XX分布式发电、储能与微电网控制

合集下载

微电网孤岛运行模式下的协调控制策略

微电网孤岛运行模式下的协调控制策略

微电网孤岛运行模式下的协调控制策略一、概述随着分布式发电技术的不断发展,微电网作为一种新型电力系统结构,以其灵活的运行方式和较高的能源利用效率,逐渐成为解决能源问题的有效途径。

微电网孤岛运行模式是指在主电网故障或需要独立运行时,微电网能够脱离主电网并维持自身稳定运行的状态。

孤岛运行模式下的微电网面临着电源输出功率波动、负荷需求变化以及多源协调控制等诸多挑战。

研究微电网孤岛运行模式下的协调控制策略具有重要的理论价值和实践意义。

在孤岛运行模式下,微电网需要依靠内部的分布式电源和储能系统来满足负荷需求,并实现功率平衡。

分布式电源如风力发电、光伏发电等具有间歇性和随机性,导致输出功率不稳定;负荷需求也会随着时间和场景的变化而波动。

这些不确定性因素给微电网的稳定运行带来了极大的挑战。

为了应对这些挑战,需要设计一种有效的协调控制策略,以实现微电网孤岛运行模式下的稳定运行和优化管理。

该策略需要综合考虑分布式电源的出力特性、储能系统的充放电策略以及负荷需求的变化规律,通过合理的控制算法和优化方法,实现微电网内部的功率平衡、电压稳定和频率稳定,同时提高能源利用效率和经济性。

本文将围绕微电网孤岛运行模式下的协调控制策略展开研究,首先分析微电网的基本结构和孤岛运行的特点,然后探讨协调控制策略的设计原则和关键技术,最后通过仿真实验验证策略的有效性和优越性。

1. 微电网的基本概念与特点作为现代电力系统的一个重要组成部分,是指由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等构成的小型发配电系统。

它既可以与外部电网并网运行,也可以在孤岛模式下独立运行,实现自我控制、自我保护和能量管理,形成一个高度自治的电力网络。

微电网具备几个显著的特点。

它具备微型化的特征,电压等级低,系统规模小,通常服务于特定区域或用户群体。

这种小规模的发配电系统使得微电网更加灵活和易于部署。

微电网的电源多样,以可再生能源为主,如太阳能、风能等分布式电源,同时也可包括传统的小型发电机组和储能装置。

微电网操作与控制

微电网操作与控制

微电网操作与控制微电网(Microgrid)是指由多种不同的分布式能源资源、负荷和能量储存设备组成的小型电力系统。

它具有自主运行、互联互通和可控性强的特点,已成为解决能源转型和可持续发展的重要手段。

本文旨在探讨微电网的操作与控制策略,帮助读者更好地理解和应用微电网技术。

一、微电网概述微电网由分布式能源资源(如光伏发电、风力发电等)、负荷(如住宅、商业建筑等)和能量储存设备(如储能电池等)组成,形成一个相对独立的电网系统。

与传统的中央电网系统相比,微电网更加灵活和可靠,并且具备自主控制和管理的能力。

二、微电网的运行模式微电网的运行模式可以分为三种:独立运行模式、与主电网并网运行模式以及与主电网脱网运行模式。

1. 独立运行模式在独立运行模式下,微电网与主电网完全隔离,完全依靠分布式能源和能量储存设备供电。

这种模式适用于一些远离主电网的地区,比如岛屿、山区等。

2. 与主电网并网运行模式与主电网并网运行是微电网最常见的工作方式。

在这种模式下,微电网可以通过电网互联与主电网交换电能,在能源供应不足时从主电网购电,能源供应充足时则可以将多余的电能卖回主电网。

3. 与主电网脱网运行模式与主电网脱网运行是指微电网不再与主电网交换电能,完全依靠自身的分布式能源和能量储存设备运行。

这种模式适用于一些需要独立供电的环境,比如远离城市的无人岛屿、油气开采现场等。

三、微电网的操作与控制策略为了实现微电网的安全稳定运行,需要采取一系列的操作与控制策略,具体如下:1. 能源管理和优化策略能源管理和优化是微电网操作与控制的核心任务。

