口岸初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
口岸初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()
A. 25°
B. 30°
C. 45°
D. 60°
【答案】B
【考点】角的运算,对顶角、邻补角
【解析】【解答】∵∠EOD=90°,∴∠COE=90°,∵∠AOE=2∠AOC,∴∠AOC=30°,∴∠AOE=2∠AOC=30°,故答案为:B.
【分析】根据图形和已知得到∠EOD、∠COE是直角,由∠AOE=2∠AOC,对顶角相等,求出∠DOB的度数.
2、(2分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[-2.5]=-3.现对
82进行如下操作:这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()
A. 1
B. 2
C. 3
D. 4
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:
∴对121只需进行3次操作后变为1,
故答案为:C
【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可。
3、(2分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】D
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵DH∥EG∥BC
∴∠DCB=∠HDC,∠HDC=∠DME,
∵DC∥EF
∴∠DCB=∠EFB,∠FEG=∠DME=∠GMC
∴与∠DCB相等的角有:∠HDC,∠DME,∠EFB,∠FEG,∠GMC
故答案为:D
【分析】根据平行线的性质即可求解。
4、(2分)已知是二元一次方程组的解,则2m﹣n的算术平方根是()
A.4
B.2
C.
D.±2
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:由题意得:,
解得;
∴= = =2;
故答案为:B.
【分析】将代入方程组,建立关于m、n的方程组,解方程组求出m、n的值,然后代入求出2m-n的算术平方根。
5、(2分)下图是《都市晚报》一周中各版面所占比例情况统计.本周的《都市晚报》一共有206版.体育新闻约有()版.
A. 10版
B. 30版
C. 50版
D. 100版
【答案】B
【考点】扇形统计图,百分数的实际应用
【解析】【解答】观察扇形统计图可知,体育新闻约占全部的15左右,206×15%=30.9,选项B符合图意.
故答案为:B.
【分析】把本周的《都市晚报》的总量看作单位“1”,从统计图中可知,财经新闻占25%,体育新闻和生活共占25%,体育新闻约占15%,据此利用乘法计算出体育新闻的版面,再与选项对比即可.
6、(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()
A.1种
B.2种
C.3种
D.4种
【答案】B
【考点】二元一次方程的应用
【解析】【解答】解:设用了2元x张,5元y张,则
2x+5y=23,
2x=23-5y,
x= ,
∵x,y均为正整数,
∴或.
即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.
故答案为:B.
【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。
7、(2分)图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?()
A. 6
B. 7
C. 8
D. 9
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设晓莉和朋友共有x人,
若选择包厢计费方案需付:(900×6+99x)元,
若选择人数计费方案需付:540×x+(6﹣3)×80×x=780x(元),
∴900×6+99x<780x,
解得:x>=7 .
∴至少有8人.故答案为:C
【分析】先设出去KTV的人数,再用x表示出两种方案的收费情况,利用“包厢计费方案会比人数计费方案便宜”列出包厢费用小于人数计费,解一元一次不等式即可求得x的取值范围,进而可得最少人数.
8、(2分)如图,表示的点在数轴上表示时,应在哪两个字母之间()
A. C与D
B. A与B
C. A与C
D. B与C
【答案】A
【考点】实数在数轴上的表示,估算无理数的大小
【解析】【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字
母之间.
故答案为:A.
【分析】本题应先估计无理数的大小,然后才能在数轴上将表示出来,因为,所以应该在C与D之间.
9、(2分)用加减法解方程组时,下列解法错误的是()
A. ①×3-②×2,消去x
B. ①×2-②×3,消去y
C. ①×(-3)+②×2,消去x
D. ①×2-②×(-3),消去y
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;
B、①×2-②×3,可消去y,故不符合题意;
C、①×(-3)+②×2,可消去x,故不符合题意;
D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.
故答案为:D
【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。
的
10、(2分)若整数同时满足不等式与,则该整数x是()
A.1
B.2
C.3
D.2和3
【答案】B
【考点】解一元一次不等式组,一元一次不等式组的特殊解
【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.
