完整版新人教版人教版小学五年级数学(下册期末复习)应用题大全和答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整版新人教版人教版小学五年级数学(下册期末复习)应用题大全和答案
一、人教五年级下册数学应用题
1.一个无盖的长方体铁皮水槽(如下图),做这个水槽至少需要多少平方分米铁皮?这个水槽最多可以盛水多少升?(单位:dm)
2.一条公路,已经修了干米,剩下的比已经修了的多千米,这条公路有多少千米?
3.青少年每天的睡眠时间不能少于全天时间的。
(1)它是把________看作“1”。
(2)画出线段图表示这个分数的意义。
(3)青少年每天睡眠的时间不能少于________小时。
4.下面是某市一个月天气变化情况统计图。
(1)多云的天数是晴天的几分之几?
(2)阴天的天数是这个月总天数的几分之几?
5.把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余。
(1)每根短彩带最长是多少厘米?
(2)一共可以剪成多少段?
6.将58L水和一个铁块一起放入一个长7dm,宽5dm,高6dm的玻璃缸中(铁块完全浸没在水中),这时水面离缸口2dm。
你能求出铁块的体积是多少吗?
7.一块长方形铁皮,长50cm,宽35cm。
像下图那样从四个角分别切掉一个边长为6cm 的正方形,然后做成一个水槽。
这个水槽最多能装多少升水?
8.长75厘米、宽60厘米的长方形纸,要把它裁成同样大小的正方形,边长为整厘米,且没有剩余,裁成的正方形边长最大是多少厘米?至少可以裁成多少个这样的正方形?9.新华书店新到了三百本多本书打算分发给各个学校,每18本捆成一捆少1本;每24本捆成一捆也少1本。
这批书共有多少本?
10.把一张长15厘米,宽9厘米的长方形纸裁成同样大的正方形,如果要求纸没有剩余,裁出的正方形边长最大是多少厘米?一共可以裁出多少个这样的正方形?(在图中画一画,再解答)
11.童童和红红都在舞蹈馆培训舞蹈,童童每6天去一次,红红每8天去一次,如果4月1日她们在舞蹈馆相遇,那么下一次在舞蹈馆相遇是几月几日?
12.蓬溪县某小学校五(2)班组织植树活动,在活动中发现,小宇和小斌同时栽第一棵树苗,小宇在每隔6分钟栽一棵树苗,小斌在每隔8分钟栽一棵树苗,至少多少分钟后两人再次同时栽树苗?此时,小宇和小斌各栽了多少棵树苗?
13.五(1)班有男生28人,是女生人数2倍少6人,女生人数占全班人数的几分之几?14.一块长方体形状的大理石,体积为30立方米,底面是面积为6平方米的长方形,这块大理石的高是多少米?
15.把一个棱长为12cm的正方体铁块沉入水深15cm的长方体水箱中。
这个长方体水箱长48cm、宽25cm、高20cm。
(1)这个长方体水箱的容积是多少升?
(2)放入铁块后,水箱内的水面将上升到几厘米?
16.把48块月饼装在盒子里,每个盒子装得同样多,有几种装法?(装在至少两个盒子里)每种装法各需要几个盒子?如果有47块月饼呢?
17.要测量一块不规则的岩石标本的体积,实验小组的同学先将1L水倒进一个长方体水箱,量得水深8cm,然后将岩石标本完全浸没在水中,这时水深13cm。
请你利用观察到的数据计算岩石标本的体积。
18.有47块水果糖和38颗奶糖平均分给一个小组的同学,结果水果糖剩2块,奶糖剩3块,这个小组最多有几位同学?
19.一个长方体水箱,长10dm,宽8dm,水深4.5dm,当把一块石块浸入水箱后,水位上升到6.5dm,这块石块的体积是多少?
20.一间长方体库房,长5m、宽4m、高3m,在房顶和四面刷油漆(门窗忽略不计),刷油漆的面积是多少平方米?
21.
(1)求出下图长方体的体积。
(2)下图是由棱长1cm的小正方体摆成的,请计算这个图形的表面积。
22.一个正方体容器,棱长为20厘米,放入一个土豆后(完全浸没水中),水面升高了3厘米,这个土豆的体积是多少?
23.一杯纯果汁,小丽喝了半杯后觉得甜,就兑满了水,又喝了杯就出去玩了。
小丽一共喝了多少杯纯果汁?(可以画图、文字、列式表达。
)
24.一块方钢长80厘米,横截面是边长3厘米的正方形,如果每立方厘米的钢重7.8克,这块方钢共重多少千克?
25.明明家的厨房长2.4米,宽2米,高2.6米,用瓷砖贴它的四壁,若购买边长2分米的正方形瓷砖,每块5元,一共要用多少元?