通过合理调度和分配分布式能源资源,最大限度地提高能源利用效率,并确保电网系统的稳定运行。

包括实时监测和管理能源供需平衡、优化能源调度策略、灵活控制充放电等。

2. 集中与分散控制策略微电网的控制可分为集中控制和分散控制两种方式。

集中控制指的是通过一个中心控制单元实现对整个微电网的控制和管理。

分散控制则是将控制功能分散到各个设备上,通过设备之间的通信和协调实现微电网的控制。

微电网系统的协同控制方法研究

微电网系统的协同控制方法研究

微电网系统的协同控制方法研究随着能源需求的增长和可再生能源技术的发展,微电网系统在能源供应方面扮演着重要的角色。

微电网系统是一种基于可再生能源的分布式电源系统,具备独立运行的能力,并且可以与主电网进行互联互通。

为了提高微电网系统的效率和可靠性,协同控制方法成为了一个重要的研究领域。

微电网系统的协同控制方法旨在实现微电网内部各个组件之间的协同运行,并与主电网实现无缝切换和协同运行。

具体来说,协同控制方法包括能源管理、负荷调度、电池储能优化、分布式发电控制等方面。

下面将分别介绍这些方面的研究进展。

首先,微电网系统的能源管理是协同控制方法的核心。

能源管理包括对微电网中的可再生能源、储能设备和负荷进行管理和控制,以实现能源的高效利用和供需平衡。

目前,研究者们提出了许多能源管理策略,如基于模型预测控制(MPC)、模糊逻辑控制、遗传算法等方法。

这些方法能够根据实时的能源产量和负荷需求,通过智能控制算法实现微电网内部各个组件之间的协同工作,提高能源的利用效率和供电可靠性。

其次,负荷调度是微电网系统协同控制方法的关键环节之一。

负荷调度是指根据负荷需求和能源产量情况,合理地分配和调度负荷,以实现微电网系统的供需平衡和能效优化。

为了最大限度地减少能源浪费和降低能源成本,研究者们提出了不同的负荷调度策略,如基于优先级的负荷调度、基于负荷延迟的负荷调度等。

这些方法能够根据实时的负荷需求和能源产量进行合理的调度,确保微电网系统的供电质量和经济性。

此外,电池储能优化也是微电网系统协同控制的重要研究方向。

电池储能作为微电网系统中的重要组成部分,可以存储和释放电能,为系统提供备用能源。

针对电池储能的优化问题,研究者们提出了不同的算法和控制策略,如基于模糊逻辑的电池储能优化、基于强化学习的电池储能优化等。

这些方法能够通过智能控制算法对电池储能进行优化管理,提高微电网系统的供电可靠性和稳定性。

最后,微电网系统的分布式发电控制也是协同控制方法的重要组成部分。

分布式发电系统与微电网技术

分布式发电系统与微电网技术

分布式发电系统与微电网技术随着能源需求的不断增长以及对可再生能源的关注度日益提高,分布式发电系统与微电网技术成为电子与电气工程领域的研究热点。

本文将从技术原理、应用场景和未来发展方向三个方面探讨这一主题。

一、技术原理分布式发电系统是指将发电设备分布在用户侧,通过小型化的发电装置进行电能的生产。

而微电网技术则是将分布式发电系统与传统电网相连接,形成一个小型的电力系统。

这两种技术的核心在于能源的分散和可再生能源的利用。

分布式发电系统通过利用太阳能、风能、水能等可再生能源进行发电,将电能直接供给用户。

这种分布式的发电方式能够减少能量传输过程中的能量损失,提高能源利用效率。

同时,分布式发电系统还可以通过能量存储装置将多余的电能储存起来,以备不时之需。

微电网技术则是将分布式发电系统与传统电网相连接,形成一个小型的电力系统。

通过智能电网管理系统,微电网可以实现对能源的有效调度和优化控制。

当传统电网出现故障或停电时,微电网可以独立运行,为用户提供可靠的电力供应。

二、应用场景分布式发电系统与微电网技术在许多领域都有广泛的应用。

首先,在偏远地区或无电区域,分布式发电系统可以为当地居民提供可靠的电力供应,改善生活条件。

其次,在工业和商业领域,分布式发电系统可以降低能源成本,提高能源利用效率。

此外,分布式发电系统还可以应用于农业温室、城市照明和交通系统等领域。

微电网技术在城市和社区中的应用也日益增多。

通过将分布式发电系统与传统电网相连接,微电网可以实现对能源的灵活调度。

在城市中,微电网可以实现对电动车充电桩的管理和优化,提高能源的利用效率。

在社区中,微电网可以实现对居民家庭能源的管理和监控,促进能源的节约和环保。

三、未来发展方向分布式发电系统与微电网技术在未来的发展中还有许多挑战和机遇。

首先,需要进一步提高可再生能源的利用效率和稳定性,以满足不同场景下的能源需求。

其次,需要加强对分布式发电系统和微电网的智能化管理和控制,以实现对能源的优化调度。

分布式新能源并网的微电网控制策略

分布式新能源并网的微电网控制策略

分布式新能源并网的微电网控制策略摘要:近些年来,风能、太阳能等一系列新能源的应用正逐步崛起,新能源发电技术也受到全世界各国的重视,这将逐步缓解全球电能紧张并减轻全球各国对传统能源的依赖。

这些新能源发电并网的过程中,其不确定性等劣势逐步体现出来,对现有的电力网络及微电网带来了新的挑战。

本文将就分布式系新能源发电并网,对微电网提出三级控制的控制策略,并加以讨论。

关键词:分布式能源新能源微电网引言大部分电网的传统的发电模式都是以火力发电为主,其他能源为辅。

在我国,2020年上半年火力发电在整个发电行业占比达到75%。

火力发电优点是稳定性、可靠性高,但化石燃料的过度开采和储量逐年减少及随之排出酸性气体、粉尘造成大气污染,因此转换或减少对传统发电的依赖已经迫在眉睫。

近些年太阳能,风能等新能源的崛起让电力行业看见新的希望。

2019年,我国新能源发电机装机容量近20%,预计2023年新能源发电机装机容量达到29.3%。

以上海某电气集团为例,2020年在我国新疆单一地区新建分布式风电及光伏发电场的数量就有十余座。

但随着越来越多的新能源发电厂的并网也逐渐带来了一系列问题,其中单场容量低,分布分散及不稳定性高对电网控制的影响尤为显著。

为了应对这些问题,传统电网引入了微电网的概念,在本文中提出了三级控制的微电网控制策略,其中一级主控制和二级辅助控制与微电网本身的运行有关,而三级主网控制则是关于微电网和主电网的协调运行,在后续章节会分别详细讨论。

微电网及现有的微电网控制策略微电网属于大电网/智能电网的重要的一部分,由电源/分布式发电(DG)单元、储能系统、负荷及保护等部分组成。

它们协同工作,可靠地供电,并与配电系统的主电源系统以公共耦合点连接。

对于现有的电力系统,在微电网的控制结构上可以大体分为两种截然不同的控制方法——集中式控制和分散式控制。

现运行的完全集中式控制方式主要依赖于专用中央控制器收集、整理、计算的数据,并通过中央控制器和受控单元之间进行多次往复通信,以此来确定单个点上所有单元的控制动作。

分布式发电与微电网

分布式发电与微电网
分布式发电、储能 与微电网控制
主要内容
• 认识电力系统 • 分布式发电 • 微电网及其控制 • 储能技术
-1-
认识电力系统
• 认识“电”
– 电是一种特殊的商品(质量、数量) – 电能不能大规模存储 – 每一瞬间电能的生产和消耗保持平衡 – 负荷曲线(削峰填谷)
-2-
认识电力系统
• 认识电网
– 发电、输电(变电、配电)、用电
分布式发电的特点
• 分布式发电 (DG) 或分布式能源 (DER) 是一种分散、 非集中式的发电方式,具有以下特点 – 接近终端用户 – 容量很小(几十 kW 至几十 M W) – 以孤立方式或与配电网并网方式,运行在380V 或 10kV – 采用洁净或可再生能源(天然气、沼气、太阳能、 生物质能、风能—小风电、或水能—小水电)
– 低频振荡(0.2~2Hz) – 次同步振荡(略低于50Hz) – 抑制措施
• PSS • HVDC • FACTS
-8-
FACTS控制器
-9-
电网分析的相关内容
• 网络拓扑 • 潮流计算 • 状态估计 • 稳定性分析 • 短路计算 • … … ….
--“电力系统博大精深!”
- 10 -
电网的发展方向
- 20 -
微电网基本结构
微电网按照结构可以分为三种类型:片区微网、工商业微网、偏远地区微网
片区微网
片区微电网有两种,一种是城市网络, 另一种则是农村的馈线。前者主要用 于城市的繁华地区,后者则用于农村 电网的计划解列。片区电网的发展动 力是停运管理和整合可再生能源发电 的需求。片区微电网的主要作用在于 降低温室气体的排放;提供对用户多 种能源方式的供给;阻塞管理;延缓 电力网络的升级等。另外,片区微电 网能提供当地无功电压支撑和较高的 电能质量等辅助服务。

