驻波圆程,与驻波圆程的普遍形式相比较即可供得振幅、波速等.(2)由波节位子的表白式可得相邻波节的距离.(3)量面的振荡速度可按速度定义V一如Nz供得.解(1)将已知驻波圆程 y=(3. 0 X 10-2 m) cos(. 6. ml)-coos(550.s一小与驻波圆程的普遍形式 y= ZAcos (2.x/八).(2.yi)做比较,可得二列波的振幅 A= 1. 5 X 10-‘ m,波少八二 1. 25 m,频次 v二 275 Hi,则波速 u 一如 2343.8 in·SI(2)相邻波节间的距离为(3)正在 t二 3. 0 X 10-3 s时,位于 x= 0. 625 m 处量面的振荡速度为14-17 一仄里简谐波的频次为500Hz,正在气氛中(ρ=/m3)以u=340m×10-6m.试供波正在耳中的仄稳能量稀度战声强.14-17解波正在耳中的仄稳能量稀度声强便是声波的能疏稀度,即那个声强略大于繁闲街讲上的噪声,使人耳已感触不符合.普遍仄常道话的声强约为 1. 0 X 10-6 W·m-2安排*14-18 里积为2的窗户启背街讲,街中噪声正在窗户的声强级为80dB.问有几声功率传进窗内?14-18分解最先要明白声强、声强级、声功率的物理意思,并相识它们之间的相互闭系.声强是声波的能流稀度I,而声强级L是形貌介量中分歧声波强强的物理量.它们之间的闭系为 L一体I/IO),其中 IO二 1. 0 X 10-’2 W·0-‘为确定声强.L的单位是贝我(B),但是常常使用的单位是分贝(dB),且IB=10 dB.声功率是单位时间内声波通过某里积传播的能量,由于窗户上各处的I相共,故有P=IS.解根据分解,由L=ig(I/ IO)可得声强为则传进窗户的声功率为14-19 若正在共一介量中传播的、频次分别为1200Hz战400Hz的二声波有相共的振幅.供:(1)它们的强度之比;(2)二声波的声强级好.14-19解(1)果声强I=puA‘.‘/2,则二声波声强之比(2)果声强级L一回对付几),则二声波声强级好为14-20 一警车以25m/s的速度正在停止的气氛中止驶,假设车上警笛的频次为800Hz.供:(1)停止站正在路边的人听到警车驶近战拜别时的警笛声波频次;(2)如果警车逃赶一辆速度为15m/s的客车,则客车上的人听到的警笛声波的频次是几?(设气氛中的声速u=330m/s)14-20分解由于声源与瞅察者之间的相对付疏通而爆收声多普勒效力,由多普勒频次公式可解得截止.正在处理那类问题时,不但是要分浑瞅察者相对付介量(气氛)是停止仍旧疏通,共时也要分浑声源的疏通状态.解(1)根据多普勒频次公式,当声源(警车)以速度 vs =25 m·s-‘疏通时,停止于路边的瞅察者所交支到的频次为警车驶近瞅察者时,式中Vs前与“-”号,故有警车驶离瞅察者时,式中Vs前与“+”号,故有2)声源(警车)与客车上的瞅察者做共背疏通时,瞅察者支到的频次为14-21 如图14-21所示.一振荡频次为ν=510Hz的振源正在S面以速度v背墙壁交近,瞅察者正在面P处测得拍音频次ν′=3Hz,供振源移动得速度.(声速为330m/s)14-21分解位于面P的瞅察者测得的拍音是振源S直交传递战经墙壁反射后传播的二列波相逢叠加而产死的.由于振源疏通,交支频次.l、12均与振源速度.有闭.根据多普勒效力频次公式战拍频的定义,可解得振源的速度.解根据多普勒效力,位于面P的人直交交支到声源的频次. l战经墙反射后支到的频次分别为由拍额的定义有将数据代进上式并整治,可解得14-22 暂时遍及型晶体管支音机的中波敏捷度(指仄稳电场强度E×10-3×103km近处某电台的广播,该台的收射是各背共性的(以球里形式收射),而且电磁波正在传播时不耗费,问该台的收射功率起码有多大?14-22×1018W/m2,估计其对付应的电场强度战磁场强度的振幅. 14-23。