故答案为:B.
【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.
11、(2分)用不等式表示如图所示的解集,其中正确的是()
A.x>-2
B.x<-2
C.x≥-2
D.x≤-2
【答案】C
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:图中数轴上表达的不等式的解集为:.
故答案为:C.
【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
12、(2分)如图,下列说法中错误的是()
A. ∠GBD和∠HCE是同位角
B. ∠ABD和∠ACE是同位角
C. ∠FBC和∠ACE是内错角
D. ∠GBC和∠BCE是同旁内角
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:A、∠GBD和∠HCE不符合同位角的定义,故本选项正确;
B、∠ABD和∠ACE是同位角,故本选项错误;
C、∠FBC和∠ACE是内错角,故本选项错误;
D、∠GBC和∠BCE是同旁内角,故本选项错误;
故答案为:A.
【分析】】∠GBD和∠HCE是由两条直线被另两条直线所截形成的两个角,一共有四条直线,不是同位角.
二、填空题
13、(1分)已知一个数的平方根是和,则这个数的立方根是________.
【答案】4
【考点】平方根,立方根及开立方
【解析】【解答】解:依题可得:
(3a+1)+(a+11)=0,
解得:a=-3,
∴这个数为:(3a+1)2=(-9+1)2=64,
∴这个数的立方根为:=4.
故答案为:4.
【分析】一个数的平方根互为相反数,依此列出方程,解之求出a,将a值代入求出这个数,从而得出对这个数的立方根
14、(3分)的绝对值是________,________的倒数是,的算术平方根是________.
【答案】;3;2
【考点】绝对值及有理数的绝对值,有理数的倒数,算术平方根
【解析】【解答】解:(1);(2)的倒数是3;(3),4的算术平方根是2;
【分析】一个负数的绝对值等于它的相反数;一个分数的倒数,只需要将这个分数的分子分母交换位置;将
先化简为4,再根据算数平方根的意义算出4的算数平方根即可。
15、(1分)关于x,y的方程组中,若的值为,则m=________。
【答案】2
【考点】解二元一次方程组
【解析】【解答】解:
由得:3mx=9
∴3×m=9
解之:m=2
故答案为:2
【分析】观察方程组中同一未知数的系数的特点:y的系数互为相反数,因此将两方程相加,可得出3mx=9,再将x的值代入方程求出m的值。
16、(1分)的算术平方根为________.
【答案】2
【考点】算术平方根
【解析】【解答】解:的算术平方根为2.
故答案为:2.
【分析】,即求4的算术平方根;算术平方根是正的平方根.
17、(2分)若方程组与有相同的解,则a=________,b=________。
【答案】3;2
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:
由得:11x=22
解之:x=2
把x=2代入得:4-y=5
解之:y=-1
∴
由题意得:把代入得
解之:
故答案为:
【分析】利用加减消元法解方程组,求出x、y的值,再将x、y的值代入,建立关于a、b的方程组,解方程组求出a、b的值即可。
18、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
三、解答题
19、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
20、(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
21、(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。
(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。
【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
22、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
23、(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1=
∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
24、(5分)把下列各数表示在数轴上,并比较它们的大小(用“<”连接).
,0,,,
【答案】解:
【考点】实数在数轴上的表示,实数大小的比较
【解析】【分析】根据数轴上用原点表示0,原点右边的点表示正数,原点左边的点表示负数,即可一一将各个实数在数轴上找出表示该数的点,用实心的小原点作标记,并在原点上写出该点所表示的数,最后根据数轴上所表示的数,右边的总比左边的大即可得出得出答案。
25、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:(…);
整数集合:(…);
负分数集合:(…);
无理数集合:(…).
【答案】解:正有理数集合:(3,,-(-2.28), 3.14 …);
整数集合:(3,0,-∣-4∣…);
负分数集合:(-2.4,- ,,…);
无理数集合:(,-2.1010010001………).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。
逐一填写即可。
26、(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;
(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;
(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.。