专题09 几何中最小值计算压轴真题训练(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

挑战2023年中考数学选择、填空压轴真题汇编
专题09 几何中最小值计算压轴真题训练
一.轴对称-最短路线问题
1.(2022•眉山)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC 的中点,连接PE,PB,若AB=4,BC=4,则PE+PB的最小值为 .
【答案】6
【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E 交AC于点P,则PE+PB的最小值为B′E的长度,
∵四边形ABCD为矩形,
∴AB=CD=4,∠ABC=90°,
在Rt△ABC中,AB=4,BC=4,
∴tan∠ACB==,
∴∠ACB=30°,
由对称的性质可知,B'B=2BF,B'B⊥AC,
∴BF=BC=2,∠CBF=60°,
∴B′B=2BF=4,
∵BE=BF,∠CBF=60°,
∴△BEF是等边三角形,
∴BE=BF=B'F,
∴△BEB'是直角三角形,
∴B′E===6,
∴PE+PB的最小值为6,
故答案为:6.
2.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为 .
【答案】3 
【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,
∵CH=EF=1,CH∥EF,
∴四边形EFCH是平行四边形,
∴EH=CF,
∴G'H=EG'+EH=EG+CF,
∵AB=4,BC=AD=2,G为边AD的中点,
∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,
由勾股定理得:HG'==3,
即GE+CF的最小值为3.
解法二:∵AG=AD=1,
设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,
由勾股定理得:EG+CF=+,
如图,矩形EFGH中,EH=3,GH=2,GQ=1,
P为FG上一动点,设PG=x,则FP=3﹣x,
∴EP+PQ=+,
当E,P,Q三点共线时,EP+PQ最小,最小值是3,
即EG+CF的最小值是3.
故答案为:3.
3.(2022•鄂州)如图,定直线MN∥PQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AE∥BC∥DF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )
A.24B.24C.12D.12
【答案】C
【解答】解:如图,
作DL⊥PQ于L,过点A作PQ的垂线,过点D作PQ的平行线,它们交于点R,延长DF至T,使DT=BC=12,连接AT,
AT交MN于B′,作B′C′∥BC,交PQ于C′,则当BC在B′C′时,AB+CD 最小,最小值为AT的长,
可得AK=AE•sin60°==2,DL==4,=6,∴AR=2+6+4=12,
∵AD=24,
∴sin∠ADR==,
∴∠ADR=30°,
∵∠PFD9=60°,
∴∠ADT=90°,
∴AT===12,
故答案为:C.
4.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为 .
【答案】5+ 
【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH ⊥AB于点H.
∵四边形ABCD是矩形,
∴∠A=∠ADT=90°,
∵∠AHT=90°,
∴四边形AHTD是矩形,
∵AE=DE=AD=3.AF=FB=AB=4,
∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,
∴FT===,
∵DG平分∠ADC,DE=DT,
∴E、T关于DG对称,
∴PE=PT,
∴PE+PF=PF+PT≥FT=,
∵EF===5,
∴△EFP的周长的最小值为5+,
故答案为:5+.
5.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD 上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为 .
【答案】+
【解答】解:如图,过点E作EH⊥BC于点H.
∵四边形ABCD是矩形,
∴∠B=∠BAD=∠BHE=90°,
∴四边形ABHE是矩形,
∴EH=AB=5,
∵BC=AD=10,
∴AC===5,
∵EF⊥AC,
∴∠COF=90°,
∴∠EFH+∠ACB=90°,
∵∠BAC+∠ACB=90°,
∴∠EFH=∠BAC,
∴△EHF∽△CBA,
∴==,
∴==,
∴FH=,EF=,
设BF=x,则DE=10﹣x﹣=﹣x,
∵EF是定值,
∴AF+CE的值最小时,AF+EF+CE的值最小,
∵AF+CE=+,
∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,
作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时PA+PB 的值最小,最小值为线段A′B的长,
∵A′(0,﹣5),B(,5),
∴A′B==,
∴AF+CE的最小值为,
∴AF+EF+CE的最小值为+.
解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.
∵EF=CC′,EF∥CC′,
∴四边形EFC′C是平行四边形,
∴EC=FC′,
∵EF⊥AC,
∴AC⊥CC′,
∴∠ACC=90°,
∵AC′===,
∴AF+EC=AF+FC′≥AC′=,
∴AF+EF+CE的最小值为+.
故答案为:+
二.胡不归问题
6.(2022•鄂尔多斯)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 .
【答案】4
【解答】解:如图,
在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,
此时PA+2PB最小,
∴∠AFB=90°
∵AB=AC,AD⊥BC,
∴∠CAD=∠BAD=,
∴∠EAD=∠CAE+∠CAD=30°,
∴PF=,
∴PA+2PB=2()=2(PF+PB)=2BF,
在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,
∴BF=AB•sin45°=4×=2,
∴(PA+2PB)
=2BF=4,
最小
故答案为:4.
三.旋转的性质
7.(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF= ,FB+FD的最小值为 .
【答案】30°5 
【解答】解:如图,
∵△ABC是等边三角形,AD⊥CB,
∴∠BAE=∠BAC=30°,
∵△BEF是等边三角形,
∴∠EBF=∠ABC=60°,BE=BF,
∴∠ABE=∠CBF,
在△BAE和△BCF中,