大学物理(第四版)课后习题及答案 静电场

大学物理(第四版)课后习题及答案 静电场
电场强度E的方向为带电平板外法线方向。
证2:如图所示,取无限长带电细线为微元,各微元在点P激发的电场强 度dE在Oxy平面内且对x轴对称,因此,电场在y轴和z轴方向上的分量之 和,即Ey、Ez均为零,则点P的电场强度应为
积分得 电场强度E的方向为带电平板外法线方向。 上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
(2)由于正、负电荷分别对称分布在y轴两侧,我们设想在y轴上能 找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上 等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电 荷中心。等效正负电荷中心一定在y轴上并对中心O对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y轴方向分割为一组相互平行的元电偶极子,每一元 电偶极子带电
行,对电场强度通量贡献为零。整个高斯面的电场强度通量为 由于,圆柱体电荷均匀分布,电荷体密度,处于高斯面内的总电荷 由高斯定理可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得 题7.16:一个内外半径分别R1为R2和的均匀带电球壳,总电荷为Q1,球 壳外同心罩一个半径为 R3的均匀带电球面,球面带电荷为Q2。求电场 分布。电场强度是否是场点与球心的距离r的连续函数?试分析。
题7.16分析:以球心O为原点,球心至场点的距离r为半径,作同心球面 为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面 上电场强度沿径矢方向,且大小相等。因而,在确定高斯面内的电荷 后, 利用高斯定理 即可求的电场强度的分布 解:取半径为r的同心球面为高斯面,由上述分析 r < R1,该高斯面内无电荷,,故
E=0 在距离圆孔较远时x>>r,则 上述结果表明,在x>>r时。带电平板上小圆孔对电场分布的影响可以忽 略不计。 题7.15:一无限长、半径为R的圆柱体上电荷均匀分布。圆柱体单位长 度的电荷为,用高斯定理求圆柱体内距轴线距离为r处的电场强度。

大学物理(第四版)课后习题及答案_相对论

大学物理(第四版)课后习题及答案_相对论

第十六章相对论题16.1:设'S 系以速率v = 0.60c 相对于S 系沿'xx 轴运动,且在t ='t = 0时,0'==x x 。

(1)若有一事件,在 S 系中发生于t = 2.0×10-7 s ,x = 50 m 处,该事件在 'S 系中发生于何时刻?(2)如有另一事件发生于 S 系中 t = 3.0×10-7 s ,x = 10 m 处,在 S ′系中测得这两个事件的时间间隔为多少?题16.1解:(1)由洛伦兹变换可得S ′系的观察者测得第一事件发生的时刻为s 1025.1/1'7221211-⨯=--=c v x c v t t(2)同理,第二个事件发生的时刻为s 105.3/1'7222222-⨯=--=c v x c v t t所以,在S ′系中两事件的时间间隔为s 1025.2'''721-⨯=-=∆t t t题16.2:设有两个参考系S 和S ′,它们的原点在t = 0和t ′ = 0时重合在一起。

有一事件,在 S ′系中发生在 t ′ = 8.0×10-8 s ,x ′ = 60 m ,y ′ = 0,z ′ = 0处,若S ′系相对于S 系以速率v = 0.6c 沿xx ′轴运动,问该事件在S 系中的时空坐标各为多少?题16.2解:由洛伦兹逆变换得该事件在S 系的时空坐标分别为m 93/1''22=-+=c v vt x x 0'==y y0'==z zs 105.2/1''7222-⨯=-+=c v x c v t t题16.3:一列火车长 0.30 km (火车上观察者测得),以 100 km/h 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端。

