必修5--3.2一元二次不等式及其解法PPT课件
合集下载
人教版高中数学必修课件一元二次不等式及其解法
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
总结出: 解一元二次不等式
ax2+bx+c>0、ax2+bx+c<0 的步骤是:
(1)化成标准形式 ax2+bx+c>0 (a>0)
ax2+bx+c<0 (a>0)
(2) 写出ax2+bx+c=0判定△的符号,
当x取 0 < x <5 时,y<0?
(3).由图象写出:
不等式x2 -5x>0 的 解集为 ﹛x|x<0或x>5﹜ 。
不等式x2 -5x<0 的 解集为 ﹛x| 0 <x <5﹜ 。
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
一元二次不等式及其解法
=(2x-1)2≥0
(2)解不等式 - x2 + 2x – 3 >0
解:整理,得 x2 - 2x + 3 < 0
因为△= 4 - 12 = - 8 < 0
方程 2 x2 - 3x – 2 = 0无实数根
所以原不等式的解集为ф
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
(3)求出方程 的实根;画出函数图像
(4)(结合函数图象)写出不等式的解集.
简记为:一化—二判—三求—四写
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
高中数学 一元二次不等式及解法 PPT课件 图文
y<0
O x1
x
有两相异实根 x1, x2 (x1<x2)
有两相等实根 b
x1=x2= 2 a
{x|x<x1,或 x>x2}
b {x|x≠ 2 a }
{x|x1< x <x2 }
Φ
△<0 y
y>0
x O 没有实根
R Φ
函数 、方程、不等式的关系
a<0时如何求解呢?
自主练习
1.下列是关于x的一元二次不等式化为(x+2a)(x-a)<0 对应的一元二次方程的根为x1=a,x2=-2a, (1)当a>-2a,即a>0时,-2a<x<a, (2)当a=-2a,即a = 0时,原不等式化为x^2<0,无解, (3)当a<-2a, 即a<0时, a<x<-2a. 综上所述,原不等式的解集为: 当a>0时,{x|-2a<x<a} 当a=0时, ∅ 当a<0时,{x|a<x<-2a}
A.(-3,2) B.(2,+∞) C.(-∞,-3)∪(2,+∞) D.(-∞,-2)∪(3,+∞) 解析:不等式的解集是(-∞,-3)∪(2,+∞),故
选C. 答案: C
课堂 讲 义
求解一元二次不等式
例一 求下列一元二次不等式的解集:
(1)-x2+5x<-6
解:原不等式可化为 x2-5x-6>0
集。
变式训练
求下列不等式的解集:
(1)-2x2+3x+2 ≤ 0;
{ x|x2或 x 2 }
y x1 O x2 x
变式训练
(2)4x2+4x+1>0
{x
|x
1} 2
y
O x1
x
变式训练
高中数学第三章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修5
=1,b=-2
B.a=2,b=-1
C.a=-2,b=2
D.a=-2,b=1
解析:因为不等式 ax2+3x-2>0 的解集为{x|1<x<b},所以 a<0,且
方程 ax2+3x-2=0 的两个根分别为 1 和 b.根据根与系数的关系,得
1+b=-3a,b=-2a,所以 a=-1,b=2.
答案:C
[随堂训练]
1.已知不等式
ax2-5x+b>0
的解集为x
x<-13或x>12,则不等式
bx2-5x+a>0 的解集为( )
A.x
-13<x<12
C.{x|-3<x<2}
B.x
x<-13或x>12
D.{x|x<-3 或 x>2}
综上所述: 当 a<0 或 a>1 时,原不等式的解集为{x|x<a 或 x>a2}; 当 0<a<1 时,原不等式的解集为{x|x<a2 或 x>a}; 当 a=0 时,原不等式的解集为{x|x≠0}; 当 a=1 时,原不等式的解集为{x|x≠1}.
解含参数的一元二次不等式应注意事项 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论; (4)若 ax2+bx+c>0(a>0)可分解为 a(x-x1)(x-x2)>0.讨论时只需比 较 x1,x2 大小即可.