∴△BAE≌△BCF(SAS),
∴∠BAE=∠BCF=30°,
作点D关于CF的对称点G,连接CG,DG,BG,BG交CF的延长线于点F′,连接DF′,此时BF′+DF′的值最小,最小值=线段BG的长.
∵∠DCF=∠FCG=30°,
∴∠DCG=60°,
∵CD=CG=5,
∴△CDG是等边三角形,
∴DB=DC=DG,
∴∠CGB=90°,
∴BG===5,
∴BF+DF的最小值为5,
故答案为:30°,5.
8.(2022•柳州)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为 .
【答案】2﹣2
【解答】解:连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,
作MH⊥CD于H,
∵∠EDF=∠GDM,
∴∠EDG=∠FDM,
∵DE=DF,DG=DM,
∴△EDG≌△MDF(SAS),
∴MF=EG=2,
∵∠GDC=∠DMH,∠DCG=∠DHM,DG=DM,
∴△DGC≌△MDH(AAS),
∴CG=DH=2,MH=CD=4,
∴CM==2,
∵CF≥CM﹣MF,
∴CF的最小值为2﹣2,
故答案为:2﹣2.
9.(2022•广州)如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP′,连接PP′,CP′.当点P′落在边BC上时,∠PP′C的度数为 ;当线段CP′的长度最小时,∠PP′C的度数为 .
【答案】120°,75°
【解答】解:如图,以AB为边向右作等边△ABE,连接EP′.
∵△BPP′是等边三角形,
∴∠ABE=∠PBP′=60°,BP=BP′,BA=BE,
∴∠ABP=∠EBP′,
在△ABP和△EBP′中,

∴△ABP≌△EBP′(SAS),
∴∠BAP=∠BEP′=90°,
∴点P′在射线EP′上运动,
如图1中,设EP′交BC于点O,
当点P′落在BC上时,点P′与O重合,此时∠PP′C=180°﹣60°=120°,
当CP′⊥EP′时,CP′的长最小,此时∠EBO=∠OCP′=30°,
∴EO=OB,OP′=OC,
∴EP′=EO+OP′=OB+OC=BC,
∵BC=2AB,
∴EP′=AB=EB,
∴∠EBP′=∠EP′B=45°,
∴∠BP′C=45°+90°=135°,
∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣60°=75°.
故答案为:120°,75°.
10.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF= °;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是 .
【答案】80,4﹣.
【解答】解:∵△ACB,△DEC都是等边三角形,∴AC=CB,DC=EC,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,
在△BCD和△ACE中,