问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?题16.3解:设地面为S 系,火车为S ′系,把闪电击中火车前后端视为两个事件(即两组不同的时空坐标)。

大学物理学第四版课后习题答案全解 赵近芳 上册

大学物理学第四版课后习题答案全解 赵近芳 上册
究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。 给出这个匀变速直线运动在 t=3s 时的速度和加速度,并说明该时刻运动是加速的还
是减速的。(x 单位为 m,t 单位为 s) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间
的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为
v dx 4t 8 dt
a
d2x dt 2
4
t=3s 时的速度和加速度分别为 v=20m/s,a=4m/s2。因加速度为正所以是加速的。
1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。
出r=
x2 y2
,然后根据 v
=
dr dt

a

d2r dt 2
而求得结果;又有人先计算速度和加速度的
分量,再合成求得结果,即
v=
dx 2 dy 2 , a = dt dt
d2x dt 2
2
d2 dt
y
2
2
你认为两种方法哪一种
正确?为什么?两者差别何在?
解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有
两边积分得
1 v2 2x 2x3 c 2
由题知, x 0 时, v0 10 ,∴ c 50

v 2 x3 x 25 m s1
1.10 已知一质点作直线运动,其加速度为 a =4+3 t m s2 ,开始运动时,x =5 m,v =0,

大学物理(第四版)课后习题及答案 电流

大学物理(第四版)课后习题及答案 电流

题:已知铜的摩尔质量1mol g 75.63-⋅=M ,密度3cm g 9.8-⋅=ρ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度2m mm A 0.6-⋅=j ,求此时铜线内电子的漂移速率d v ;(2)在室温下电子热运动的平均速率是电子漂移速率d v 的多少倍题分析:一个铜原子的质量A /N M m =,其中A N 为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度m n /ρ=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m nev j =。

从而可解得电子的漂移速率d v 。

将电子气视为理想气体,根据气体动理论,电子热运动的平均速率 e8m kTv π=其中k 为玻耳兹曼常量,e m 为电子质量。

从而可解得电子的平均速率与漂移速率的关系。

解:(1)铜导线单位体积的原子数为M N n /A ρ=电流密度为m j 时铜线内电子的漂移速率14A m m d s m 1046.4//--⋅⨯===e N M j ne j v ρ(2)室温下(K 300=T )电子热运动的平均速率与电子漂移速率之比为8edd 1042.281⨯≈=m kTv v v π 室温下电子热运动的平均速率远大于电子在稳恒电场中的定向漂移速率。

电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加。

考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子。

实验证明电信号是通过电磁波以光速传递的。

题:有两个同轴导体圆柱面,它们的长度均为m 20,内圆柱面的半径为mm 0.3,外圆柱面的半径为mm 0.9。

若两圆柱面之间有μA 10电流沿径向流过,求通过半径为mm 0.6的圆柱面上的电流密度。

题分析:如图所示,是同轴柱面的横截面。

电流密度j 对中心轴对称分布。

根据稳恒电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rL I j π2/=解:由分析可知,在半径mm 0.6=r 的圆柱面上的电流密度25m A 1033.12/--⋅⨯==rL I j π题:有两个半径分别为1R 和2R 的同心球壳。

大学物理(第四版)课后习题及答案_量子物理

大学物理(第四版)课后习题及答案_量子物理

第十七 章量子物理题17.1:天狼星的温度大约是11000℃。

试由维思位移定律计算其辐射峰值的波长。

题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。

若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。

设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。

太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 5800122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。

哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率范围可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。

题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。

题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==, 可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。