26.利用天平秤次品的方法,下列数量的物品怎样分成3份应该怎样分?请把分的数量写在圆圈里。
27.挖一个长10米,宽6米、深2米的蓄水池。
(1)这个蓄水池的占地面积是多少平方米?
(2)这个蓄水池已经蓄水1.5米,最多还能蓄水多少立方米?
28.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平
方厘米,原来长方体的体积是多少立方厘米?
29.有三张正方形纸,边长分别是6分米、18分米和24分米。
如果想裁剪成长4分米、宽3分米的长方形小纸片,且没有剩余。
选择裁剪哪张正方形纸比较合适,能够裁剪成多少张小长方形纸片?
30.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。
拼成的正方形的边长最小是多少厘米?需要几个这样的长方形?
【参考答案】***试卷处理标记,请不要删除
一、人教五年级下册数学应用题
1.解:12×5+(12×2+5×2)×2=128(dm2)
12×5×2=120(dm3)=120(L)
答:做这个水槽至少需要128平方分米铁皮,这个水槽最多可以盛水120升。
【解析】【分析】因为无盖,所以做这个水槽至少需要的铁皮面积就是5个面的面积,长×宽+长×高×2+宽×高×2=至少需要铁皮的面积;长×宽×高=长方体体积,据此先算出长方体体积,再把体积单位化为容积单位。
2.解:+(+)
=++
=
=(千米)
答:这条公路有千米。
【解析】【分析】这条公路的总长=已经修了的千米数+剩下的千米数(已经修了的千米数+剩下的比已经修了的多的千米数),代入数值计算即可。
3.(1)全天时间
(2)解:
(3)8
【解析】【解答】解:(1)是把全天时间看作“1”;
(3)24÷3=8(小时)。
故答案为:(1)全天时间;(3)8。
【分析】(1)把全天时间平均分成3份,睡眠时间不少于其中的3份,是把全天时间看作单位“1”;
(2)画出一条线段表示全天时间,把全天时间平均分成3份,其中的一份就表示每天睡眠最少的时间;
(3)用全天的小时数除以3即可求出每天最少的睡眠时间。
4.(1)解: 9÷10=
答:多云的天数是晴天的。
(2)解: 7÷(10+7+5+9)
=7÷31
=
答:阴天的天数是这个月总天数的。
【解析】【分析】(1)根据题意可知,多云的天数÷晴天的天数=多云的天数是晴天的几分之几,据此列式计算;
(2)根据题意可知,阴天的天数÷这个月的总天数=阴天的天数占这个月总天数的几分之几,据此列式解答。
5.(1)解:45=5×3×3
60=2×5×2×3
45和60的最大公因数是5×3=15,每根短彩带最长是15厘米。
答:每根短彩带最长是15厘米。
(2)解:45÷15+60÷15
=3+4
=7(段)
答:一共可以剪成7段。
【解析】【分析】(1)根据条件“ 把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余”可知,要求每根短彩带最长是多少,就是求45和60的最大公因数,据此解答;
(2)根据题意,每根彩带的长度÷每根短彩带最长的长度=每根彩带可以剪的段数,然后相加即可。
6. 7×5×(6-2)-58
=140-58
=82(立方分米)
答:铁块的体积是82立方分米。
【解析】【分析】玻璃缸中水的长宽高的积就是水和铁块的体积之和;水和铁块的体积之和-水的体积=铁块的体积,计算时注意单位。
7.(50-6×2)×(35-6×2)×6
=38×23×6
=5244(立方厘米)
=5.244(升)
答:这个水槽最多能装5.244升水。
【解析】【分析】水槽的长=铁皮的长-2个6厘米;水槽的宽=铁皮的宽-2个6厘米;水槽的高是6厘米;水槽的体积=底面积×高,计算时注意单位统一。
8.解:75=3×5×5
60=2×2×3×5
75与60的最大公因数是3×5=15
75×60÷(15×15)
=4500÷225
=20(个)
答:正方形的边长是15厘米。
至少可以裁成20个这样的正方形。
【解析】【分析】此题主要考查了最大公因数的应用,要求把长方形纸裁成同样大小的正方形,边长为整厘米,且没有剩余,要求裁成的正方形边长最大是多少厘米?就是求长与宽的最大公因数,据此利用分解质因数的方法,求出长与宽的最大公因数,就是裁成的正方形最大边长;
要求至少可以裁成多少个这样的正方形?依据长方形的面积÷小正方形的面积=可以裁的个数,据此列式解答。
9.解:18=2×3×3
24=2×2×2×3
所以它们的最小公倍数是2×2×2×3×3=72
72的倍数有72、144、216、288、360、432等
360-1=359(本)
答:这批书共有359本。
【解析】【分析】此题主要考查了最小公倍数的应用,先把18和24分别分解质因数,然后求出它们的最小公倍数,根据条件“ 新华书店新到了三百本多本书”可知,把它们的最小公倍数分别扩大1倍、2倍、3倍……,找出符合条件的三百多的数,最后用这个数减去1即可得到这批书的本数,据此解答。
10.如图:
15和9的最大公因数是3,所以裁出的正方形边长最大是3厘米;
15÷3=5(块)
9÷3=3(块)
5×3=15(块)
答:裁出的正方形边长最大是3厘米,一共可以裁出15个这样的正方形.