3.若不等式 ax2+5x-2>0 的解集是x
1
B.a=2,b=-1
C.a=-2,b=2
D.a=-2,b=1
解析:因为不等式 ax2+3x-2>0 的解集为{x|1<x<b},所以 a<0,且
方程 ax2+3x-2=0 的两个根分别为 1 和 b.根据根与系数的关系,得
1+b=-3a,b=-2a,所以 a=-1,b=2.
答案:C
[随堂训练]
1.已知不等式
ax2-5x+b>0
的解集为x
x<-13或x>12,则不等式
bx2-5x+a>0 的解集为( )
A.x
-13<x<12
C.{x|-3<x<2}
B.x
x<-13或x>12
D.{x|x<-3 或 x>2}
综上所述: 当 a<0 或 a>1 时,原不等式的解集为{x|x<a 或 x>a2}; 当 0<a<1 时,原不等式的解集为{x|x<a2 或 x>a}; 当 a=0 时,原不等式的解集为{x|x≠0}; 当 a=1 时,原不等式的解集为{x|x≠1}.
解含参数的一元二次不等式应注意事项 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论; (4)若 ax2+bx+c>0(a>0)可分解为 a(x-x1)(x-x2)>0.讨论时只需比 较 x1,x2 大小即可.
3.若不等式 ax2+5x-2>0 的解集是x
1
人教A版高中数学必修5第三章 不等式3.2 一元二次不等式及其解法课件
2.高考对一元二次不等式解法的考查常有以下几个 命题角度:
(1)直接考查一元二次不等式的解法; (2)与函数的奇偶性等相结合,考查一元二次不等式 的解法; (3)已知一元二次不等式的解集求参数.
[例 1] 为( )
(1)(2014·全国高考)不等式组xx+2>0, 的解集 |x|<1
ax2+bx+c<0 对一切 x∈R 都成立的条件为a<0, Δ<0.
2.可用(x-a)(x-b)>0 的解集代替xx- -ab>0 的解集,你认为 如何求不等式xx- -ab<0,xx- -ab≥0 及xx- -ab≤0 的解集?
提示:xx--ab<0⇔(x-a)(x-b)<0; xx--ab≥0⇔xx--ba≠0x-;b≥0, xx--ab≤0⇔xx--ba≠0x-. b≤0,
考点二
一元二次不等式的恒成立问题
[例 2] 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范 围; (2)若对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取 值范围.
[自主解答] (1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0;
xx≠-2ba
R
判别式 Δ=b2-4ac
Δ>0
ax2+bx+c<0
(a>0)的解集 {x|x<x1<x2}
Δ=0
∅
续表 Δ<0
∅
1.ax2+bx+c>0,ax2+bx+c<0(a≠0)对一切 x∈R 都成立 的条件是什么?
提示:ax2+bx+c>0 对一切 x∈R 都成立的条件为a>0, Δ<0.
(1)直接考查一元二次不等式的解法; (2)与函数的奇偶性等相结合,考查一元二次不等式 的解法; (3)已知一元二次不等式的解集求参数.
[例 1] 为( )
(1)(2014·全国高考)不等式组xx+2>0, 的解集 |x|<1
ax2+bx+c<0 对一切 x∈R 都成立的条件为a<0, Δ<0.
2.可用(x-a)(x-b)>0 的解集代替xx- -ab>0 的解集,你认为 如何求不等式xx- -ab<0,xx- -ab≥0 及xx- -ab≤0 的解集?
提示:xx--ab<0⇔(x-a)(x-b)<0; xx--ab≥0⇔xx--ba≠0x-;b≥0, xx--ab≤0⇔xx--ba≠0x-. b≤0,
考点二
一元二次不等式的恒成立问题
[例 2] 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范 围; (2)若对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取 值范围.