随笔之九-微网运行与控制

随笔之九-微网运行与控制

随笔之九-微网运行与控制严同· 1 个月前微电网,现在无疑是比较前沿的内容,国内这块与国外相比有一些差距。

参与做过一些微电网规划,比如三沙岛的,也参观过一些实验室的微电网模型,许继的示范项目,试着总结一二。

一、微电网概述首先说说分布式能源和微电网的区别吧。

分布式能源(DER):一般定义为包括分布式发电(DG)、储能装置(ES)和与公共电网相连的系统。

其中DG是指满足终端用户的特殊需求,接在用户侧的小型发电系统,主要有内燃机,微型燃气轮机、燃料电池、太阳能、风能等发电系统。

分布式能源有很多优点,比如可实现能源综合梯级利用,弥补大电网稳定性方面不足,环境友好等,但是它的最本质缺点在于不可控和随机波动性,从而造成高渗透率下对电网稳定的负面影响。

所以,分布式能源和微电网的本质区别就在于前者不可控,后者可控。

微电网(MG)把分布式发电、储能装置、负荷通过控制系统协调控制,形成单一可控单元,直接接在用户侧,优点是非常明显的。

微电网的控制模式和策略是里面的关键部分,无论是系统级的主从、对等和综合性控制模式,还是逆变器级的P/Q、U/f、下垂控制,乃至和储能相结合的控制方式,都是微电网的核心部分。

而这些,在分布式能源系统里面是不会涉及的。

所以说,很多外面在搞的微网项目,特别是中国人在国外援建,都是在混淆概念,没有控制系统,其实只能叫做分布式发电(分布式能源系统都算不上)。

所以说微电网的核心在于“自治独立,协调互济”,自治独立指的是微电网具备阻断电网故障影响的能力,使微电网的孤网运行具有不失负荷或者少失负荷;协调互济指的是微电网和主网可以建立互相支援的关系。

国外这块,美国,欧盟和日本研究和应用较为领先,三者之间对于微电网的定义略有区别但不大,国内这块,学校里面天大好像还可以,示范工程许继有两个。

二、微电网的架构微电网的体系结构一般采用国际上比较成熟的三层结构(许继的示范工程也是如此):配电网调度层、微电网集中控制层、分布式电源和负荷就地控制层。

微电网的组成及架构

微电网的组成及架构

1 微电网的组成微电网由分布式发电(DG)、负荷、储能装置及控制装置四部分构成,微电网对外是一个整体,通过一个公共连接点(Point of Common Coupling,PCC)与电网连接。

1)分布式发电(DG):DG可以是以新能源为主的多种能源形式,如光伏发电、风力发电、燃料电池;也可以是以热电联产(Combined Heat and Power,CHP)或冷热电联产(Combined Cooling、Heat and Power,CCHP)形式存在,就地向用户提供热能,提高DG利用效率和灵活性。

2)负荷:负荷包括各种一般负荷和重要负荷。

3)储能装置:储能装置可采用各种储能方式,包括物理储能、化学储能、电磁储能等,用于新能源发电的能量存储、负荷的削峰填谷,微电网的“黑启动”。

4)控制装置:由控制装置构成控制系统,实现分布式发电控制、储能控制、并离网切换控制、微电网实时监控、微电网能量管理等。

2 微电网总体架构微电网电压等级的选取与微电网规模、微电网电源的种类、容量及接入方式、并网点注入电流及运行电压范围等密切相关。

考虑微电网的应用目的,目前微电网的电压等级主要有10kV(20kV)和380V 两种。

由于微电网与配电网存在并网运行模式,其变压器接线形式应与地区配电网相匹配(10/0.4kV通常为D11,yn)。

下面以380V微电网为例对微电网的基本结构进行阐述。

微电网的基本结构如下图所示。

微电网系统由分布式发电系统(DG)、储能装置、滤波补偿装置、智能控制系统和负荷构成。

其中可以包含多个DG和储能装置,这些DG和储能装置联合向负荷供电,整个微电网相对大电网来说是一个整体,通过主隔离设备和大电网相连接。

微电网中DG除可以提供电负荷外,还可以通过热电联产(CHP)或冷热电联产(CCHP)的形式就地向负荷用户供热或制冷,提高能源多级利用的效率。

就电负荷而言,其按性质亦可分为三类:重要负荷、可调节负荷和一般负荷。

分布式能源系统中微电网的规划与控制

分布式能源系统中微电网的规划与控制

分布式能源系统中微电网的规划与控制一、引言随着世界人口的增长和经济的快速发展,能源问题已经成为我们这个时代的一大难题。

为了解决这一问题,分布式能源系统逐渐走进我们的生活中,微电网也是其中的重要组成部分。

本文将探讨分布式能源系统中微电网的规划与控制。

二、分布式能源系统的概念与构成分布式能源系统是指由多个分布于不同地点的能源设备组成的能源系统,它可以使得能源的利用更加高效和方便,减少了能源在输送过程中的损耗。

分布式能源系统包括了多种类型的能源设备,例如太阳能电池板、风力发电机、燃气轮机和燃料电池等。

而微电网是指基于分布式电源或/和蓄电池系统,在负载和电网之间实现双向能量转移的小型配电系统。

它可以单独运行,也可以与主电网连接,以实现局部能量交换和负荷掌控,提高能源使用效率和供电可靠性。

三、微电网的规划与控制微电网作为分布式能源系统的重要组成部分,其规划和控制也是解决能源问题的重要环节。

1. 微电网的规划微电网的规划需要考虑以下几个方面:(1)能量需求:基于微电网的运行需要先对微电网所在的地点进行能量需求分析,以确定微电网的功率和能量储存。

(2)分布式能源的选择:选择适合该地区能源消耗的分布式能源,例如太阳能电池板、风力发电机、燃气轮机和燃料电池等。

(3)能量储存:为了使微电网的能量分配更加科学化和合理化,需要考虑能量储存的方案,例如电池储能系统、超级电容、压缩空气储能等。

(4)负载需求和掌控:微电网的规划需要充分考虑当地的负载需求和配电设备的安装点。

2. 微电网的控制微电网的控制需要考虑以下几个方面:(1)能量管理:为了降低微电网的运行成本,需要实现对微电网的能量管理,可通过智能负荷管理和能量储存等方式,实现对微电网中能量的调度。

