实用文档之因式分解掌握方法与技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档之"
因式分解"
一、因式分解的技巧:
1. 首选提取公因式法:即首先观察多项式中各项有没有公因式,若
有,则先提取公因式,再考虑其他方法。
2. 当多项式各项无公因式或已提取公因式时,应考察各多项式的项数。
(1)当项数为两项或可看作两项时,考虑利用平方差公式[a2-b2=(a+b)(a-b)]。
(2)当项数为三项时,可考虑完全平方公式、十字相乘法、求根公式法、配方法。
(3)当项数为四项或四项以上时,可考虑分组分解法。
a. 当项数为四项时,可按公因式分组,也可按公式分组。
b. 当项数为四项以上时,可按次数分组,即可将次数相同的项各分为一组。
3. 以上两种思路无法进行因式分解时,这时考虑展开后分解或拆(添)项后再分解。
二. 因式分解的方法:
(一)提公因式法
方法介绍:如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1.
分析:此多项式各项都有公因式x,因此可提取公因式x。
(二)应用公式法
方法介绍:应用乘法公式,将其逆用,从而将多项式分解因式,如果是两项的考虑平方差公式,如果是三项的考虑用完全平方公式。
例2.
分析:此多项式看作两项,正好符合平方差公式,因此可利用平方差公式分解。
解:
例3.
分析:此多项式有三项,正好符合完全平方公式,因此考虑用完全平方公式分解。
解:
(三)分组分解法
方法介绍:分组分解法是因式分解中的重要方法和技巧之一,分组的目的是为提取公因式,应用乘法公式或其它方法创造条件,以便顺利地达到分解因式的目的。
下面介绍八种常见的思路:
1. 按公因式分组:
例4.
分析:此题有四项,考虑将它们分组,其中第1、2项有公因式m,第3、4项有公因式p,可将它们分别分为一组。
解:
2. 按系数特点分组:
例5.
分析:观察系数特点第一、二项和第三、四项的系数比为1:2,所以可考虑将第一、二项和第三、四项分为一组,或第一、三项和第二、四项分为一组。
解:
3. 按字母次数特点分组:
例6.
分析:此题有一次项,也有二次项,可将一次项分为一组,二次项分为一组。
解:
4. 按公式特点分组:
例7.
分析:此题可将第2、3、4项分为一组,运用完全平方公式,再从整体上运用平方差公式。
解:
5. 拆项分组:
例8.
分析:为了便于运用乘法公式,可将-3拆成-4+1,再适当分组,达到因式分解的目的。
解:
7. 换元分组:
例9.
分析:观察代数式中的x+y,xy可考虑用换元法,使之结构简化,再分组。
解:,则
(四)待定系数法
方法介绍:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例10.
分析:观察这个多项式没有一次因式,因而只能分解为两个二次因式。
解:
利用恒等式的性质可得:
(五)十字相乘法:
方法介绍:对于mx 2+px +q 形式的多项式,如果ab =m ,cd
=q 且ac +bd =p ,则多项式可因式分解为:(ax +d )(bx +c )。
例11.
分析:这是一个三项式,它不符合完全平方公式,因此可考虑用十字
相乘法分解因式: 解:
(六)巧用换元法:
方法介绍:对于较复杂的一些多项式,通过适当的换元,可达到
减元降次,化繁为简的目的。
1. 取相同部分换元
例12.
分析:若将上式展开,得到一个四次多项式,更加难分解了,如
将m 2-5m 看作一个整体,这样乘积得到的式子就简化了。
解:
三、分解因式:
1 、234352x x x --
2 、 2633x x -
3 、 22)2(4)2(25x y y x ---4、2
2414y xy x +-- 5、x x -5 6、13-x 7、2ax a b ax bx bx -++--2
8、811824+-x x
9 、24369y x - 10、24)4)(3)(2)(1(-++++x x x x
(1)(x +p)2-(x +q)2; ( 2)16(a -b)2-9(a +b)2;
1. =--211122x x
2. =--6752x x
3. =-+2152x x
4.
=+-42562x x
5. ()()=---4254x x
6. ()()=----42552
x x 7. =--3072x x 8. =+-253092x x 9. =--61972x x 10. =++-209202x x 11.
=++939362x x
12.
=--435924x x 13. =+-437924x x 14. ()()()()=+-+-+-2222021417y y x x
15. =-----12322
2y y x xy xy 16. =--c ab c b a bc a 322320920 17. ()()()()=-----121233x x x x 18. =---b a ab a 2423
19. =+--22221b a b a 20 ()()=-+-y z y z y x 22
21. ()()()=+---234b a y x y x 22.
=+--123a ab b a 23. ()()()()=+-++-x x x x 212133
24. =+--36492222y x y x 25. =+--22822b a b a
26. =-+-2222z yz y x 27.
=+-42242b b a a
28. ()()=---221y x xy
29. =+--++ac bc ab c b a 222222 30. ()=+--+14442
b a b a 31. =---2222z yz y x 32.
=++--122b a ab a 33. =---+222c b ac bc ab 34. ()=++-b a a x b 222
35. =+--+12222y x xy x 36. =-++--12222y x y xy xy
37. =++--+ab xy b a y x 2442222 38.
=++49142x x 39. =++1692x x 40. =+-1216692x x
41. =---x x 121362 42. =+-2
216249b ab a 43. =++2941542251
y xy x 44. =+-42216249y xy x 45.=++4
2242b b a a 46. ()()=++++2521022b a b a
47. ()()=+---22
94249x x b a b a 48. =-+-a a a 510523
49. =-812x 50. =-49162x
51. =-22254b a 52. =-2241y x
53. =-2182x 54. =-x x 4163
55. =-2224b a a 56. ()=--2
3216y x 57. ()()=+--223412x x 58. ()=-+25242y x。