数学一年级上册试题∶解决问题解答应用题训练真题带答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学一年级上册试题∶解决问题解答应用题训练真题带答案解析
一、六年级数学上册应用题解答题
1.学校举行庆“六一”男女生大合唱,原计划合唱队中女生人数占合唱队总人数的40%,后来考虑到合唱效果,将其中5名女生换成了5名男生,这时女生与男生人数的比是3∶7。

合唱队共有男女生多少名?
2.下图是由两个正方形和一个圆组成的,已知大正方形的面积是2
36cm,那么阴影部分的面积是多少?(圆周率 取3.14)
3.如下图,图(1)与图(2)外面是两个同样大的正方形,只是里面的涂色部分不一样。

如果图(1)中涂色部分的面积是2
235.5m,求图(2)中涂色部分的面积。

(单位:m)
4.下图中的阴影部分是由两个大小不同的正方形重叠而成的,图中阴影部分的面积是40平方米,若以O点为圆心,分别以两个正方形的边长作半径,画出一个圆环,这个圆环的面积是多少平方米?
5.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图),圆桌的面积比原来小方桌的面积多多少平方米(即求阴影部分的面积是多少)?
6.世界卫生组织推荐的成人标准体重的计算方法是:
男性:(80)0.7-⨯=身高标准体重女性:(70)0.6-⨯=身高标准体重 下表是体重的评价标准: 实际体重比标准体重轻(重)的百分
比 轻20%以上
轻11%~20%
轻10%~重10%
重11%~20%
重20%以上
等级
消瘦
偏瘦
正常
偏胖
肥胖
(1)吴阿姨身高158cm ,体重50kg 。

请你通过计算说明她的体重等级。

(2)杜叔叔身高170cm ,体重至少减掉10kg 才算是“正常”体重,杜叔叔现在的体重是多少kg ?
7.甲乙两船同时从A 码头出发,沿着同一条航线匀速向相距280千米的B 码头航行,4小时后导航系统显示两船相距20千米。

已知甲船的速度是乙船的87.5%,求甲乙两船的速度。

(列方程解答)
8.甲、乙两辆车分别从A 、B 两地同时相向而行,甲车每小时行45千米。

当两车在途中相遇时,甲车行的路程与乙车行的路程的比是3:2。

相遇后,两车立即返回各自的出发点,这时甲车把速度提高了20%,乙车速度不变。

当甲车返回A 地时,乙车距离B 地还有
3
5
小时的路程。

(1)甲、乙两车相遇前的速度比是_________,相遇后的速度比是_________。

(2)求出A 、B 两地之间的路程。

9.宝龙城市广场某商铺计划开展购物满千元即可参加飞镖投奖的活动,工作人员用一个半径60厘米的圆形木板制作了一个镖盘。

(本题π取3)
(1)如图1,这个镖盘的面积是________平方厘米。

(2)如图2,如果投中阴影部分获一等奖,投中空白部分获二等奖,如果没投中,可重新投掷,直至投中为止,求获一等奖的可能性大小是多少?(百分号前保留一位小数) (3)如图3,已知扇形AOB 的圆心角是90︒,四边形ABCD 是商家打算增设的一块“双倍奖金”区域,求获得1000元奖金的可能性大小是多少?(百分号前保留一位小数)
10.实验小学举行科技大赛,五年级上交作品15件,六年级比五年级多交1
5。

两个年级共
交了多少件作品?
11.实验小学六年级有男生120人,女生人数与男生人数的比是3∶5,六年级学生总人数恰好占全校学生人数的20%,实验小学有学生多少人?
12.学校组织五年级少先队员参加义务植树活动。

全体少先队员分成栽树和挖坑两组,且栽树和挖坑的人数比是3:4,如果从栽树组调2个人到挖坑组,那么栽树组和挖坑组人数的比是2:3,有多少先队员参加了这次植树活动?
13.果园里有500棵果树,其中苹果树和梨树占总数的 40%,其余的是桃树和杏树,桃树和杏树的比是 3:2。

杏树有多少棵?
14.在一次做“有趣的平衡”的综合实践中,小林拿来一根粗细均匀的竹竿,他从左端量到1.2米处做一个记号A,再从右端量到1.2米处做一个记号B。

这时,他发现A、B之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?(提示:请试着画图理解,然后列式求得两个不同的答案)
15.小明和小丽原来存款数量的比是4:3,现在小明取出自己存款的40%还多100元,小丽存进500元,现在小丽的存款比小明多900元,小明取出存款多少元?
16.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。