(2)负荷掌控:通过微电网控制系统实现对负载的实时掌控,可对负荷进行调度,保证能量的最大利用率。

(3)安全控制:微电网的安全掌控是微电网控制系统中至关重要的环节之一。

通过对微电网的安全检测和监控,实现对微电网的安全保障。

电力系统中的分布式发电与微电网技术

电力系统中的分布式发电与微电网技术

电力系统中的分布式发电与微电网技术在当今能源需求不断增长和环境保护日益受到重视的背景下,电力系统中的分布式发电与微电网技术正逐渐成为能源领域的热门话题。

这两项技术的发展和应用,为解决能源供应的可靠性、可持续性以及能源效率等问题提供了新的思路和方法。

分布式发电,简单来说,就是将小型的发电装置分散地布置在用户附近,实现就地发电、就地使用。

这些发电装置可以包括太阳能光伏发电、风力发电、小型燃气轮机发电等多种形式。

与传统的集中式发电方式相比,分布式发电具有许多显著的优点。

首先,分布式发电能够有效地减少输电过程中的能量损耗。

由于发电设备靠近用户,电能传输的距离大大缩短,从而降低了线路电阻带来的能量损失。

这不仅提高了能源的利用效率,还降低了对输电线路的投资和维护成本。

其次,分布式发电能够提高电力系统的可靠性和稳定性。

在传统的集中式供电模式中,如果大型发电厂出现故障或者输电线路受到破坏,可能会导致大面积停电。

而分布式发电系统分布广泛,即使部分发电设备出现问题,也不会对整个电力系统造成太大的影响。

此外,分布式发电还可以作为备用电源,在紧急情况下为重要用户提供电力保障。

再者,分布式发电有利于促进可再生能源的利用。

太阳能、风能等可再生能源具有分布广泛、清洁环保的特点,但由于其能量密度较低、间歇性强等原因,在大规模集中式开发中面临诸多困难。

而分布式发电模式可以充分利用这些可再生能源的分散性和随机性,实现就地开发、就地消纳,为可再生能源的广泛应用创造了条件。

然而,分布式发电也存在一些问题和挑战。

由于分布式电源的容量较小、输出功率不稳定,其接入电网可能会对电力系统的电能质量、电压稳定性等方面产生不利影响。

此外,分布式发电的管理和调度也相对复杂,需要建立有效的协调控制机制,以确保其与电网的安全稳定运行。

为了更好地整合和管理分布式发电资源,微电网技术应运而生。

微电网是由分布式电源、储能装置、能量转换装置、负荷等组成的一个小型发配电系统,它既可以与外部电网并网运行,也可以独立运行。

微电网运行控制解决方案及应用

微电网运行控制解决方案及应用

微电网运行控制解决方案及应用张新昌【摘要】Micro grid is an effective organization form of the distributed resource. Micro grid technology integrates the relationship between distributed resource and distribution network, which realizes the distributed generation controllable, and solves the problem that distributed generations access distribution network. Micro grid can be regarded as a controllable unit of the power grid, which can run under either grid-connectedness or independence. This paper discusses microgrid operation control solution based on three-layer structure, which adopts the microgrid communication technology based on IEC61850 standard, dynamic stability control technology with rapid response, and microgrid energy management steady control technology based on optimizing operation. Finally, a practical engineering of micro grid is introduced.%微电网是分布式电源的有效组织形式。

微电网的组成及架构

微电网的组成及架构

1 微电网的组成微电网由分布式发电(DG)、负荷、储能装置及控制装置四部分构成,微电网对外是一个整体,通过一个公共连接点(Point of Common Coupling,PCC)与电网连接。

1)分布式发电(DG):DG可以是以新能源为主的多种能源形式,如光伏发电、风力发电、燃料电池;也可以是以热电联产(Combined Heat and Power,CHP)或冷热电联产(Combined Cooling、Heat and Power,CCHP)形式存在,就地向用户提供热能,提高DG利用效率和灵活性。