【解析】【分析】15和9的最大公因数就是裁出的正方形最大的边长;计算出长和宽分别可以裁几块,它们的积就是可以裁出的最多数。
11.解:6=2×3,
8=2×2×2,
6和8的最小公倍数是2×3×2×2=24,
4月1日+24日=4月25日
答:下一次在舞蹈馆相遇是4月25日。
【解析】【分析】此题主要考查了最小公倍数的应用,用分解质因数的方法求两个数的最小公倍数,先把每个数分别分解质因数,把这两个数公有的质因数和各自独有的质因数相乘,它们的乘积就是这两个数的最小公倍数,也就是需要间隔的天数,然后用上次相遇的时间+间隔的天数=下次相遇的时间,据此列式解答。
12.解:6=2×3,8=2×2×2,
6和8的最小公倍数=2×2×2×3=24,所以至少24分钟后两人再次同时栽树苗。
小宇:(24÷6)+1
=4+1
=5(棵),
小斌:(24÷8)+1
=3+1
=4(棵)。
答:至少24分钟后两人再次同时栽树;小宇栽了5棵,小斌栽了4棵。
【解析】【分析】分析题意可知要求至少多少分钟后两人再次同时栽树苗即是求6和8的最小公倍数,将6和8分别写成质数连乘的形式,再找出最小的公倍数即可。
小宇(小斌)栽树苗的棵数=(6和8的最小公倍数÷小宇(小斌)栽两棵树之间的分钟数)+1,代入数值计算即可。
13.解:28+6=34(人)
34÷2=17(人)
28+17=45(人)
17÷45=
答:女生人数占全班人数的。
【解析】【分析】先计算出女生人数的2倍有多少人,用男生的人数加上男生比女生2倍少的人数;进行可求出女生的人数;再用男生的人数+女生的人数计算出总人数,最后用女生的人数除以总人数即可得出女生人数占全班人数的几分之几。
14.解:30÷6=5(米)
答:这块大理石的高是5米。
【解析】【分析】长方体的体积=底面积×高,代入数值计算即可得出答案。
15.(1)解:48×25×20=24000(cm3)=24(L)
答:这个长方体水箱的容积是24升。
(2)解:15+12×12×12÷(48×25)=16.44(cm)
答:放入铁块后,水箱内的水面将上升到16.44厘米。
【解析】【分析】(1)长方体水箱的容积=长方体水箱的长×宽×高,计算时注意单位统一;
(2)铁块体积÷水箱的长与宽的积=水面升高的高度;长方体水箱中水原来的高度+水面升高的高度=放入铁块后,水箱内的水面将上升到的高度。
16.解:平均每个盒子里装2块月饼,需要48÷2=24(个)盒子;
平均每个盒子里装3块月饼,需要48÷3=16(个)盒子;
平均每个盒子里装4块月饼,需要48÷4=12(个)盒子;
平均每个盒子里装6块月饼,需要48÷6=8(个)盒子;
平均每个盒子里装8块月饼,需要48÷8=6(个)盒子;
平均每个盒子里装12块月饼,需要48÷12=4(个)盒子;
平均每个盒子里装24块月饼,需要48÷24=2(个)盒子;
如果有47块月饼,做不到每个盒子装得同样多。
答:每个盒子装得同样多,有7种装法,从多到少各需要24、16、12、8、6、4、2个盒子,如果有47块月饼,做不到每个盒子装得同样多。
【解析】【分析】根据48的因数分析,两个数相乘积是48,一个因数是盒子数,一个因数是盒子里装的月饼数,据此解答。
17.解:1L=1dm3=1000cm3
1000÷8=125(cm2)
125×(13-8)=625(cm3)
答:岩石标本的体积是625cm3。
【解析】【分析】根据1升=1立方分米=1000立方厘米,已知水的体积与水深,可以求出长方体水箱的底面积,水的体积÷深度=长方体水箱的底面积,然后用长方体水箱的底面积×上升的水的高度=这块岩石标本的体积,据此列式解答。
18.解:水果糖、奶糖分别分出:47-2=45(块),38-3=35(块)
把45、35分解质因数:45=3×3×5,35=5×7
45、35的最大公因数:5。
答:这个小组最多有5位同学。
【解析】【分析】用“分出块数=原有块数-剩余块数”,分别求出水果糖、奶糖分出块数;再求出二者的最大公因数,此题得解。
19.解:10×8×(6.5-4.5)
=10×8×2
=80×2
=160(dm3)
答:这块石块的体积是160dm3。
【解析】【分析】此题主要考查了不规则物体的体积计算,水位上升部分的体积就是石块的体积,长方体水箱的长×宽×水位上升的高度=这块石块的体积,据此列式解答。