(如图所示)
(1)填写下列表格。

想一想,这些数量之间有什么关系?
大正方形每边的块数3
黑瓷砖块数8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块?
17.下图依次排列着5盏灯,用不同位置上亮灯和灭灯表示一个具体的数(亮灯用表示,灭灯用表示)。

请根据下面前四种状况所表示的数,完成下列问题。

(1)写出图⑤表示的数。

(2)在图⑥中画出亮灯和灭灯的状况。

① 1 ②3
③13913
++=④1+9+81=91
⑤()⑥93
18.观察下列等式:
第1个等式:
1
111
(1) 1323
a==⨯-


第2个等式:21111()35235
a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279
a ==⨯-⨯; ……
请解答下列问题:
(1)按以上规律列出第5个等式:5a =( )=( ); (2)求1234100a a a a a ++++
+的值。

19.按照下图方式摆放餐桌和椅子。

照这样摆下去,要坐34位客人需要多少张餐桌?(用方程解) 20.仔细观察下面的点子图,看看有什么规律.
(1)根据上面图形与数的规律接着画一画,填一填.
(2)探索填空:按照上面的规律,第6个点子图中的点子数是 ;第10个点子图中的点子数是 .
21.电车从A 站经过B 站到达C 站,然后返回.去时在B 站停车,而返回时B 站不停.去时的车速是每小时48km .
(1)A 站到C 站的距离是多少千米? (2)返回时的车速是每小时行多少千米?
22.美美服装公司赶制360件演出服。

甲组单独做需要8天,乙组单独做需要10天,丙组单独做需要12天。

(1)甲、乙两组合作,需要几天完成?
(2)如果甲组先完成任务的40%,剩下的任务按5:4分派给乙、丙两组。

甲、乙、丙三个组分别做了多少件演出服?
23.一个工程队修一条公路,第一天修45米,第二天修全长的1
4
,第二天修的米数又恰
好比第一天多1
5
,这条公路全长多少米?
24.六(1)班女生人数比全班人数的3
5
多2人,男生有22人,全班有多少人?
25.一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12个桃子。

那么第一天和第二天所吃桃子的总数是多少个?
26.快车从甲地到乙地要行10小时,慢车从乙地到甲地要行15小时。

两车同时从甲、乙两地出发,相向而行,4小时后两车还相距200km。

甲、乙两地相距多少千米?
27.汽车往返甲、乙两地.去的时候平均每小时行50千米,返回的时候平均每小时行60千米,汽车往返两地平均每小时行多少千米?
28.水果店运进一批桂园,第一天售出1
2
,第二天售出余下的3
5
,还剩36千克没有卖,这
批桂园有多少千克?
29.妈妈买来一些水果糖,小华吃掉一半后又多吃了两粒,第二天也是这样吃了剩下的一半再多吃两粒,第三天又吃了剩下的一半再多吃两粒,第四天打开糖盒时,里面只有4粒了,妈妈究竟买了多少粒水果糖?
30.一份稿件,甲5小时先打了1
5
,乙6小时又打了剩下稿件的1
2
,最后剩下的一些由
甲、乙两人合打,还需多少小时完成?
31.如图:两个同心圆的周长相差18.84厘米,两个正方形的周长相差多少厘米?
32.如图所示,三角形ABC的面积是36cm2,圆的直径AC=6cm,BD∶DC=2∶1.求阴影部分的面积。

33.张师傅,王师傅,李师傅和孙师傅合做一批零件,张师傅做的个数与其他三人零件总
数比是1:4,王师傅做的个数与其他三人零件总数比是2:3,李师傅做的个数与其余三人零件总数比是3:5,孙师傅做了90个零件.张师傅做了多少个零件?
34.用一根240厘米的铁丝制作成一个长方体框架,长、宽、高的比是5∶3∶4,求这个长方体框架的体积是多少立方厘米?
35.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?
36.某口罩厂两个车间计划生产相同个数的防尘口罩和医用口罩,当医用口罩完成了2 5
时,防尘口罩刚好完成了3
7。