[自主解答] (1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0;
xx≠-2ba
R
判别式 Δ=b2-4ac
Δ>0
ax2+bx+c<0
(a>0)的解集 {x|x<x1<x2}
Δ=0
∅
续表 Δ<0
∅
1.ax2+bx+c>0,ax2+bx+c<0(a≠0)对一切 x∈R 都成立 的条件是什么?
提示:ax2+bx+c>0 对一切 x∈R 都成立的条件为a>0, Δ<0.
高中数学必修5《一元二次不等式及其解法》PPT
§3.2 一元二次不等式 及其解法
创设情景 引入新课
学校要在长为8,宽为6 的 一块长方形地面上进行绿化, 计划四周种花卉,花卉带的宽
x x
x x
度相同,中间种植草坪(图中
阴影部分)为了美观,现要求
草坪的种植面积超过总面积 的一半,此时花卉带的宽度的
x x
x x
取值范围是什么?
设:花卉带的宽为x(0 x 3) ,则依题意有
(8
2x)(6
整2理x)得
1 2
86
整理得
x2 7x60
一元二次不等式的定义:
只含有一个未知数,并且未知数最高次 数是2 的不等式叫做一元二次不等式.
一元二次不等式的一般形式: ax2 bx c 0 或 ax2 bx c (0 a 0)
互动探究 发现规律
探究一元二次不等式 x2 7x6 0的解集
y>0
oo
01 y<0
y>0 x
o
当x取 x<1 或 x>6 时,y>0? 当x取 1 < x <6 时,y<0?
(3)由图象得:
不等式x2 -7x+6>0 的解集﹛为x|x<1或x>6﹜
。
不等式x2 -7x+6<0 的解集为﹛x| 1 <x <6﹜
。
大于0取两边,小于0取中间.
启发引导 形成结论
典例剖析 规范步骤
例3 解不等式 4x2 4x 1 0 .
解: 0,方程 4x2 4x 1 0
的解是
x1
x2
1 2
.
原不等式的解集是 x
x
1 2
.
创设情景 引入新课
学校要在长为8,宽为6 的 一块长方形地面上进行绿化, 计划四周种花卉,花卉带的宽
x x
x x
度相同,中间种植草坪(图中
阴影部分)为了美观,现要求
草坪的种植面积超过总面积 的一半,此时花卉带的宽度的
x x
x x
取值范围是什么?
设:花卉带的宽为x(0 x 3) ,则依题意有
(8
2x)(6
整2理x)得
1 2
86
整理得
x2 7x60
一元二次不等式的定义:
只含有一个未知数,并且未知数最高次 数是2 的不等式叫做一元二次不等式.
一元二次不等式的一般形式: ax2 bx c 0 或 ax2 bx c (0 a 0)
互动探究 发现规律
探究一元二次不等式 x2 7x6 0的解集
y>0
oo
01 y<0
y>0 x
o
当x取 x<1 或 x>6 时,y>0? 当x取 1 < x <6 时,y<0?
(3)由图象得:
不等式x2 -7x+6>0 的解集﹛为x|x<1或x>6﹜
。
不等式x2 -7x+6<0 的解集为﹛x| 1 <x <6﹜
。
大于0取两边,小于0取中间.
启发引导 形成结论
典例剖析 规范步骤
例3 解不等式 4x2 4x 1 0 .
解: 0,方程 4x2 4x 1 0
的解是
x1
x2
1 2
.
原不等式的解集是 x
x
1 2
.
高中数学第三章不等式3.2一元二次不等式3.2.1.1一元二次不等式及其解集课件北师大版必修5
2
1 3
函数 y=3x +5x-2 的图像如图所示 , 与 x 轴有两个交点(-2,0)和
1 3
2
,0 .
1 3
观察图像可得,不等式的解集为 ������ ������ < -2 或������ > 方程-2x2+x+1=0 的解为 x1=− , ������2 = 1.