大学物理第四版(马文蔚)量子物理习题

大学物理第四版(马文蔚)量子物理习题
(r , t) iℏ = [− ∇ + EP (r , t)] (r , t) ψ ∂t 2m ℏ2 2 定态薛定谔方程 − ∇ ϕ(r ) + EP (r )ϕ(r ) = Eϕ(r ) 2m 一维无限深方势阱 0 0≤ x≤a EP (x) = ∞ x < 0, x > a
壳层表: 壳层表:
l
壳层
K L M N O P
n 1 2 3 4 5 6
0 s 1s 2s 3s 4s 5s 6s
1 p 2p 3p 4p 5p 6p
2 d
3 f
4 g
5 h
3d 4d 5d 6d
4f 5f 6f
5g 6g
6h
各壳层的电子又是如何排列呢? 各壳层的电子又是如何排列呢?分析表明 基态原子中的核外电子排列满足如下两个 原理: 原理:
(2)地球实际运动半径为 Rn,则相应的量子数为
ME n= RnGMs = 2.53×1074 ℏ
(3) 地球实际轨道和它的下一个较大可能轨道半径差值为
ℏ2 ℏ2 ∆R = (n +1)2 − n2 ≈ 2n =1.19×10−63 (m) GM M GME Ms E s
4.戴维孙 革末实验装置如图,自热阴极 发出的电子束经 戴维孙-革末实验装置如图 自热阴极K发出的电子束经 发出的电子束经U=500 戴维孙 革末实验装置如图, 伏的电势差加速后投射到某晶体上,在掠射角φ 伏的电势差加速后投射到某晶体上,在掠射角φ=200时,测得电 流强度出现第二次极大值, 流强度出现第二次极大值,试计算电子射线的德布罗意波长及 晶体的晶格常数。 晶体的晶格常数。
大学物理习题课
量子物理
量子力学的历史
早期量子论

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课后习题及答案质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --⋅-⋅+= 。

求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。

题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=∆x x x(2)由0)s m 6()s m 12(d d 232=⋅-⋅=--t t tx得知质点的换向时刻为s2=P t (t = 0不合题意) 则:m 0.8021=-=∆x x xm 40x 242-=-=∆x x所以,质点在4.0 s 时间间隔内的路程为m 4821=∆+∆=x x s题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。

设0=t 时,0=x 。

试根据已知的图t v -,画出t a -图以及t x -图。

题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2A B A B AB s m 20-⋅=--=t t vv a (匀加速直线运动)0BC =a (匀速直线)2CD CD CD s m 10-⋅-=--=t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图在匀变速直线运动中,有20021at t v x x ++= t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m5.7-10-5.7-4048.75558.760间内,质点是作v = 201s m -⋅的匀速直线运动,其x -t 图是斜率k = 20的一段直线。

题1.3:如图所示,湖中有一小船。

岸上有人用绳跨过定滑轮拉船靠岸。

设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为()i i i r v tr r h h r tt t x t d d 1d d d d d d 2/12222-⎪⎪⎭⎫ ⎝⎛-=-===' 而收绳的速率trv d d -=,且因vt l r -=0,故 ()i v 2/12021-⎪⎪⎭⎫ ⎝⎛---='vt l hv题1.3解2:取图所示的极坐标(r ,θ),则θr r r d d d d d d d d d d e e e e r v tr t r t r t r t θ+=+==' r d d e t r 是船的径向速度,θd d e tr θ是船的横向速度,而trd d 是收绳的速率。

