最新小波去噪matlab程序.优选
Mtalb小波去噪
![Mtalb小波去噪](https://img.taocdn.com/s3/m/0d10a0df3186bceb19e8bbdb.png)
数字图像阈值去噪算法研究与实现摘要图像在获取和传输的过程中经常要受到噪声的污染。
噪声对图像分析有着非常重要的影响,必须在分析前去除。
所以,图像去噪成为图像分析和处理的重要技术。
传统的去噪方法不仅滤出了图像的噪声,同时使图像细节变得模糊。
小波变换是继傅琨叶变换之后的又一时频分析工具。
小波变换由于在时域频域同时具有良好的局部化性质和多分辨率分析的特点,因此不仅能满足各种去噪要求,如低通、高通、随机噪声的去除,而且与传统的去噪方法相比较,有着无可比拟的优点,成为信号分析的一个强有力的工具,被誉为分析信号的数学显微镜。
其应用包括图像预处理、图像压缩与传输、图像分析、特征提取等图像处理的很多阶段。
首先,介绍了本课题的研究目的,并介绍了目前常用的去噪方法及这些方法之间的比较。
其次,在简述了小波变换的发展历史和小波变换的基本理论知识后,对以小波为工具在数字图像处理方面进行了有益的探索。
再次,给出了小波边缘检测理论,接下来针对小波去噪的理论和方法着重进行了介绍,包括小波去噪的原理、方法和阈值去噪处理等方面的内容。
最后,对本文的工作进行了总结。
小波变换由于具有“数学显微镜”的作用,在去噪的同时能保持图像细节,得到原图像的最佳恢复。
在众多的小波去噪方法中,运用最多的是Donoho小波阈值萎缩法,但Donoho给出的阈值有“过扼杀”小波系数的倾向,重建误差较大。
本文提出基于小波变换与中值滤波相结合的方法实现了图像去噪。
该方法在去噪之前,先通过小波边缘检测确定图像边缘特征的小波系数,保留这些位置的小波系数,其不受闽值去噪影响,对其它位置的小波系数进行自适应阈值去噪,去除高斯噪声。
然后对图像进行中值滤波,去除椒盐噪声。
该算法的实验结果表明不仅能滤出图像中高斯噪声和椒盐噪声的混合噪声,而且能较好的保留图像的边缘细节,其滤波效果优于传统的图像去噪方法。
关键词:小波变换,高斯噪声,椒盐噪声,边缘检测,图像去噪ABSTRACTThe image iS often corrupted by noise in its acquisition or transmission.The noise to be removed before analysis has an important effect on image analysiS.Image~denoising is an important technology in image analysis and processingdomain.Traditional denoising methods can filter noise。
利用Matlab进行图像去噪和图像增强
![利用Matlab进行图像去噪和图像增强](https://img.taocdn.com/s3/m/cc6d0236854769eae009581b6bd97f192279bfa8.png)
利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。
而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。
本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。
一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。
Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。
1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。
在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。
最后通过逆小波变换将去噪后的图像重构出来。
这种方法能够有效抑制高频噪声,保留图像的细节信息。
2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。
在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。
二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。
Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。
1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。
在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。
该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。
2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。
在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。
matlab小波变换信号去噪
![matlab小波变换信号去噪](https://img.taocdn.com/s3/m/cde47d451611cc7931b765ce050876323012747f.png)
MATLAB小波变换信号去噪引言小波变换是一种多尺度分析方法,广泛应用于信号处理领域。
由于小波变换具有良好的时频局部性质,可以将信号分解为不同频率和时间分辨率的成分,因此被广泛应用于信号去噪领域。
本文将介绍如何使用MATLAB进行小波变换信号去噪的方法。
MATLAB中的小波变换在MATLAB中,可以使用Wavelet Toolbox中的wavedec函数进行小波分解,使用wrcoef函数进行重构。
具体步骤如下:1.导入待处理的信号数据。
2.选择适当的小波基函数和分解层数。
3.使用wavedec函数对信号进行小波分解,得到分解系数。
4.根据阈值方法对分解系数进行去噪处理。
5.使用wrcoef函数对去噪后的分解系数进行重构,得到去噪后的信号。
6.分析去噪效果并进行评估。