2)负荷:负荷包括各种一般负荷和重要负荷。

3)储能装置:储能装置可采用各种储能方式,包括物理储能、化学储能、电磁储能等,用于新能源发电的能量存储、负荷的削峰填谷,微电网的“黑启动”。

4)控制装置:由控制装置构成控制系统,实现分布式发电控制、储能控制、并离网切换控制、微电网实时监控、微电网能量管理等。

2 微电网总体架构微电网电压等级的选取与微电网规模、微电网电源的种类、容量及接入方式、并网点注入电流及运行电压范围等密切相关。

考虑微电网的应用目的,目前微电网的电压等级主要有10kV(20kV)和380V 两种。

由于微电网与配电网存在并网运行模式,其变压器接线形式应与地区配电网相匹配(10/0.4kV通常为D11,yn)。

下面以380V微电网为例对微电网的基本结构进行阐述。

微电网的基本结构如下图所示。

微电网系统由分布式发电系统(DG)、储能装置、滤波补偿装置、智能控制系统和负荷构成。

其中可以包含多个DG和储能装置,这些DG和储能装置联合向负荷供电,整个微电网相对大电网来说是一个整体,通过主隔离设备和大电网相连接。

微电网中DG除可以提供电负荷外,还可以通过热电联产(CHP)或冷热电联产(CCHP)的形式就地向负荷用户供热或制冷,提高能源多级利用的效率。

就电负荷而言,其按性质亦可分为三类:重要负荷、可调节负荷和一般负荷。

新能源微电网控制策略研究与优化实现

新能源微电网控制策略研究与优化实现

新能源微电网控制策略研究与优化实现近年来,新能源微电网作为一种集分布式发电、储能和负荷的综合性系统,得到了广泛关注和研究。

在实现可持续发展的同时,微电网也面临着诸多挑战,其中之一就是微电网的控制策略。

本文将对新能源微电网控制策略进行研究与优化实现,以进一步提升微电网系统的稳定性、可靠性和经济性。

首先,新能源微电网的控制策略需要考虑到电网与微电网的互联互通。

传统的电网与微电网之间存在着不匹配的问题,导致电力流动不稳定,甚至引发电网故障。

因此,需要通过合理的控制策略来调节电网与微电网之间的功率交换,以保证系统的稳定运行。

控制策略应考虑到微电网的发电、储能和负荷之间的关系,合理分配功率,并在电网电压、频率等方面进行监测和控制。

其次,新能源微电网的控制策略需要兼顾经济性和可靠性。

在微电网中,不同的能源源头和负荷需求之间存在着时空间的不平衡。

通过优化控制策略,可以实现将能源源头的不平衡与负荷需求的不平衡相互匹配,以提高系统的经济性。

同时,控制策略还应考虑到能源供应和负荷需求的波动性,以实现系统的可靠性和稳定性。

第三,新能源微电网的控制策略需要考虑到能源的高效利用。

传统的电力系统存在着能源转换和传输过程中的能量损失问题。

而在微电网中,能源是分布式生成和负载的,因此控制策略需要关注能源的高效利用,减少能量损耗,提高能源利用率。

可采用的策略包括:选择合适的能源转换设备和电力电子器件,提高能源转化效率;采用智能优化算法,优化能源调度和负荷管理,实现系统能源的最优配置。

第四,新能源微电网的控制策略需要注重对系统的监测与调控。

面对微电网系统复杂多变的状态,需要通过监测系统的运行状况,及时发现问题并进行调控。

通过建立智能监测系统,可以实时采集和分析微电网的数据,预测和判断系统状态,以及采取合适的控制策略进行调整。

此外,还需加强对微电网的安全性监测,防止潜在的安全隐患和故障发生。

综上所述,新能源微电网控制策略的研究与优化实现是非常重要的。

电力系统中的分布式发电与微电网技术

电力系统中的分布式发电与微电网技术

电力系统中的分布式发电与微电网技术随着全球对可再生能源的需求不断增加,电力系统正经历着一场革命性的变革。

分布式发电与微电网技术成为了电力系统转型的关键。

本文将探讨分布式发电与微电网技术在电力系统中的应用,并分析其对电力系统可靠性、经济性和可持续性的影响。

一、分布式发电技术的概念与分类分布式发电是指将发电设备分布在电力系统中的各个节点,与传统的集中式发电相对应。

根据发电设备的类型和规模,分布式发电技术可以分为小型分布式发电和中型分布式发电。

小型分布式发电包括太阳能光伏发电、风能发电、生物质能发电等,而中型分布式发电则包括燃气轮机发电、微型水电站等。

二、微电网技术的概念与特点微电网是由多种分布式发电设备、储能装置和负荷组成的小型电力系统。

与传统的电力系统相比,微电网具有自主运行、互联互通和可控性强的特点。

微电网技术的核心是能量管理系统(EMS),通过智能控制和优化算法,实现对微电网内部各种能源的协调运行。

三、分布式发电与微电网技术的应用1. 提高电力系统可靠性传统的集中式发电系统存在单点故障的风险,一旦发生故障,将导致大面积停电。

而分布式发电和微电网技术将发电设备分布在多个节点,降低了单点故障的风险,提高了电力系统的可靠性。

2. 促进电力系统的经济性分布式发电和微电网技术可以降低电力系统的输电损耗和传输成本。

由于分布式发电设备接近负荷,输电损耗减少,同时可以减少对远距离输电线路的依赖,降低传输成本。

3. 推动电力系统的可持续发展分布式发电主要利用可再生能源,如太阳能和风能,减少对传统化石燃料的依赖,降低碳排放。

同时,微电网技术可以实现对多种能源的灵活调度和优化利用,提高能源利用效率,推动电力系统向可持续发展方向发展。

四、分布式发电与微电网技术的挑战与展望1. 技术挑战分布式发电和微电网技术面临着电网接入、系统稳定性和运行控制等方面的技术挑战。

如何实现分布式发电设备与传统电力系统的无缝衔接,确保系统的稳定运行,是当前亟待解决的问题。

智慧微电网系统设计方案

智慧微电网系统设计方案

智慧微电网系统设计方案智慧微电网系统是基于现有电力系统的基础上,在分布式能源、能量储存、能量管理和智能控制等方面进行的一种创新设计,可以在现有电网的基础上实现对各种能源的高效利用和智能管理。