大学物理(第四版)课后习题及答案_电介质

大学物理(第四版)课后习题及答案_电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。

阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。

假设电子从阴极射出时的速度为零。

求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。

题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。

从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。

由此,可求得电子到达阳极时的动能和速率。

(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。

解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。

阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。

题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。

求此系统的电势和电场的分布。

题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。

大学物理第四版(马文蔚)量子物理习题

大学物理第四版(马文蔚)量子物理习题

05 习题答案与解析
波函数与概率幅答案与解析
总结词
理解波函数与概率幅的概念是解决量子物理问题的关键。
详细描述
波函数是描述粒子状态的函数,它包含了粒子在空间中位置和动量的信息。概率幅则用于描述粒子在某个位置出 现的概率大小,其绝对值的平方等于粒子在该位置出现的概率。在解题过程中,需要正确理解和运用波函数与概 率幅的性质,如波函数的叠加原理、概率幅的归一化条件等。
波函数
描述微观粒子状态的函数,其模平方表示粒子在某一时刻出现在 某一位置的概率幅。
概率幅
波函数的模平方,表示粒子出现在某一位置的概率大小。
波函数的性质
单值、有限、平方可积,是粒子状态的完整描述。
薛定谔方程
01
02
03
薛定谔方程
描述微观粒子运动状态的 偏微分方程,是量子力学 的基本方程之一。
薛定谔方程的形式
详细描述
这类题目通常涉及薛定谔方程的推导、理解和应用。需要 掌握薛定谔方程的物理意义,理解其在描述粒子运动时的 适用范围和局限性。
解析过程
首先根据题意写出薛定谔方程,然后根据初始条件和边界条 件求解方程,得出波函数Ψ(x,t)的表达式。
算符与力学量习题
理解算符和力学量的概念及其运算规则是解决这类题 目的关键。
量子物理的发展对于现代科技,如半导体技术、激光技术、量子计算等领域有着深 远的影响。
习题的重要性
01
通过习题巩固和加深对量子物理理论知识的理解。
02
培养解决实际问题的能力,提高分析问题和解决问题的能力 。
03
检验学习效果,发现学习中存在的问题和不足,促进学习的 进步。
02 量子物理基础知识
波函数与概率幅

大学物理(第四版)课后习题与答案量子物理

大学物理(第四版)课后习题与答案量子物理

第十七 章量子物理题17.1:天狼星的温度大约是11000℃。

试由维思位移定律计算其辐射峰值的波长。

题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。

若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。

设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。

太阳在单位时间对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 58004122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。

哪一种金属可以用作可见光围的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率围可知,钡的截止频率02ν正好处于该围,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光围的光电管材料。

题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。

题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==,可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。