下面将逐步详细介绍这些步骤。
选择小波基函数和分解层数小波基函数的选择在小波分析中非常重要,不同的小波基函数适用于不同类型的信号。
常用的小波基函数有Daubechies小波、Haar小波、db2小波等。
根据信号的特点和分析需求,选择合适的小波基函数是非常重要的。
在MATLAB中,可以使用wname函数查看支持的小波基函数。
可以通过比较不同小波基函数的性能指标来选择合适的小波基函数。
常见的性能指标包括频率局部化、时频局部化和误差能量。
选择分解层数时,需要根据信号的特点和噪声的程度来决定。
一般而言,分解层数越高,分解的细节系数越多,信号的时间分辨率越高,但运算量也会增加。
小波分解使用wavedec函数对信号进行小波分解。
函数的输入参数包括待分解的信号、小波基函数名称和分解层数。
函数输出包括近似系数和细节系数。
[C, L] = wavedec(x, level, wname);其中,x是待分解的信号,level是分解层数,wname是小波基函数名称。
C是包含近似系数和细节系数的向量,L是分解的长度信息。
根据分解层数,可以将分解系数划分为不同频带的系数。
matlab小波去噪详解超全超全有程序
![matlab小波去噪详解超全超全有程序](https://img.taocdn.com/s3/m/f0a5d30ca8114431b90dd8c5.png)
小波去噪[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname')式中:输入参数x 为需要去噪的信号;1.tptr :阈值选择标准.1)无偏似然估计(rigrsure)原则。
它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。
对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。
2)固定阈值(sqtwolog)原则。
固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。
3)启发式阈值(heursure)原则。
它是rigrsure原则和sqtwolog 原则的折中。
如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。
4)极值阈值(minimaxi)原则。
它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。
2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h).3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整.4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。
输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd].常见的几种小波:haar,db,sym,coif,bior用MATLAB对一语音信号进行小波分解,分别用强阈值,软阈值,默认阈植进行消噪处理。
复制内容到剪贴板代码:%装载采集的信号leleccum.matload leleccum;%=============================%将信号中第2000到第3450个采样点赋给sindx=2000:3450;s=leleccum(indx);%=============================%画出原始信号subplot(2,2,1);plot(s);title('原始信号');%=============================%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);%=============================%对信号进行强制性消噪处理并图示结果dd3=zeros(1,length(d3));dd2=zeros(1,length(d2));dd1=zeros(1,length(d1));c1=[a3 dd3 dd2 dd1];s1=waverec(c1,l,'db1');subplot(2,2,2);plot(s1);grid;title('强制消噪后的信号');%=============================%用默认阈值对信号进行消噪处理并图示结果%用ddencmp函数获得信号的默认阈值[thr,sorh,keepapp]=ddencmp('den','wv',s);s2=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp); subplot(2,2,3);plot(s2);grid;title('默认阈值消噪后的信号');%=============================%用给定的软阈值进行消噪处理sosoftd2=wthresh(d2,'s',1.823);softd3=wthresh(d3,'s',2.768);c2=[a3 softd3 softd2 softd1];s3=waverec(c2,l,'db1');subplot(2,2,4);plot(s3);grid;title('给定软阈值消噪后的信号');ftd1=wthresh(d1,'s',1.465);。
matlab去噪声方法
![matlab去噪声方法](https://img.taocdn.com/s3/m/fc7f67e7294ac850ad02de80d4d8d15abe2300af.png)
matlab去噪声方法MATLAB中去噪声的方法有很多,以下列举了一些常用的方法:1. 均值滤波:均值滤波是一种简单且有效的去噪声方法,它通过计算邻域内像素的平均值来减小噪声。
具体操作是创建一个与输入图像大小相同的零矩阵,然后遍历图像的每个像素,将邻域内的像素值求和,最后除以邻域内像素的数量,得到滤波后的像素值。
2. 中值滤波:中值滤波主要用于去除图像中的脉冲噪声和椒盐噪声。
该方法的核心思想是将图像中相邻像素的灰度值进行排序,然后取中间值作为滤波后的像素值。
3. 高斯滤波:高斯滤波是一种广泛应用于图像去噪的方法,它通过在图像上滑动一个高斯核函数来降低噪声。