2.一元二次不等式的解集 一元二次不等式的解集如下表:
判别式 Δ=b2-4ac 二次函数 y=ax2+bx+c (a>0)的图像 一元二次方程 ax2+bx+c=0 (a>0)的根 ax2+bx+c>0 (a>0)的解集 ax2+bx+c<0 (a>0)的解集
Δ>0
Δ=0
Δ<0
两个相异实根 x1,x 2(x1<x2) {x|x<x1 或 x>x2} {x|x1<x<x2}
§2 一元二次不等式
2.1 一元二次不等式的解法
第1课时 一元二次不等式及其解集
1.了解一元二次不等式的定义. 2.能借助二次函数图像解一元二次不等式. 3.能求解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(a≠0)的一元 二次不等式.
1.一元二次不等式 形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的不等式(其中a≠0),叫 作一元二次不等式.使某个一元二次不等式成立的x的值叫这个一 元二次不等式的解.一元二次不等式的所有解组成的集合,叫作这 个一元二次不等式的解集.
1 3
函数 y=3x +5x-2 的图像如图所示 , 与 x 轴有两个交点(-2,0)和
1 3
2
,0 .
1 3
观察图像可得,不等式的解集为 ������ ������ < -2 或������ > 方程-2x2+x+1=0 的解为 x1=− , ������2 = 1.
2.一元二次不等式的解集 一元二次不等式的解集如下表:
判别式 Δ=b2-4ac 二次函数 y=ax2+bx+c (a>0)的图像 一元二次方程 ax2+bx+c=0 (a>0)的根 ax2+bx+c>0 (a>0)的解集 ax2+bx+c<0 (a>0)的解集
Δ>0
Δ=0
Δ<0
两个相异实根 x1,x 2(x1<x2) {x|x<x1 或 x>x2} {x|x1<x<x2}
§2 一元二次不等式
2.1 一元二次不等式的解法
第1课时 一元二次不等式及其解集
1.了解一元二次不等式的定义. 2.能借助二次函数图像解一元二次不等式. 3.能求解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(a≠0)的一元 二次不等式.
1.一元二次不等式 形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的不等式(其中a≠0),叫 作一元二次不等式.使某个一元二次不等式成立的x的值叫这个一 元二次不等式的解.一元二次不等式的所有解组成的集合,叫作这 个一元二次不等式的解集.
高中数学第三章不等式32一元二次不等式及其解法第2课时一元二次不等式的解法的应用课件新人教A版必修
2.含参数一元二次不等式有解的讨论方法 (1)当二次项系数不确定时,要分二次项系数_等__于__零_、 _大__于__零___、_小__于__零___三种情况进行讨论. (2)判别式不确定时,要分判别式大于零、等于零、小 于零三种情况进行讨论. (3)判别式大于零时,只需讨论两根大小.
1.若集合
它的同解不等式为xx--22≠x0-,5≥0, ∴x<2 或 x≥5. ∴原不等式的解集为{x|x<2 或 x≥5}.
【方法规律】1.对于比较简单的分式不等式,可直接转 化为一元二次不等式或一元一次不等式组求解,但要注意分母 不为零.
2.对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为零,然后 再用上述方法求解.
【答案】B
3.不等式x+x 1≤3 的解集为________. 【答案】x|x<0或x≥12
4.若函数f(x)=log2(x2-2ax-a)的定义域为R,则a的 取值范围为________.
【答案】(-1,0) 【解析】已知函数定义域为R,即x2-2ax-a>0对任意 x∈R恒成立,∴Δ=(-2a)2+4a<0,解得-1<a<0.
y=200a(1+2x%)(10-x)%=215a(50+x)(10-x)(0<x<10). (2)原计划税收为 200a·10%=20a(万元).依题意得215a(50
+ x)(10 - x)≥20a×83.2% , 化 简 得 x2 + 40x - 84≤0 , ∴ - 42≤x≤2.又 0<x<10,∴0<x≤2.∴x 的取值范围是{x|0< x≤2}.
)
A.x|1t <x<t
B.x|x>1t 或x<t
C.x|x<1t 或x>t
D.x|t<x<1t
2018春高中数学必修五课件:3.2 第1课时 一元二次不等式及其解法3 精品
2.解关于x的不等式:x2-(a+a2)x+a3>0(a∈R).