下面是关于智慧微电网系统设计的方案。

一、系统架构智慧微电网系统由分布式能源发电装置、能量储存装置、能量管理系统和智能控制系统四个部分组成。

1. 分布式能源发电装置:通过太阳能光伏发电、风力发电和生物质发电等方式,将可再生能源转化为电能,并注入到微电网系统中。

2. 能量储存装置:包括电池组和超级电容器等储能装置,它们可以对电能进行储存和释放,以满足系统在高负荷或能源不足的情况下的需求。

3. 能量管理系统:通过对整个系统的能量生产、消耗和储存情况进行监测和管理,实现能量的高效利用和平衡。

同时还可以对能源设备的运行状态进行监控和预测,提前发现故障并采取相应的措施。

4. 智能控制系统:通过对整个系统的各个设备进行监控和控制,实现对系统的智能管理和优化。

可以根据能源的供需关系,自动调整能量的分配和利用,提高系统的稳定性和经济性。

二、功能设计1. 分布式能源发电装置:通过太阳能光伏发电、风力发电和生物质发电等方式,实现对可再生能源的利用。

系统应具备自动识别各种能源发电装置,并能够根据实际情况自动切换或并网运行。

2. 能量储存装置:通过电池组和超级电容器等储能装置,实现对电能的储存和释放。

系统应具备对储能装置的状态进行监控和管理的功能,以确保能量的稳定供应。

3. 能量管理系统:通过对系统能量的监测和管理,实现能量的高效利用和平衡。

系统应具备能量生产、消耗和储存情况的实时监测和统计分析功能,并能根据实际情况进行能量的分配和利用。

4. 智能控制系统:通过对系统各个设备的监控和控制,实现对系统的智能管理和优化。

系统应具备智能调度和控制功能,能够根据能源的供需关系自动调整能量的分配和利用,并对能源设备的运行状态进行监测和预测,提高系统的稳定性和经济性。

微电网的关键技术与实现讲义

微电网的关键技术与实现讲义

微电网的关键技术与实现讲义微电网是指由分散的、分布式能源资源和多种类型负载组成的本地化电力系统。

它具有可再生能源、可靠性、高效性和可持续性等特点,被广泛应用于农村、城市和工业等领域。

本文将重点介绍微电网的关键技术和实现方法。

一、微电网的关键技术1. 分布式发电技术分布式发电是微电网的核心技术之一,它通过将多个独立的发电机组连接在一起,实现电力的分散生产和供应。

常见的分布式发电技术包括太阳能发电、风能发电、燃料电池等。

2. 储能技术储能技术是微电网的关键技术之一,它可以将电能转换为其他形式的能量,以备不时之需。

常见的储能技术包括电池储能、超级电容器储能和压缩空气储能等。

3. 智能能源管理系统智能能源管理系统是微电网的关键技术之一,它可以监控、控制和优化微电网的能源流动和使用。

通过智能能源管理系统,可以实现能源的高效利用,最大程度地减少能源消耗。

4. 电力电子技术电力电子技术是微电网的关键技术之一,它可以实现电能的高效转换和控制。

常见的电力电子技术包括逆变器技术、功率电子器件技术和电力电子拓扑结构技术等。

5. 安全监测与保护技术安全监测与保护技术是微电网的关键技术之一,它可以确保微电网的安全运行和可靠性。

常见的安全监测与保护技术包括故障监测与诊断技术、故障定位技术和故障隔离技术等。

二、微电网的实现方法1. 基于传统电力系统改造一种实现微电网的方法是基于传统电力系统的改造。

这种方法可以通过在现有电力系统中添加分布式发电机组和储能设备来实现微电网的功能。

通过合理的规划和设计,可以将传统电力系统转换为微电网,实现能源的分散生产和供应。

2. 基于新建微电网系统另一种实现微电网的方法是新建微电网系统。

这种方法可以根据实际需求,选取合适的发电技术和储能技术,建设独立的微电网系统。

新建微电网系统具有更好的灵活性和可控性,可以根据需求进行规模扩展和功能升级。

3. 基于虚拟电厂模式虚拟电厂模式是一种实现微电网的创新方法,它通过在分布式发电机组之间进行能量交换和优化调度,实现微电网的功能。

智能电力技术在微电网中的控制策略与分布式能源管理

智能电力技术在微电网中的控制策略与分布式能源管理

智能电力技术在微电网中的控制策略与分布式能源管理近年来,随着电力行业的快速发展以及对可再生能源的追求,微电网成为了电力系统领域中备受关注的话题。

微电网是由分布式能源资源和能源储存技术组成的小型电力系统,具有独立运行能力和自主管理能力。

在微电网中,智能电力技术的应用逐渐成为了实现分布式能源管理的重要手段。

本文将就智能电力技术在微电网中的控制策略和分布式能源管理进行深入探讨。

一、智能电力技术在微电网中的控制策略智能电力技术在微电网中的控制策略主要包括能量管理、电力负荷控制以及电力系统的优化调度。

能量管理是微电网中的核心问题,它涉及到电力系统的供需平衡、能源的分配和能量的储存。

在微电网中,智能电力技术通过对能量的监测和分析,实现对能源的最优利用。

同时,智能电力技术还可以根据用户需求和电力市场条件,优化能量的分配和调度,提高电力系统的效率和可靠性。

电力负荷控制也是微电网中智能电力技术的重要应用领域。

在传统的电力系统中,电力负荷是无法调节的,而在微电网中,通过智能电力技术的控制,可以实现对电力负荷的灵活调节。

智能电力技术可以根据电力负荷的实时需求和供应情况,进行负荷的优化配置,达到供需平衡的目的。

同时,智能电力技术还可以通过负荷预测和负荷优化控制,减少电力系统的能耗和发电成本。

另外,智能电力技术在微电网中的优化调度也是非常重要的。

微电网中存在多种能源和能量储存设备,如太阳能电池、风力发电机等。

智能电力技术可以根据能源的供应情况和电力系统的需求,实现对能源的最优调度。