这时,为了提前完成医用口罩的生产任务,改进了生产工
艺,效率提高了50%。

这样,当医用口罩完成任务时,防尘口罩还有3500个没完成,原计划生产医用口罩多少个?
37.如图,长方形的长AD与宽AB的比为5∶3,E、F为 AB边上的三等分点,某时刻,甲从A点出发沿长方形逆时针运动,与此同时,乙、丙分别从E、F出发沿长方形顺时针运动。

甲、乙、丙三人的速度比为4∶3∶5,他们出发后12分钟,三人所在位置的点的连线第一次构成长方形中最大的三角形,那么再过多少分钟,三人所在位置的点的连线第二次构成最大三角形?
38.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零
件个数的比是1∶3,第二周加工了总任务的1
3
,已知两周一共加工了140个零件。

王叔叔
接到的任务是一共要加工多少个零件?
39.在新农村的建设中,小强到修路现场做调查。

他问工人叔叔要修的路有多长,工人叔叔说:“已经修好的和还没修的长度的比是2∶5,再修450米,已经修好的和还没修的长度的比是1∶2”,要修的路总长多少米?
40.小红和小兰都积攒了一些零用钱,她们所积攒的零用钱的比是5:3.在“支援灾区,奉献爱心”的捐款活动中,小红捐了26元,小兰捐了10元,这时她们剩下的钱数相等.小红原来有多少钱?
41.一件工作,由甲单独做要15天完成,现在由甲、乙两人各做3天后,余下的工作由乙单独做。

如果甲、乙两人工作效率的比是2∶3,乙完成这件工作还需要多少天?42.根据下列信息回答问题。

印刷厂的纸是以“令”来卖的。

一令是500张。

最普通的纸张是A4纸。

A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分。

一张A0纸的规格为1189毫米×841毫米,差不多有1平方米。

如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等。

(1)需要多少张A4纸才能覆盖住一张A0纸?()
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?()
①420mm ②297mm ③210mm ④149mm
43.如图,已知三角形OAB的面积是18平方厘米,求阴影部分的面积.
44.一辆大巴车从濮阳开往郑州,行了一段路程后,离郑州还有135千米,接着又行了全程的20%,这时已行路程和未行路程的比是3∶2,濮阳与郑州相距多少千米?
45.小明观察到某赛车场赛道和学校操场跑道形状一样,于是测量了相关数据如下:直道的长度85.96m,半圆形跑道的直径72.6m。

某型号赛车左、右轮的距离是2m,转弯时,外侧的轮子比内侧的轮子要多行一些路。

当该赛车在上述赛道上跑一圈时,外轮比内轮多行多少米?
46.商场有两台冰箱,标价都是4950元,其中一台比进价贵10%,另一台比进价便宜10%,如果两台冰箱全部卖出,那么总体来讲是赚了还是赔了?如果赚了,赚了多少元?如果赔了,赔了多少元?
47.有一批货物,第一天运走了全部的1
3
,第二天运走了剩下的一半,第三天运走了308
千克,正好运完。

这批货物一共有多少千克?
48.修一条公路,已经修完了全程的1
4
,又修了剩余的
1
5
,这时距终点还有6千米,这
条公路全长多少千米.
49.如图为某学校花坛,它由一个圆心角∠AOB=30°,半径AO=6米的扇形以及分别以
AO、BO的1
3
为直径的6个相等的半圆组成,求此花坛的面积。

50.商店购进一批自行车,购入价为每辆420元,卖出价为每辆500元,当卖出自行车的4
5
多20辆时,已获得全部成本,当自行车全部卖完时,共盈利多少元?
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.50名
【分析】
通过女生与男生人数的比是3∶7,求出女生占总人数的分率,单位“1”是总人数,用少了的5名女生÷对应分率=总人数。

【详解】
女生与男生人数的比是3∶7,那么女生占总人数的
3
37

3
10
5÷(40%-
3 10

=5÷
1 10
=50(名)
答:合唱队共有男女生50名。

【点睛】
本题考查了比的意义,百分数和分数复合应用题,关键是确定单位“1”,找到部分和对应分率。

2.26平方厘米
【分析】
根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是2
36cm,36=6×6,即大正方形的边长是6cm,也正是圆的直径;小正方形的对角线的长度是6cm,小正方形的面积是6×6÷2=18(平方厘米)。