【解题探究】1.典例1中关于x的不等式x2+ax-6a2<0对 应的方程的根分别是多少?能否比较大小? 提示:对应方程的根分别是-3a和2a,由于a<0, 故-3a>2a. 2.典例2中解此不等式应注意什么? 提示:在因式分解之后需对方程的两根(含有参数a)进 行大小比较,所以要进行讨论.
(2)从方程的角度看
设一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)
的解集分别为{x|x<x1或x>x2},{x|x1<x<x2}(x1<x2),
则有
x1 x1x 2
x2
c, a
b a
,
即不等式的解集的端点值是相应方程
的根.
【题型探究】
类型一 解一元二次不等式
(3)当Δ<0时,此时方程ax2+bx+c=0无实数根,则不等 式①的解集为R,不等式②的解集为∅.
2.从两个角度看三个“二次”之间的内在联系 (1)从函数的角度看(以a>0的二次函数为例) 一元二次不等式ax2+bx+c>0(a>0)的解集,即二次函数 y=ax2+bx+c(a>0)满足y>0时的自变量x组成的集合,亦 即二次函数y=ax2+bx+c>0(a>0)的图象在x轴上方时点 的横坐标x的集合,一元二次方程ax2+bx+c=0(a>0)的 根就是二次函数图象与x轴交点的横坐标.
当0<a<1时,a2<a,x<a2或x>a; 当a=1时,a2=a,x≠1; 当a>1时,a<a2,x<a或x>a2. 综上所述,当0<a<1时,原不等式的解集为 {x|x<a2或x>a}; 当a=1时,原不等式的解集为{x|x≠1,x∈R}; 当a>1时,原不等式的解集为{x|x>a2或x<a}.
高中数学人教A版必修5《3.2.1一元二次不等式及其解法1》课件
3)函数值是负数,即x2-4x+1<0,解得:
{x | 2 3 x 2 3} ,即,当
2 3 x 2 3 时,原函数的值是负数。
课堂练习3. 是什么实数时, x2 x 12 有意义?
解:要想原式有意义,即要使 x2 x 12 0 ,
解这个不等式得:{x|x<-4或x>3} 所以,原式当x<-4或x>3时有意义。
(3) 解不等式 4x2 - 4x+1>0
解: 因为△=16-16=0 方程4x2-4x+1=0的解是 x1=x2=1/2 所以原不等式的解集为{x|x≠1/2}
(4) 解不等式 -x2+2x-3>0
解:整理,得 x2-2x+3<0 因为△=4-12= -8<0 方程2x2-3x-2=0无实数根
所以原不等式的解集为ф
y y=2x-7
o
3.5
x
-7
2、通过以上分析,得出以下结论
a>0
a<0
一次函数y=ax+b 的图像
方程ax+b=0的根 不等式ax+b>0的解集 不等式ax+b<0的解集
-b/a
x=-b/a x>-b/a x<-b/a
-b/a
x=-b/a X<-b/a X>-b/a
二、一元二次方程、一元二次不等式与二次函 数的关系
1、作二次函数y=x2-x-6的图象。它的对应值表与图像如下:
x -3 -2 -1 0 1 2 3 4
y 6 0 -4 -6 -6 -4 0 6
(1).图象与x轴交点的坐标为_(_-2_,_0_)__(3_,_0_)_, 该坐标与方程 x2-x-6=0的解有什么关系: 交__点__的__横__坐__标__即__为__方__程__的__根___
{x | 2 3 x 2 3} ,即,当
2 3 x 2 3 时,原函数的值是负数。
课堂练习3. 是什么实数时, x2 x 12 有意义?