大学物理习题答案 第17章 量子物理学基础

大学物理习题答案 第17章 量子物理学基础

第17章 量子物理学基础 参考答案一、选择题1(D),2(D),3(C),4(B),5(A),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). λ/hc ,λ/h ,)/(λc h . (2). 2.5,4.0×1014 . (3). A /h ,))(/(01νν-e h . (4). π,0 . (5).3/1 (6). 1.66×10-33 kg ·m ·s -1 ,0.4 m 或 63.7 mm . (7). 1, 2. (8).粒子在t 时刻在(x ,y ,z )处出现的概率密度. 单值、有限、连续.1d d d 2=⎰⎰⎰z y x ψ(9). 2, 2×(2l +1), 2n 2. (10). 泡利不相容, 能量最小. 三 计算题1. 用辐射高温计测得炼钢炉口的辐射出射度为22.8 W ·cm -2,试求炉内温度.(斯特藩常量σ = 5.67×10-8 W/(m 2·K 4) )解:炼钢炉口可视作绝对黑体,其辐射出射度为M B (T ) = 22.8 W ·cm -2=22.8×104 W ·m -2由斯特藩──玻尔兹曼定律 M B (T ) = σT 4 ∴ T = 1.42×103 K2.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2. (1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))解: (1) 太阳在单位时间内辐射的总能量 E = 1.37×103×4π(R SE )2 = 3.87×1026 W(2) 太阳的辐射出射度 =π=204Sr EE 0.674×108 W/m 2 由斯特藩-玻尔兹曼定律 40T E σ=可得 5872/40==σE T K3.图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19C)解:(1) 由 A h U e a -=ν 得 e A e h U a //-=ν|14Hz)e h U a /d /d =ν (恒量) 由此可知,对不同金属,曲线的斜率相同. (2) h = e tg θ 1410)0.50.10(00.2⨯--=e= 6.4×10-34J ·s4. 波长为λ的单色光照射某金属M 表面发生光电效应,发射的光电子(电荷绝对值为e ,质量为m )经狭缝S 后垂直进入磁感应强度为B的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为R .求(1) 金属材料的逸出功A ; (2) 遏止电势差U a .解:(1) 由 R m eB /2v v = 得 m R e B /)(=v ,代入 A m h +=221v ν 可得 222221mB e mR hc A ⋅-=λ m B e R hc 2222-=λ (2) 221v m U e a =, m eB R e m U a 22222==v .5.光电管的阴极用逸出功为A = 2.2 eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为| U a | = 5.0 V ,试求:(1) 光电管阴极金属的光电效应红限波长; (2) 入射光波长.(普朗克常量h = 6.63×10-34 J ·s , 基本电荷e = 1.6×10-19 C )解:(1) 由 00/λνhc h A == ==Ahc0λ 5.65×10-7 m = 565 nm(2)a U e m =221v , A U e hc h a +==λν 得 =+=AU e hca λ 1.73×10-7 m = 173 nm6.α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运动. (1) 试计算其德布罗意波长.(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速率运动.则其波长为多少?(α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)解:(1) 德布罗意公式:)/(v m h =λ由题可知α 粒子受磁场力作用作圆周运动R m B q /2v v α=,qRB m =v α又 e q 2= 则 e R B m 2=v α故 nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλB× × × × ×(2) 由上一问可得 αm eRB /2=v 对于质量为m 的小球 αααλλ⋅=⋅==mm m m eRB hm h 2v =6.64×10-34 m7. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式 ∆E ∆t ≥ 得∆E ≥ /∆t = 0.659×10-7 eV根据光子能量与波长的关系 λν/hc h E ==得光子的波长 ==E hc /λ 3.67×10-7 m波长的最小不确定量为 ∆λ = hc ∆E /E 2 = 7.13×10-15 m8.已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为 ax n a x n π=sin 2)(ψ , n = 1, 2, 3, … 试计算n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率.解:找到粒子的概率为⎰4/34/1*1d )()(a a x x x ψψ⎰π=4/34/2d sin 2a a x a x a π+=+ππ=121)12(1=0.818四 研讨题1. 人体也向外发出热辐射,为什么在黑暗中还是看不见人?参考解答:人体辐射频率太低,远离可见光波段。

大学物理(第四版)课后习题及答案 波动之欧阳语创编

大学物理(第四版)课后习题及答案 波动之欧阳语创编

第十四章波动时间:2021.03.01 创作:欧阳语14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。

(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。

画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。

14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。

将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。

比较法思路清晰、求解简便,是一种常用的解题方法。

(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。

例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。

介质不变,彼速保持恒定。

(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。

而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。

解(1)将已知波动方程表示为 与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得 则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为波形图如图14-1(a )所示。

x =1.0m 处质点的运动方程为振动图线如图14-1(b )所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七 章量子物理题17.1:天狼星的温度大约是11000℃。

试由维思位移定律计算其辐射峰值的波长。

题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。

若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。

设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。

太阳在单位时间对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 58004122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。

哪一种金属可以用作可见光围的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率围可知,钡的截止频率02ν正好处于该围,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光围的光电管材料。

题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。

题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==,可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。

题17.6:在康普顿效应中,入射光子的波长为 3.0 ⨯ 10-3nm ,反冲电子的速度为光速的60%,求散射光子的波长及散射角。

题17.6解:根据能量守恒,相对论质速关系以及散射公式有2200mc ch c m c h +=+λλ(1) 2/1220)/1(--=c v m m(2))cos 1(c 0θλλλ-=-(3)由式(1)和式(2)可得散射光子的波长nm 1035.4443000-⨯=-=c m h h λλλ将入值代入式(3),得散射角⎥⎦⎤⎢⎣⎡--=c 01arccos λλλθ 题17.7:一具有l.0 ⨯ 104eV 能量的光子,与一静止的自由电子相碰撞,碰撞后,光子的散射角为60︒。