20.解:房顶:5×4=20(平方米)
前后:5×3×2=30(平方米)
左右::4×3×2=24(平方米)
总面积:20+30+24=74(平方米)
答:刷油漆的面积是74平方米。
【解析】【分析】刷油漆的面积一共是5个面的面积,长方体上面的面积+前后左右的面积=刷油漆的面积;
长×宽=上面的面积,长×高×2=前后面的面积;宽×高×2=左右面的面积。
21.(1)解:体积=7×3×2
=21×2
=42(立方厘米)
(2)解:图形的表面积=(5+3+5)×2×(1×1)
=13×2×1
=26(平方厘米)
【解析】【分析】(1)长方体的体积=长×宽×高,代入数值计算即可;
(2)图形的表面积=(从前面看到的正方形的个数+从左面看到的正方形的个数+从上面看到的正方形的个数)×2×1个小正方形的面积,计算即可。
22.解:20×20×3
=400×3
=1200(立方厘米)
答:这个土豆的体积为1200立方厘米。
【解析】【分析】水面升高部分水的体积就是土豆的体积,因此用容器的底面积乘水面升高的高度即可求出土豆的体积。
23.解:4÷6=(杯)
答:小丽一共喝了杯纯果汁。
【解析】【分析】一杯纯果汁被平均分成6份,喝了半杯就是喝了3份果汁,兑满了水,
又喝了杯就是喝了剩下3份果汁的,即喝了1份果汁,一共喝了4份果汁;喝的果汁份数÷果汁总份数=小丽一共喝的纯果汁杯数。
24.解:3×3×80×7.8÷1000
=9×80×7.8÷1000
=720×7.8÷1000
=5616÷1000
=5.616(千克)
答:这块方钢共重5.616千克。
【解析】【分析】根据题意可知长方体的体积=底面积×高,计算出体积后,体积× 每立方厘米的质量=总质量,关键最后要单位换算。
25.解:(2.4×2.6+2×2.6)×2
=(6.24+5.2)×2
=11.44×2
=22.88(平方米),
22.88÷(0.2×0.2)×5
=22.88÷0.04×5
=572×5
=2860(元)。
答:一共要用2860元。
【解析】【分析】先根据“厨房四壁的面积=(长×高+宽×高)×2”计算出厨房四壁的面积,再根据“一共要用的钱数=瓷砖的数量×每块瓷砖的价钱=厨房四壁的面积÷每块瓷砖的面积×每块砌砖的价钱=厨房四壁的面积÷(瓷砖的边长×边长)×每块砌砖的价钱”,代入数值解答即可。
26.
【解析】【分析】此题主要考查了找次品的知识,根据天平的平衡原理对托盘两边的物品进行比较,把待测物品分成三份,要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1,据此解答。
27.(1)解:10×6=60(平方米)
答:这个蓄水池的占地面积是60平方米。
(2)解:10×6×(2-1.5)
=10×6×0.5
=60×0.5
=30(立方米)
答:最多还能蓄水30立方米。
【解析】【分析】(1)根据题意可知,已知长方体的长、宽、高,求底面积,用长×宽=长方体的底面积;
(2)要求长方体的容积,用公式:长方体蓄水池内还能蓄水的容积=长×宽×还能蓄水的高度,据此列式解答。
28.解:120÷4×24
=30×24
=720(立方厘米)
答:原来长方体的体积是720立方厘米。
【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。
29.解:4和3的倍数有12、24、......;
所以选择裁剪边长是24分米的正方形纸比较合适,
能够裁剪成的张数:
(24÷4)×(24÷3)
=6×8
=48(张)
答:选择裁剪边长是24分米的正方形纸比较合适,能够裁剪成48张小长方形纸片。
【解析】【分析】正方形的边长如果是4和3的倍数,这样裁剪起来没有剩余,比较合适;
(正方形的边长÷4分米)×(正方形的边长÷3分米)=可以裁剪的个数。
30.解:5×4=20(厘米)
(20÷5)×(20÷4)=4×5=20(个)
答:拼成的正方形的边长最小是20厘米,需要20个这样的长方形。
【解析】【分析】正方形的最小边长就是5和4的最小公倍数;5和4的最小公倍数除以5就是正方形的长处需要的长方形个数,5和4的最小公倍数除以4就是正方形的宽处需要的长方形个数,两个个数的积,就是需要的长方形个数。