据此解答即可。

【详解】
36=6×6
3.14×(6÷2)2-6×6÷2
=3.14×9-18
=28.26-18
=10.26(平方厘米)
答:阴影部分的面积是10.26平方厘米。

【点睛】
本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。

3.300平方米
【分析】
根据圆环的面积S=π(R2-r2),图(1)中涂色部分是一个圆环的面积,已知圆环的面积,据此求出大圆和小圆的半径平方之差,进而求出大圆的半径。

大圆直径是正方形的边长,图(2)中涂色部分的面积就是大正方形的面积减去小正方形的面积,据此解答。

【详解】
235.5÷3.14+5×5
=75+25
=100(平方米)
10×10=100(平方米)
大圆的半径是10米。

10×2=20(米),5×2=10(米)
20×20-10×10
=400-100
=300(平方米)
答:图(2)中涂色部分的面积是300平方米。

【点睛】
此题考查阴影部分的面积计算,求出大圆的直径是解题关键。

4.6平方米
【分析】
阴影部分的面积=大正方形的面积-小正方形的面积,而圆环的面积=π(大圆半径2-小圆半径2),大圆半径=大正方形的边长,小圆半径=小正方形的边长,所以大圆半径2=大正方形的面积,小圆半径2=小正方形的面积,所以圆环的面积=π×阴影部分的面积,据此作答即可。

【详解】
解:设大正方形边长为R,小正方形边长为r,则S阴=R2-r2=40(m2)
S圆环=π(R2-r2)=125.6(m2)
答:这个圆环面积是125.6平方米。

5.57平方米
【解析】
【分析】
如图,连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,且每一条直角边
都是圆的半径;一个等腰直角三角形的面积就是正方形面积的,由于正方形的面积是
1×1=1平方米,所以一个等腰直角三角形的面积就是平方米,即r2÷2=,可求得r2是,进而求得圆桌的面积,再求出面积差.
【详解】
连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,如下图:
每一条直角边都是圆的半径;
正方形的面积:1×1=1(平方米)
小等腰直角三角形的面积就是平方米
即:r2÷2=,r2=;
圆桌的面积:3.14×r2
=3.14×
=1.57(平方米);
1.57﹣1=0.57(平方米);
答:圆桌的面积比原来小方桌的面积多0.57平方米.
6.(1)正常
(2)79.3千克
【分析】
(1)吴阿姨是女性,根据(身高-70)×0.6=标准体重,先代入数据求出吴阿姨的标准体重,再求出吴阿姨的标准体重与其体重的差,用差除以标准体重,求出差占标准体重的百分之几,从而得出结论;
(2)杜叔叔是男性,根据(身高-80)×0.7=标准体重,求出杜叔叔的标准体重,再加上10千克,就是杜叔叔现在的体重。

【详解】
(1)(158-70)×0.6
=88×0.6
=52.8(千克)
(52.8-50)÷52.8
=2.8÷52.8
≈5.3%
吴阿姨的体重比正常体重轻5.3%,属于正常范围。

答:吴阿姨的体重等级是正常。

(2)(170-80)×0.7
=90×0.7
=63(千克)
63×(1+10%)+10
=63×1.1+10
=69.3+10
=79.3(千克)
答:杜叔叔现在的体重是79.3千克。

【点睛】
解决本题先理解题目给出的标准体重的计算方法,然后根据已知数量代入公式计算。

7.甲船35千米/时,乙船40千米/时
【分析】
设乙船速度是x千米/时,则甲船速度是87.5%x千米/时,乙船速度×时间-甲船速度×时间=20千米,列出方程求出乙船速度,乙船速度×87.5%=甲船速度。

【详解】
解:设乙船速度是x千米/时,则甲船速度是87.5%x千米/时。

4x-87.5%x×4=20
4x-3.5x=20
0.5x=20
x=40
40×87.5%=35(千米/时)
答:甲船速度是35千米/时,乙船速度是40千米/时。