试问:(1)光子的波长、频率和能量各改变多少?(2)碰撞后,电子的动能、动量和运动方向又如何?题17.7解:(1)入射光子的频率和波长分别为nm 124.0Hz 1041.200180==⨯==νλνch E ,散射前后光子波长、频率和能量的改变量分别为nm 1022.1)cos 1(3c -⨯=-=∆θλλ式中负号表示散射光子的频率要减小,与此同时,光子也将失去部分能量。

(2)由能量守恒可知,反冲电子获得的动能,就是散射光子失去的能量eV 3.950ke =∆=-=E h h E νν由相对论中粒子的能量动量关系式以及动量守恒定律在 Oy 轴上的分量式(图17-7)可得 22e 0e 22e c p E E +=(1) ke e 0e E E E +=(2)0sin sin e =-ϕθνp ch (3)由式(1)和式(2)可得电子动量124kee 0ke 2e s m kg 1027.52--⋅⋅⨯=+=cE E E p将其代入(3)式可得电子运动方向'3259sin )(arcsin sin arcsin 0e 0e =⎥⎦⎤⎢⎣⎡∆+=⎥⎦⎤⎢⎣⎡=θννθνϕc p h c p h题17.8:波长为0.10 nm 的辐射,射在碳上,从而产生康普顿效应。

从实验中测量到散射辐射的方向与入射辐射的方向相垂直。

求:(1)散射辐射的波长;(2)反冲电子的动能和运动方向。

题17.8解:(1)由散射公式得nm 1024.0)cos 1(C 0=-+=∆+=θλλλλλ(2)反冲电子的动能等于光子失去的能量,因此有J 1066.4111700k -⨯=⎪⎪⎭⎫ ⎝⎛-=-=λλννhc h h E根据动量守恒的矢量关系,可确定反冲电子的方向 '1844arctg /arctg 000=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=λλλλϕh h题17.9:试求波长为下列数值的光子的能量、动量及质量:(1)波长为1500 nm 的红外线;(2)波长为 500 nm 的可见光;(3)波长为 20 nm 的紫外线;(4)波长为 0. 15 nm 的X 射线;(5)波长为 1.0 ⨯ 10-3nm 的γ 射线。

题17.9解:由能量νh E =,动量λhp =以及质能关系式2/c E m =,可得(1)当nm 15001=λ时,J 1033.119111-⨯===λνhch E12811s m kg 1042.4--⋅⋅⨯==λhpkg 1047.1361211-⨯===λc hc E m (2)当nm 5002=λ时,因1231λλ= 故有 J 1099.331912-⨯==E E 12722s m kg 1033.13--⋅⋅⨯==P pkg 1041.433612-⨯==m m3)当nm 203=λ时,因13751λλ= 故有 J 1097.9751813-⨯==E E 12613s m kg 1031.375--⋅⋅⨯==P pkg 1010.1753413-⨯==m m4)当nm 15.04=λ时,因14410λλ-=,故有J 1033.11015144-⨯==E E 124144s m kg 1022.410--⋅⋅⨯==P pkg 1047.11032144-⨯==m m(5)当nm 10135-⨯=λ时,J 1099.113555-⨯===λνhch E12255s m kg 1023.6--⋅⋅⨯==λhpkg 1021.2305255-⨯===λc h cE m题17.10:计算氢原子光谱中莱曼系的最短和最长波长,并指出是否为可见光。

题17.10解:莱曼系的谱线满足⎪⎪⎭⎫ ⎝⎛-=2i 2f 111n n R λ 令 n i = 2,得该谱系中最长的波长nm 5.121max =λ 令∞→i n ,得该谱系中最短的波长nm 2.91min =λ对照可见光波长围(400~760 nm ),可知莱曼系中所有的谱线均不是可见光,它们处在紫外线部分。