∴△BCD≌△ACE(SAS),
∴∠DBC=∠EAC=20°,
∵∠BAC=60°,
∴∠BAF=∠BAC+∠CAE=80°.
如图1中,设BF交AC于点T.
同法可证△BCD≌△ACE,
∴∠CBD=∠CAF,
∵∠BTC=∠ATF,
∴∠BCT=∠AFT=60°,
∴点F在△ABC的外接圆上运动,当∠ABF最小时,AF的值最小,此时CD⊥BD,
∴BD===4,
∴AE=BD=4,∠BDC=∠AEC=90°,
∵CD=CE,CF=CF,
∴Rt△CFD≌Rt△CFE(HL),
∴∠DCF=∠ECF=30°,
∴EF=CE•tan30°=,
∴AF的最小值=AE﹣EF=4﹣,
故答案为:80,4﹣.
四.折叠有关最值问题
11.(2022•青岛)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有: .(填写序号)
①BD=8
②点E到AC的距离为3
③EM=
④EM∥AC
【答案】①④
【解答】解:在△ABC中,AB=AC,BC=16,AD⊥BC,
∴BD=DC=BC=8,故①正确;
如图,过点E作EF⊥AB于点F,EH⊥AC于点H,
∵AD⊥BC,AB=AC,
∴AE平分∠BAC,
∴EH=EF,
∵BE是∠ABD的角平分线,
∵ED⊥BC,EF⊥AB,
∴EF=ED,
∴EH=ED=4,故②错误;
由折叠性质可得:EM=MC,DM+MC=DM+EM=CD=8,设DM=x,则EM=8﹣x,
Rt△EDM中,EM2=DM2+DE2,
∴(8﹣x)2=42+x2,
解得:x=3,
∴EM=MC=5,故③错误;
设AE=a,则AD=AE+ED=4+a,BD=8,
∴AB2=(4+a)2+82,
∵=,
∴,
∴,
∴AB=2a,
∴(4+a)2+82=(2a)2,
解得:a=或a=﹣4(舍去),
∴tan C==,
又∵tan∠EMD=,
∴∠C=∠EMD,
∴EM∥AC,故④正确,
故答案为:①④.
12.(2022•铜仁市)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE 上的动点,过点N作NP∥EM交MC于点P,则MN+NP的最小值为 .
【答案】
【解答】解:作点P关于CE的对称点P′,
由折叠的性质知CE是∠DCM的平分线,
∴点P′在CD上,
过点M作MF⊥CD于F,交CE于点G,
∵MN+NP=MN+NP′≥MF,
∴MN+NP的最小值为MF的长,
连接DG,DM,
由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,
∴CE==,
∵CE×DO=CD×DE,
∴DO=,
∴EO=,
∵MF⊥CD,∠EDC=90°,
∴DE∥MF,
∴∠EDO=∠GMO,
∵CE为线段DM的垂直平分线,
∴DO=OM,∠DOE=∠MOG=90°,
∴△DOE≌△MOG,
∴DE=GM,
∴四边形DEMG为平行四边形,
∵∠MOG=90°,
∴四边形DEMG为菱形,
∴EG=2OE=,GM=DE=1,
∴CG=,
∵DE∥MF,即DE∥GF,
∴△CFG∽△CDE,
∴,即,
∴FG=,
∴MF=1+=,
∴MN+NP的最小值为;
方法二:同理方法一得出MN+NP的最小值为MF的长,DO=,
∴OC==,DM=2DO=,
=DM•OC=CD•MF,
∵S
△CDM
即×=2×MF,
∴MF=,
∴MN+NP的最小值为;
故答案为:.
13.(2022•辽宁)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,当GF最小时,AE的长是 .
【答案】5﹣5 
【解答】解:∵将△ABE沿BE翻折得到△FBE,
∴BF=BA=10,
∴点F在以B为圆心,10为半径的圆上运动,
∴当点G、F、B三点共线时,GF最小,
连接EG,设AE=x,
由勾股定理得,BG=5,
∵S
梯形ABGD =S
△EDG
+S
△ABE
+S
△EBG

∴(5+10)×10=++,
解得x=5﹣5,
∴AE=5﹣5,
故答案为:5﹣5.
14.(2022•台州)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M 与点B重合时,EF的长为 ;当点M的位置变化时,DF长的最大值为 .
【答案】3,6﹣3.
【解答】解:如图1中,
∵四边形ABCD是菱形,
∴AD=AB=BC=CD,∠A=∠C=60°,
∴△ADB,△BDC都是等边三角形,
当点M与B重合时,EF是等边△ADB的高,EF=AD•sin60°=6×=
3.
如图2中,连接AM交EF于点O,过点O作OK⊥AD于点K,交BC于点T,过点A作AG⊥CB交CB的延长线于点G,取AF的中点R,连接OR.
∵AD∥CG,OK⊥AD,
∴OK⊥CG,
∴∠G=∠AKT=∠GTK=90°,
∴四边形AGTK是矩形,
∴AG=TK=AB•sin60°=3,
∵OA=OM,∠AOK=∠MOT,∠AKO=∠MTO=90°,
∴△AOK≌△MOT(AAS),
∴OK=OT=,
∵OK⊥AD,
∴OR≥OK=,
∵∠AOF=90°,AR=RF,
∴AF=2OR≥3,
∴AF的最小值为3,
∴DF的最大值为6﹣3.
解法二:如图,过点D作DT⊥CB于点T.
∵DF=AD﹣AF,
∴当AF最小时,DF的值最大,
∵AF=FM≥DT=3,
∴AF的最小值为3,
∴DF的最大值为6﹣3.
故答案为:3,6﹣3.
五.与圆有关最值计算
15.(2022•泸州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A 到⊙O上的点的距离的最大值为 .
【答案】2+1
【解答】解:当⊙O与BC、BA都相切时,连接AO并延长交⊙O于点D,则AD为点A到⊙O上的点的距离的最大值,
设⊙O与BC、BA的切点分别为E、F,连接OE、OF,
则OE⊥BC,OF⊥AB,
∵AC=6,BC=2,
∴tan∠ABC==,AB==4,
∴∠ABC=60°,
∴∠OBF=30°,
∴BF==,
∴AF=AB﹣BF=3,
∴OA==2,
∴AD=2+1,
故答案为:2+1.
37.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O 出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN 最大时,游客P行走的距离OP是 米.
【答案】20 
【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,
∵MN=2OM=40m,点F是MN的中点,
∴MF=FN=20m,OF=40m,
∵∠AOB=30°,EF⊥OB,
∴EF=20m,OE=EF=20m,
∴EF=MF,
又∵EF⊥OB,
∴OB是⊙F的切线,切点为E,
∴当点P与点E重合时,观景视角∠MPN最大,此时OP=20m,
故答案为:20.。

相关文档
最新文档