通过智能电力技术的优化调度,可以提高电力系统的效率和可靠性,减少能源的浪费。

二、分布式能源管理在微电网中的应用分布式能源管理是微电网中智能电力技术的核心内容。

分布式能源管理主要包括能源的产生、传输和消耗三个环节。

在微电网中,分布式能源管理可以实现对多种能源的集成和优化利用。

首先,分布式能源管理可以实现多种能源的产生。

微电网中常见的能源包括太阳能、风能、地热能等。

2024年微电网市场环境分析

2024年微电网市场环境分析

2024年微电网市场环境分析引言微电网是一种以分布式发电、储能、调度控制为核心,利用电力互联技术与传统电网相连的能量系统。

随着能源需求的不断增长和可再生能源的普及,微电网市场正逐渐升温。

本文将对微电网市场的环境进行分析,包括市场规模、政策支持、行业竞争等方面的内容。

市场规模微电网市场是一个新兴的行业,其潜力巨大。

根据市场研究报告,预计到2025年,全球微电网市场规模将达到500亿美元。

其中,北美地区将成为微电网市场的主要增长驱动力,其市场规模预计占全球市场的40%以上。

亚洲太平洋地区也将迅速增长,受益于政府对可再生能源的支持以及对能源供应安全的需求。

政策支持政府的政策支持是微电网市场发展的重要推动力。

在全球范围内,许多国家和地区都出台了相应的政策措施,以鼓励微电网的建设和发展。

例如,美国政府通过减税和资助项目,鼓励企业和个人投资微电网系统。

中国政府也制定了一系列政策,包括提供专项补贴和购电优惠政策,以促进微电网在城市和农村地区的应用。

此外,一些国家还通过立法和规定,鼓励电力公司和公用事业部门与私营企业合作,推动微电网的发展。

这些政策的实施为微电网市场提供了稳定的环境和可持续的发展机遇。

行业竞争微电网市场竞争激烈,涉及到设备供应商、系统集成商和能源服务提供商等多个方面。

在设备供应商方面,一些知名的公司如施耐德电气、ABB和三菱电机等在微电网市场占据了主导地位。

这些公司拥有先进的技术和丰富的经验,能够提供高质量的产品和解决方案。

在系统集成商方面,一些专业的公司如锡耶纳公司和美国光伏公司等,通过整合不同的技术和供应商,提供全套的微电网解决方案。

同时,一些能源服务提供商也涉足微电网市场,通过提供能源管理、储能技术和智能控制等服务,满足客户对低碳、高效能源的需求。

市场前景微电网市场持续增长的趋势将在未来几年内得以维持。

随着能源需求的增长和可再生能源的普及,微电网将成为能源供应的重要组成部分。

尤其是在偏远地区、工业园区和城市热区,微电网将发挥更加重要的作用。

分布式发电微电网与储能技术心得体会

分布式发电微电网与储能技术心得体会

分布式发电微电网与储能技术心得体会随着现代科技技术旦益先进,人们的生渍水乎也丕断提高。

虽然短时阅内当前的患力系统建设、运行和管理模式尚能满足社会的震求,俱考虑到能源枯弱、还境污染、气候恶化等因素,以消耗传统非可再生能源为主的发电模式为基础的电力系统必将逐渐被淘汰。

而随着发电模式的改变,相应的输配电系统也必将得到效率更高的发展。

在这种大趋势下,分布式发电和微网这两个概念应运而生,这两个概念的提出,从某种程度上预示了今后电力系统的变革和发展走向。

一、分布式发电分布式发电技术(Distributed Generation,简称DG),是充分开发和利用可再生能源的理想发生,它具有投资小、清洁环保、供电可靠和发电方式灵活等优点,有助于促进能源的可持续发展、改善环境并提高绿色能源的竞争力。

可以对未来大电网提供有力补充和有效支撑,是未来电力系统的重要发展趋势之一。

(一)分布式发电的基本概念分布式发电指为满足终端用户的特殊要求、接在用户侧附近大的小型发电系统。

分布式电源指分布式发电与储能装置的联合系统。

它们规模一般不大,通常为几十千瓦至几十兆瓦,所用的能源包括天然气(含煤气层、沼气)、太阳能、生物质能、氢能、风能、小水电等洁净能源或可再生能源;而储能装置主要为蓄电池,还可能采用超级电容、飞轮储能等。

分布式发电直接接入配电系统并网运行较为多见,但也有直接向负荷供电而不与电力系统相联,形成独立供电系统,或形成所谓的孤岛运行方式。

采用并网方式运行,一般不需要储能系统,但采取独立(无电网孤岛)运行方式时,为保持小型供电系统的频率和电压稳定,储能系统往往是必不可少的。

(二)分布式发电的意义和应用前景在我国经济建设处于高度发展的今天,集中式供电网的规模迅速膨胀。

传统集中式供电网固然便于建设管理,但其中隐藏的安全问题一直得不到解决。

加之各地经济发展不均,对于广大经济欠发达的农村地区,特别是农牧地区和偏远山区,要形成一定规模的、强大的集中式供配电网需要巨额的投资和很长的时间周期,能源供给严重制约这些地区的经济发展。

分布式发电储能及微电网接入试点工程接入建设技术方案

分布式发电储能及微电网接入试点工程接入建设技术方案

分布式发电储能及微电网接入试点工程接入建设技术方案一、前言随着可再生能源的快速发展和利用率的提高,分布式发电和储能技术逐渐成为解决能源安全和环境保护问题的重要手段。

为了推进绿色能源的发展,提高能源利用效率和保障能源供应安全,我国开展了分布式发电储能及微电网接入试点工程。

本文就该试点工程的接入建设技术方案进行探讨。

二、技术方案本次试点工程主要包括分布式风电、光伏电站和储能系统的接入,以及微电网的建设。

在接入建设中,需要考虑以下方面的技术达到合理利用和优化能源资源的目的。

1. 分布式发电系统接入分布式风电、光伏电站在接入时往往需要考虑其接入容量与地域分布等问题,具体如下:(1)接入容量:为了保障电网的稳定性和运行安全,需要根据电网容量进行合理规划。