题17.11:在玻尔氢原子理论中,当电子由量子数5i =n 的轨道跃迁到n f = 2的轨道上时,对外辐射光的波长为多少?若再将该电子从n f =2的轨道跃迁到游离状态,外界需要提供多少能量?题17.11解:根据氢原子辐射的波长公式,电子从5i =n 跃迁到n f = 2轨道状态时对外辐射光的波长满足⎪⎭⎫ ⎝⎛-=2251211R λ 则 μm 4.43m 1034.47=⨯=-λ而电子从n f = 2跃迁到游离态∞→i n 所需的能量为eV 4.32212-=∞-=-=∆∞EE E E E 负号表示电子吸收能量。

题17.12:如用能量为12.6 eV 的电子轰击氢原子,将产生哪些谱线? 题17.12解: 根据跃迁假设和波数公式有2i12f1f nEnEEEEi-=-=∆(1)⎪⎪⎭⎫⎝⎛-=2f2i111nnRλ将eV6.131-=E,n f= 1和eV6.13=∆E(这是受激氢原子可以吸收的最多能量)代入式(1),可得69.3i=n,取整3i=n(想一想为什么?),即此时氢原子处于n = 3的状态。

由式(2)可得氢原子回到基态过程中的三种可能辐射,所对应的谱线波长分别为102.6nm、657.9nm和121.6nm。

题17.13:试证在基态氢原子中,电子运动时的等效电流为1.05⨯10-3A在氢原子核处,这个电流产生的磁场的磁感强度为多大?题17.13解:基态时,电子绕核运动的等效电流为A1005.142321211-⨯====mrehrevefIππ式中v1为基态时电子绕核运动的速度,112mrhvπ=该圆形电流在核处的磁感强度T5.1221rIBμ=上述过程中电子的速度v << c,故式中m取电子的静止质量。

题17.14:已知α粒子的静质量为6.68×10-27 kg,求速率为5000 km/s的α粒子的德布罗意波长。

题17.14解:由于α粒子运动速率v << c,故有 m = m0,则其德布罗意波长为nm 1099.150-⨯===vm h p h λ题17.15:求动能为1.0 eV 的电子的德布罗高波的波长。

题17.15解:由于电子的静能 MeV 512.0200==c m E ,而电子动能0k E E <<,故有2/1k 0)2(E m p =,则其德布罗意波长为nm 23.1)2(2/1k 0===E m h p h λ 题17.16:求温度为27℃时,对应于方均很速率的氧气分子的德布罗意波的波长。

题17.16解:理想气体分子的方均根速率MRTv 32=。

对应的氧分子的德布罗意波长nm 1058.232A 2-⨯====MRTh N v m hp h λ题17.17:若电子和光子的波长均为0.20 nm ,则它们的动量和动能各为多少?题17.17解:由于光子与电子的波长相同,它们的动量均为124s m kg 1022.3--⋅⋅⨯==λhp光子的动能 )0,0(eV K 22.600k =====E m pc E E 对光子:电子的动能keV 8.37202k ==m p E (此处电子动能用非相对论方法计算)题17.18:用德布罗意波,仿照弦振动的驻波公式来求解一维无限深方势阱中自由粒子的能量与动量表达式。

题17.18解:势阱的自由粒子来回运动,就相当于物质波在区间a 形成了稳定的驻波,由两端固定弦驻波的条件可知,必有2/λn a =,即),3,2,1(2Λ==n na λ由德布罗意关系式λhp =,可得自由粒子的动量表达式),3,2,1(2Λ===n anh hp λ由非相对论的动量与动能表达式mp E 22=,可得自由粒子的能量表达式),3,2,1(8222Λ==n ma h n E从上述结果可知,此时自由粒子的动量和能量都是量子化的。

相关文档
最新文档