【点睛】
用方程解决问题的关键是找到等量关系,整体数量×部分对应百分率=部分数量。

8.(1)3:2;9∶5
(2)270千米
【分析】
相遇时,甲车行的路程与乙车行的路程的比是3:2,则甲行了全程的
3
32
+

3
5
,乙行了全
程的
2
32
+

2
5
;相同时间内,两车的速度比等于所行驶的路程比,由此可知:开始时甲和
乙的速度比为3:2,所以,乙车速度为45×2
3
=30千米/时,相遇后,甲车和乙车的速度比
为[3×(1+20%)]∶2=9∶5,当甲车返回A地时,甲又行驶了全程的3
5
,则乙又行了全程
的3
5
×
5
9

1
3
,则AB两地的距离为30×
3
5
÷(
2
5

1
3
),据此解答即可。

【详解】
(1)45×2
3
=30(千米/时);
甲、乙两车相遇前的速度比是45∶30=3∶2;[3×(1+20%)]
=3×1.2
=3.6;
相遇后甲、乙两车的速度比是3.6∶2=9∶5;
(2)当甲车返回A地时,甲又行驶了全程的3
5
,则乙又行了全程的
3
5
×
5
9

1
3

30×3
5
÷(
2
5

1
3

=18÷
1 15
=270(千米);
答:A、B两地之间的路程为270千米。

【点睛】
解答本题的关键是根据“相同时间内,两车的速度比等于所行驶的路程比”进行分析解答。

9.(1)10800
(2)11.1%
(3)0.9%
【分析】
(1)利用圆的面积公式,列式计算出镖盘的面积;
(2)先将阴影部分面积求出来,再利用除法求出获一等奖的可能性大小;
(3)将四边形和一等奖的重叠区域的面积求出来,再除以镖盘的面积,得到获得1000元奖金的可能性大小。

【详解】
(1)3×602
=3×3600
=10800(平方厘米)
所以,这个镖盘的面积是10800平方厘米。

(2)阴影部分面积:
3×(60-40)2
=3×400
=1200(平方厘米)
1200÷10800×100%≈11.1%
答:获一等奖的可能性大小是11.1%。

(3)1200÷4-20×20÷2
=300-200
=100(平方厘米)
100÷10800×100%≈0.9%
答:获得1000元奖金的可能性大小是0.9%。

【点睛】
本题考查了圆的面积计算和可能性的大小,熟练运用可能性大小的求解方法是解题的关键。

10.33件
【分析】 六年级比五年级多交15,说明六年级作品占五年级作品的115⎛⎫+ ⎪⎝⎭
,据此求出六年级作品数量,最后求两个年级共交了多少件作品即可。

【详解】
1151515⎛⎫+⨯+ ⎪⎝⎭
=15+18
=33(件)
答:两个年级共交了33件作品。

【点睛】
本题考查分数乘法,解答本题的关键是找到六年级作品数占五年级作品数的几分之几。

11.960人
【分析】
六年级女生人数与男生人数的比是3∶5,说明男生人数是六年级人数的553
+,据此求出六年级人数,再用六年级人数除以占全校学生人数的百分率,求出全校学生人数即可。

【详解】
512020%53
÷÷+ 19220%=÷
960=(人)
答:实验小学有学生960人。

【点睛】
本题考查按比例分配、百分数,解答本题的关键是找准单位“1”。

12.70人
【解析】
【分析】
参加的总人数为单位“1”。

开始时,栽树组占总人数的
3
34
+
,调动后,栽树组占总人数的
2
23
+
【详解】
2÷(
32
3423
-
++
)=70(人)
13.120棵
【详解】
500×(1-40%)×[2÷(3+2)]=120(棵)
14.2米或3米
【分析】
方法一:如图所示,这根竹竿的距离小于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1+A、B之间的长度是全长的百分之几);
方法二:如图所示,这根竹竿的距离大于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1-A、B之间的长度是全长的百分之几)。

【详解】

(1.2+1.2)÷(1+20%)=2(米)

(1.2+1.2)÷(1-20%)=3(米)
答:这根竹竿可能是2米或3米。

15.900元
【详解】
解:设小明和小丽原来存款各是4x元、3x元,
3x+500=4x×(1﹣40%)﹣100+900
3x+500=2.4x+800
3x=2.4x+300
0.6x=300
x=500
4x=4×500=2000
2000×40%+100
=800+100
=900(元)
答:小明取出存款900元。