同时还需对各家分布式发电系统进行统计和安排,以满足能源需求的同时,避免过度超载导致电力损耗和安全隐患。

(2)地域分布:针对不同的地域特点,根据天气、休息时间等因素进行合理规划。

例如,在太阳能较充足的地区建设光伏电站,在风能较充足的地区则建设风电站等。

2. 储能系统接入储能系统是分布式发电系统中不可缺少的一环。

储能系统与分布式发电系统共同构成“发电-储能-利用”的闭环,可实现能量存储与输出平衡。

在储能系统接入时,需要考虑如下几个方面:(1)储能系统容量:需要根据发电系统输出容量和负荷需求进行合理规划,同时还考虑到储能系统的剩余电量和电量储备需要。

(2)电池技术:储能系统中常用的电池技术包括镍氢电池、锂离子电池和钠离子电池等。

需要根据经济效益、电池安全性和环境保护等方面因素进行选择。

(3)储能系统管理:通过将储能系统与智能控制系统进行互联,可实现对储能系统的监测、控制、保护、故障处理等管理。

3. 微电网建设微电网是由分布式发电系统和储能系统等构成的小型电网体系,在针对小范围的区域化电能供应时,具有独立性和自主性等特点。

在微电网建设中,需要考虑如下几个方面:(1)微电网规模:微电网规模应根据特定区域用户需求、电网容量、分布式发电系统和储能系统之间的配合度等因素进行合理规划。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发生大的停电(高负荷、风暴、地震、恐怖袭击、战 争)几率较小;
- 17 -
具有分布式发电的示范配电系统
- 18 -
微电网的定义
微电网是以分布式发电技术为基础,以靠近分 散型资源或用户的小型电站为主,结合终端用户电能 质量管理和能源梯级利用技术形成的小型模块化、分 散式的供能网络。微电网是智能电网的重要组成部分, 能实现内部电源和负荷的一体化运行,并通过和主电 网的协调控制,可平滑接入主网或独立自治运行,充 分满足用户对电能质量、供电可靠性和安全性的要求。
- 20 -
微电网基本结构
微电网按照结构可以分为三种类型:片区微网、工商业微网、偏远地区微网
片区微网
片区微电网有两种,一种是城市网络, 另一种则是农村的馈线。前者主要用 于城市的繁华地区,后者则用于农村 电网的计划解列。片区电网的发展动 力是停运管理和整合可再生能源发电 的需求。片区微电网的主要作用在于 降低温室气体的排放;提供对用户多 种能源方式的供给;阻塞管理;延缓 电力网络的升级等。另外,片区微电 网能提供当地无功电压支撑和较高的 电能质量等辅助服务。
• 国外:
– DR (Distributed Resource)-分布式电源,非直接接入 大输电系统的电源,包括发电机和储能
– DG (Distributed Generation)-分布式发电,是分布式电 源DR的一个子集
– DG(Dispersed Generation) —分散式发电
- 15 -
– 电厂(水电站、火电站、核电站、风电场……)
– 钢铁企业Biblioteka …..– 电网• 输电网(供电网) 220KV,110KV,35KV,750KV
• 配电网
10KV
-3-
认识电力系统
Generation Transmission
Distribution
Load
Hydroelectric plant
Fossil-fuelled plant
• 区域电网互联--坚强智能电网 • 微型电网(微电网)
– 接入配电网 – 分布式发电(风力、太阳能、生物质…….) – 分布式储能
- 11 -
- 12 -
微电网典型结构
- 13 -
1 术语和基本概念
(1)分布式发电 (2)新能源发电
(3)微电网
- 14 -
分布式发电的定义
• 国内:
– 分布式发电(Distributed Generation)是指功率不大 (一般几十kW到几十MW)、建设在负荷中心附近的、 模块式采用先进信息控制技术的、清洁环保、经济、 高效、可靠的自主智能发电形式。
– 低频振荡(0.2~2Hz) – 次同步振荡(略低于50Hz) – 抑制措施
• PSS • HVDC • FACTS
-8-
FACTS控制器
-9-
电网分析的相关内容
• 网络拓扑 • 潮流计算 • 状态估计 • 稳定性分析 • 短路计算 • … … ….
--“电力系统博大精深!”
- 10 -
电网的发展方向
分布式发电、储能 与微电网控制
主要内容
• 认识电力系统 • 分布式发电 • 微电网及其控制 • 储能技术
-1-
认识电力系统
• 认识“电”
– 电是一种特殊的商品(质量、数量) – 电能不能大规模存储 – 每一瞬间电能的生产和消耗保持平衡 – 负荷曲线(削峰填谷)
-2-
认识电力系统
• 认识电网
– 发电、输电(变电、配电)、用电
Nuclear plant
-4-
电力系统稳定性与控制
• 稳定性 • 电力系统稳定性
– 功角稳定性
• 小干扰稳定性(电源、负荷) • 暂态稳定性(三相短路)
– 电压稳定性(无功平衡) – 频率稳定性(有功平衡)
-5-
单机无穷大系统
-6-
单机无穷大系统传递函数框图
-7-
电力系统稳定性与控制
• 送端关注功角稳定性(发电机) • 受端关注电压稳定性 (负荷) • 振荡稳定性及控制
- 22 -
微电网基本结构
偏远地区微网
利用微电网对这些偏远地区微 电网进行供电,可以利用可再 生能源发电或其他分布式电源 来形成孤立的电网或者独立的 微电网来为偏远地区的居民或 者商业用户供电或热。该类微 电网的主要目的就是为偏远地 区供电,并降低传统化石燃料 的消耗。它具有如下好处:整 合可再生能源发电、降低温室 气体排放和需求侧管理。主要 运行方式为IG。
- 19 -
微电网基本结构
微电网的结构示意图如图所示, 它可能组成中压或低压配电网 的一部分,负荷通过分布式电 源供电。根据微电网的运行特 性,微电网可能通过PCC连接到 大电网并网运行,也可与之断 开进入孤网运行模式(Isolated Grid,IG)。当微电网并网的 时候,微电网的运行和控制模式 也在两种状态之间转换,即依赖 于大电网的模式(Grid Dependent, GD)和独立于大电网的模式 (Grid Independent,GI)。 GD与GI模式的区别在于微电网 与大电网之间是否有功率交换。
- 21 -
微电网基本结构
工商业微网
工商业微网的用户一般定义为关键负荷或 者敏感负荷,即需要较高等级的供电可靠 性和电能质量。该类微电网能够提供对多 个工商业区域的负荷需求,如大学校园、 购物中心或工业设备。该类微电网同样可 以供给小型的居民负荷,如一组城市用房 或者独立公寓,也可以成为居民区微电网 。该类微电网能够提供便利且可靠的能量 供给,并且能够提供用户定制的多种分布 式电源供电。该类微电网的主要作用是提 供较高的电能质量;提供不同水平的电能 可靠性水平;整合CHP和需求侧管理。 运行方式有GD、GI和IG,当大电网故障 或者电能质量不满足要求、电价较高或者 系统维修时从GI模式切换到IG模式。
新能源发电VS.分布式发电
• 新能源发电→分布式发电:概念和内容上有发展
– DG大多利用新的能源和新型发电技术; – 利于环保; – 电源容量小,电压等级低; – 接近负荷中心,接入配电网; – 电力生产者和消费者合一,功率双向流动; – 运行方式灵活,可连接于配电网,也可不联网; – 比集中发电更可靠;在一批小型发电机组成的系统中
分布式发电的特点
• 分布式发电 (DG) 或分布式能源 (DER) 是一种分散、 非集中式的发电方式,具有以下特点 – 接近终端用户 – 容量很小(几十 kW 至几十 M W) – 以孤立方式或与配电网并网方式,运行在380V 或 10kV – 采用洁净或可再生能源(天然气、沼气、太阳能、 生物质能、风能—小风电、或水能—小水电)
相关文档
最新文档