解:要想原式有意义,即要使 x2 x 12 0 ,
解这个不等式得:{x|x<-4或x>3} 所以,原式当x<-4或x>3时有意义。
(3) 解不等式 4x2 - 4x+1>0
解: 因为△=16-16=0 方程4x2-4x+1=0的解是 x1=x2=1/2 所以原不等式的解集为{x|x≠1/2}
(4) 解不等式 -x2+2x-3>0
解:整理,得 x2-2x+3<0 因为△=4-12= -8<0 方程2x2-3x-2=0无实数根
所以原不等式的解集为ф
y y=2x-7
o
3.5
x
-7
2、通过以上分析,得出以下结论
a>0
a<0
一次函数y=ax+b 的图像
方程ax+b=0的根 不等式ax+b>0的解集 不等式ax+b<0的解集
-b/a
x=-b/a x>-b/a x<-b/a
-b/a
x=-b/a X<-b/a X>-b/a
二、一元二次方程、一元二次不等式与二次函 数的关系
1、作二次函数y=x2-x-6的图象。它的对应值表与图像如下:
x -3 -2 -1 0 1 2 3 4
y 6 0 -4 -6 -6 -4 0 6
(1).图象与x轴交点的坐标为_(_-2_,_0_)__(3_,_0_)_, 该坐标与方程 x2-x-6=0的解有什么关系: 交__点__的__横__坐__标__即__为__方__程__的__根___
高中数学必修5第三章3.2一元二次不等式式及其解法
≤
3 2
或x
≥1
1 x 3
因此1≤x<3,所求函数的定义域是[1,3).
思考题1
已知ax2 +2x
+c
>
0的解集为 禳镲睚x
-
1
<
x
<
1
,
镲铪 3 2
试求a, c的值,并解不等式 - cx2 +2x - a > 0。
解:对于任意实数x,
x2-2x+3=(x-1)2+2>0,
因此不等式(1)的解集为
实数集R,
y
3
不等式(2)无解,或说它 2
的解集为空集.
1
x
-1 O 1 2 3 -1
练习2.解不等式1-x-4x2>0.
解:原不等式可化为4x2+x-1<0,
因为△=12-4×4×(-1)>0,
方程4x2+x-1=0的根是
一元二次不等式及其解法
定义:只含有一个未知数,并且未知数的最高次 数是2的不等式,叫一元二次不等式。
一元二次不等式的一般表达式为 ax2+bx+c>0 (a≠0),或ax2+bx+c<0 (a≠0)
其中a,b,c均为常数。
一元二次不等式一般表达式的左边,恰 是关于自变量x的二次函数f(x)的解析式,
2a
韦达定理
x1
x2
b a
,
x1x2
c a
(2)二次函数
y ax2 bx c(a 0)
开口方向;
b 对称轴 x
3.2《一元二次不等式及其解法》(人教版必修5)好
ax2+bx+c>0 或 (a>0)的解集 {x|x<x1,或 x>x2} 的解集 ax2+bx+c<0 (a>0)的解集 {x|x1< x <x2 } 的解集
b {x|x≠ − } 2a
R Φ
ks5u精品课件
Φ
求解一元 二次不等式 ax2+bx+c>0 (a>0)的程序 的程序 框图: 框图
△≥0
b x≠− 2a
ks5u精品课件
x< x1或x> x2
题2:解不等式4x2-4x +1>0 解不等式4
因为△ 解: 因为△= 16 -16 =0 方程 4 x2 - 4x +1=0 的解是 x1=x2=1/2 故原不等式的解集为{ 故原不等式的解集为 x| x ≠ 1/2 } 另解:由于4 另解:由于4x2-4x+1 =(2x-1)2≥0
2
{
{
x
x
2
− 16 > 0
x2 − 4x + 3 > 0
2
或
− 16 < 0 x2 − 4x + 3 < 0
返回
ks5u精品课件
习题3.2
A组 第2题 B组 第2题
ks5u精品课件
返回
ks5u精品课件
解 于 等 x − ax − 2a < 0. 关 x不 式
2 2
方程x 2 − ax − 2a 2 = 0.的判别式∆ = a 2 + 8a 2 = 9a 2 ≥ 0
得方程的两根为x1 = 2a, x2 = − a. (1)若a > 0, 则 − a < x < 2a
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修5
一式
象 x2 5x0这样只含一个 未知数,并且未知数最高次数 为2的不等式。
.