16.(1)4,5,6,7
12,16,20,24
(2)36块
【分析】
(1)大正方形每边的块数每增加1块,所用的黑瓷砖块数就增加4块;
(2)白瓷砖的总块数是每个边上的块数的平方,而黑瓷砖的总数量是白瓷砖一边的数量加1的四倍。

【详解】
(1)
大正方形每边的块数增加1块,所用的黑瓷砖数就增加4块;
(2)64=8×8;
(8+1)×4
=9×4
=36(块);
答:黑瓷砖用了36块。

【点睛】
解答本题的关键是根据图形找到规律,再根据规律来求解。

17.117;
【解析】
【详解】

18.(1)
1911⨯;111()2911⨯-;(2)100201 【分析】
(1)观察可知,第一个等号右边的分数形式,分母是两数相乘,第一个乘数是按1、3、5…一个比一个大2,第二个乘数比第一个乘数大2,据此确定第一个等号右边的分数形式;第二个等号右边的算式,都是12
⨯前边第一个乘数分之一和第二个乘数分之一的差,据此确定第二个等号右边的算式;
(2)每一个乘法算式都可以用乘法分配律进行分配,据此将1234100a a a a a +++++按第
(1)小题规律,通过乘法分配律分配后,中间抵消,再计算即可。

【详解】
(1)按以上规律列出第5个等式:5a =1911⨯=111()2911⨯-; (2)1234100a a a a a +++++ =11(1)23⨯-+111()235⨯-+111()257⨯-…+111()2199201
⨯- =111111111112661010141418398398402
-+-+-+--……-+ =1126-16+110-110+114-114+118-1398……-1398+1402
- =112402
- =100201
【点睛】
在数学算式中探索规律,需要仔细观察算式特点,找出规律,根据规律填出这一类算式的结果。

19.8张
【分析】
设有n 张桌子,根据桌子数量×4+2=能坐的人数,列出方程解答即可。

【详解】
解:设有n 张桌子。

4n +2=34
4n =32
n =8
答:要坐34位客人需要8张餐桌。

【点睛】
关键是看懂图示,找到等量关系。

20.(1)
(2)27;65
【详解】
(2)第6个点子图中的点子数是:
2+3+4+5+6+7
=2+5+(3+7+4+6)
=27(个)
第10个点子图中的点子数是:
2+3+4+5+6+7+8+9+10+11
=13×5
=65(个)
答:第6个点子图中的点子数是27个,第10个点子图中的点子数是65个.
21.(1)432千米(2)72千米
【解析】
【详解】
(1)48×(4+5)=432(千米)(2)432÷6=72(千米)
22.(1)409
天 (2)甲:144件
乙:120件
丙:96件
【分析】
(1)工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间,据此解答即可; (2)甲组先完成任务的40%,剩下的任务占60%,求出剩下的任务;剩下的任务按 5∶4 分派给乙、丙,则乙完成的占剩下任务的九分之五,丙完成的占剩下任务的九分之四。

【详解】
(1)111810⎛⎫÷+ ⎪⎝⎭ 9140=÷ 409
=(天) 答:甲、乙两组合作,需要
409天完成。

(2)360×40%=144(件)
()360140%⨯-
3600.6⨯=
216=(件)
521612054⨯
+=(件) 42169654
⨯+=(件) 答:甲、乙、丙三个组分别做了144,120,96件演出服。

【点睛】
本题考查工程问题、百分数、按比例分配,解答本题的关键是掌握按比例分配解决问题的方法。

23.216m
11 451216
54m
⨯+÷=
()()答:这条公路全长216米.24.60人
【分析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-3
5
,用男生人数÷对应分率即
可。

【详解】
(22+2)÷(1-3
5

=24÷2 5
=60(人)
答:全班有60人。

【点睛】
关键是确定单位“1”,找到部分数量以及对应分率。

25.24个
【分析】
根据部分数量÷部分对应分率=整体数量,从剩下的12个桃子开始,依次÷对应分率,求出总数量,总数量×第一天吃的对应分率=第一天吃的个数,(总数量-第一天吃的个数)×第二天吃的对应分率=第二天吃的个数,第一天吃的个数+第二天吃的个数即可。