2
探究新知
思考:
那么一元二次不等式 x25x0怎样
去求解呢?
.
3
探究新知
y
我们来考察它与其所对的二次 函数 yx2 5x 的关系:
(1)当 x0 或 x 5 时,y 0
O
(2)当 x 0 或 x 5 时,y 0
(3)当0x5时,y 0
x
5
.
4
下结论:
结合图像知不等式 x25x0的解集 是 {x|0x5}
推广:
那么对于一般的不等式 a2xbxc0 或 a2xb xc0(a0)又怎样去寻求解集呢?
.
5
一元二次不等式的解法
判别式 △=b2- 4ac
y=ax2+bx+c (a>0)的图象
Φ
6
例题讲解
例 1解下列关于x一元二次不等式:
( 1) x 2 x 6 0 (2)4 x2 4 x 1 0 (3) x 2 2 x 3 0
.
7
解一元二次不等式的步骤:
• 化标准:将不等式化成标准形式(右边为0、 最高次的系数为正);
• 考虑判别式:计算判别式的值,若值为正, 则求出相应方程的两根;
△>0 y
x1 O x2 x
△=0 y
ax2+bx+c=0 (a>0)的根
ax2+bx+c>0 (a>0)的解集
有两相异实根 x1, x2 (x1<x2)
O x1
x
有两相等实根
x1=x2=
b 2a
{x|x<x1,或 x>x2}
{x|x≠
b 2a
}
△<0 y
x O 没有实根
R
ax2+bx+c<0
(a>0)的解集 {x|x1< x <x2 } . Φ
• 下结论:注意结果要写成集合或者区间的 形式
.
8
课堂练习
解下列关于 x的不等式 (1) x 2 4 x 9 0 (2) 3x 2 7 x 10 (3) x 2 2 x 3 0
.
9
作业:
课本80页习题3.2 A组第1、2题
.
10
谢谢
.
11
一式
象 x2 5x0这样只含一个 未知数,并且未知数最高次数 为2的不等式。
.
2
探究新知
思考:
那么一元二次不等式 x25x0怎样
去求解呢?
.
3
探究新知
y
我们来考察它与其所对的二次 函数 yx2 5x 的关系:
(1)当 x0 或 x 5 时,y 0
O
(2)当 x 0 或 x 5 时,y 0
(3)当0x5时,y 0
x
5
.
4
下结论:
结合图像知不等式 x25x0的解集 是 {x|0x5}
推广:
那么对于一般的不等式 a2xbxc0 或 a2xb xc0(a0)又怎样去寻求解集呢?
.
5
一元二次不等式的解法
判别式 △=b2- 4ac
y=ax2+bx+c (a>0)的图象
Φ
6
例题讲解
例 1解下列关于x一元二次不等式:
( 1) x 2 x 6 0 (2)4 x2 4 x 1 0 (3) x 2 2 x 3 0
.
7
解一元二次不等式的步骤:
• 化标准:将不等式化成标准形式(右边为0、 最高次的系数为正);
• 考虑判别式:计算判别式的值,若值为正, 则求出相应方程的两根;
△>0 y
x1 O x2 x
△=0 y
ax2+bx+c=0 (a>0)的根
ax2+bx+c>0 (a>0)的解集
有两相异实根 x1, x2 (x1<x2)
O x1
x
有两相等实根
x1=x2=
b 2a
{x|x<x1,或 x>x2}
{x|x≠
b 2a
}
△<0 y
x O 没有实根
R
ax2+bx+c<0
(a>0)的解集 {x|x1< x <x2 } . Φ
• 下结论:注意结果要写成集合或者区间的 形式
.
8
课堂练习
解下列关于 x的不等式 (1) x 2 4 x 9 0 (2) 3x 2 7 x 10 (3) x 2 2 x 3 0
.
9
作业:
课本80页习题3.2 A组第1、2题
.
10
谢谢
.
11