【详解】
12÷(1-1
2)÷(1-
1
3
)÷(1-
1
4
)÷(1-
1
5
)÷(1-
1
6
)÷(1-
1
7

=12÷1

2
3
÷
3
4
÷
4
5
÷
5
6
÷
6
7
=84(个)
84×1
7
=12(个)
(84-12)×1 6
=72×1 6
=12(个)
12+12=24(个)
答:第一天和第二天所吃桃子的总数是24个。

【点睛】
关键是理解分数乘除法的意义,求整体用除法,求部分用乘法。

26.600千米
甲、乙两地间的距离看作单位“1”,时间分之一可以看成速度,快车速度看作
1
10
,慢车速
度看作
1
15
,用速度和×时间=行驶路程,求出4小时行驶了全程的对应分率,用200千米÷
对应分率即可。

【详解】

1
10

1
15
)×4
=1
6×4
=2 3
200÷(1-2
3

=200÷1 3
=600(千米)
答:甲、乙两地相距600千米。

【点睛】
关键是确定单位“1”,理解速度、时间、路程之间的关系,找到相距200千米的对应分率。

27.600
11
千米
【详解】
(1+1)÷(11 5060
),
=2÷11 300

=600
11
(千米);
答:汽车往返两地平均每小时行600
11
千米.
28.180千克【详解】
36÷(1-1
2
-
1
2
×
3
5
)=180(千克)
29.60粒【解析】【详解】
(4+2)÷(1-1
2
)=12(粒)
(12+2)÷(1-1
2
)=28(粒)
(28+2)÷(1-
12
)=60(粒) 30.334小时 【分析】
将整份稿件看作整体“1”,甲5小时打了15,所以甲的工作效率是:115525÷=;乙6小时打了剩下稿件的12,即1(1)5-的12,所以乙的工作效率是:111(1)65215
-⨯÷=。

最后甲乙两人合打的工作量也是1(1)5
-的12,工作效率是两人的工作效率之和,然后再根据“工作时间=工作总量÷工作效率”来计算他们所需要的时间。

【详解】
11111(1)5(1)652552⎡⎤-⨯÷÷+-⨯÷⎢⎥⎣⎦ 411416522552⎡⎤=⨯÷+⨯÷⎢⎥⎣⎦ 21152515⎡⎤=
÷+⎢⎥⎣⎦ 28575
=÷ 334
=(小时) 答:还需334
小时完成。

【点睛】
本题考查工程问题,找到甲乙两人的工作效率非常关键。

31.24厘米
【分析】
假设大正方形的边长为a ,小正方形的边长为b ,则大圆的周长为πa ,小圆的周长为πb ,根据题意:则πa -πb =π(a -b )=18.84厘米,进而求出两个正方形的边长差,由于正方形有4条边,所以再乘4即可求出两个正方形的周长相差多少厘米。

【详解】
由分析可得:
18.84÷3.14×4
=6×4
=24(厘米)
答:两个正方形的周长相差24厘米。

【点睛】
解答本题的关键是明确两个正方形的边长正好是两个圆形的直径,进而求出一条边的长度差,再乘4即可求出4条边的长度差。

32.13cm 2 【分析】
阴影部分的面积可以用半圆的面积减去三角形ACD 的面积。

【详解】 1
3CD BC =,13
ACD
ABC
S
S =⨯
21
36123
cm ⨯=
2
163.1422⎛⎫⨯⨯ ⎪⎝⎭ 1
3.1492=⨯⨯ 21
4.13cm = 214.1312 2.13cm -=
答:阴影部分的面积是2.13cm 2。

【点睛】
在求解与圆相关的不规则图形面积时,可以考虑割补法、整体减空白、平移、旋转等方法。

33.720个 【详解】 90÷(1﹣
11+4﹣22+3﹣33+5)×11+4
=90÷(1﹣15
﹣25
﹣38
)×15
=90÷
140×15
=3600×15
=720(个);
答:张师傅做了720个零件. 34.7500立方厘米 【分析】
这是求长方体体积的题目,240厘米是这个长方体的总棱长,长方体有4条长、4条宽、4条高,用240÷4=60(厘米),这是1条长+1条宽+1条高的和,再把60厘米进行按比分配,求出长方体的长、宽、高,再根据长方体的体积公式求出长方体的体积即可。

【详解】 240÷4=60(厘米) 60×5
543
++=25(厘米)
60×
3
543
++=15(厘米)。

相关文档
最新文档