高斯核函数的宽度决定了滤波的效果,宽度越大,去噪效果越明显,但同时也会导致图像变得模糊。
4. 双边滤波:双边滤波是一种基于邻域的滤波方法,它同时考虑了像素的空间距离和灰度差异。
通过在图像上滑动一个双边核函数,可以有效地去除噪声并保留图像的细节。
5. 基于小波变换的方法:小波变换可以将图像分解为不同尺度、方向和频率的子带,通过对子带的处理,可以有效地去除图像中的噪声。
常用的有小波分解、小波合成和小波去噪等方法。
6. 基于深度学习的方法:深度学习方法,如卷积神经网络(CNN)和循环神经网络(RNN),在图像去噪领域也取得了很好的效果。
通过训练神经网络,可以学习到图像的复杂特征,从而在去噪的同时保留图像的细节。
在MATLAB中实现这些方法,可以利用内置的图像处理函数或自行编写代码。
例如,使用imfilter函数实现均值滤波,使用im2double函数将图像转换为双精度值等。
同时,可以借助图像处理工具箱中的各种滤波器和图像读取、显示函数,如sobel、roberts、prewitt算子等,来实现特定的去噪效果。
小波阈值去噪matlab程序
![小波阈值去噪matlab程序](https://img.taocdn.com/s3/m/0f9d8d9627fff705cc1755270722192e44365857.png)
小波阈值去噪matlab程序小波阈值去噪是一种常用的信号处理方法,可以在Matlab中使用Wavelet Toolbox来实现。
下面是一个简单的小波阈值去噪的Matlab程序示例:matlab.% 生成含有噪声的信号。
t = 0:0.001:1;y = sin(2pi100t) + randn(size(t));% 进行小波阈值去噪。
wname = 'db4'; % 选择小波基函数。
level = 5; % 选择分解的层数。
noisySignal = wdenoise(y, 'DenoisingMethod','UniversalThreshold', 'ThresholdRule', 'Soft', 'Wavelet', wname, 'Level', level);% 绘制结果。
figure.subplot(2,1,1)。
plot(t,y)。
title('含噪声信号')。
subplot(2,1,2)。
plot(t,noisySignal)。
title('去噪后信号')。
在这个示例中,首先生成了一个含有噪声的信号,然后使用`wdenoise`函数进行小波阈值去噪。
在`wdenoise`函数中,我们选择了小波基函数为db4,分解的层数为5,DenoisingMethod为UniversalThreshold,ThresholdRule为Soft。
最后绘制了含噪声信号和去噪后的信号。
需要注意的是,小波阈值去噪的具体参数选择和调整需要根据实际情况进行,上述示例仅供参考。
希望这个简单的示例可以帮助你开始在Matlab中实现小波阈值去噪。
小波去噪matlab程序代码
![小波去噪matlab程序代码](https://img.taocdn.com/s3/m/4059d9df4afe04a1b071de4c.png)
axis square %产生含噪声图像 init = 2055615866; randn(seed,init); x = X + 50*randn(size(X) ); subplot(2,2,2);image(x); colormap(map); xlabel((b)含噪声图像);
%对三个方向高频系数进行阈值处理 nc = wthcoef2(h,c,s,n,p,s); nc = wthcoef2(v,nc,s,n,p,s); nc = wthcoef2(d,nc,s,n,p,s); %对新的小波分解结构[c,s]进行重构 x1 = wavee(x1); colormap(map);
小波去噪 matlab 程序代码
1、小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次 N,然后计 算信号 s 到第 N 层的分解。 (2)对高频系数进行阈值量化。对于从 1~N 的每一层,选择一个阈值, 并对这一层的高频系数进行软阈值量化处理。 (3)二维小波重构。根据小波分解的第 N 层的低频系数和经过修改的从 第一层到第 N 的各层高频系数,计算二维信号的小波重构 2、Matlab 函数介绍 (1)wavedec2 函数 该函数用于对多尺度二维小波进行分解,其常用调用格式:
xlabel((c)第一次去噪图像); axis square %对 nc 再次进行滤波去噪 xx = wthcoef2(v,nc,s,n,p,s); x2 = waverec2(xx,s,coif3); subplot(2,2,4);image(x2); colormap(map); xlabel((d)第二次去噪图像);
axis square《span style=font-size:14px》 《span style=font-size:14px》 《span style=font-size:18px; color:#3366ff》
matlab小波滤波器代码 -回复
![matlab小波滤波器代码 -回复](https://img.taocdn.com/s3/m/9dbef4806037ee06eff9aef8941ea76e58fa4aa6.png)
matlab小波滤波器代码-回复在MATLAB中实现小波滤波器的代码,可以通过以下步骤来完成:第一步:导入信号数据在MATLAB中,首先需要导入待处理的信号数据。
可以使用`wavread`函数读取声音文件,或者使用`load`函数导入其他格式的数据。
matlab[data, fs] = wavread('sound.wav');这里`data`是读取到的信号数据,`fs`是采样率。
第二步:选择小波基函数小波滤波器通过对信号进行小波变换来实现滤波效果。
在MATLAB 中,可以选择不同的小波基函数进行变换。
常用的小波基函数包括`haar`、`dbN`(N是小波基的阶数)、`coifN`、`symN`等。
这里以`haar`小波基为例。
matlabwaveletName = 'haar';第三步:进行小波变换使用`wavedec`函数进行小波变换,将信号分解为多个尺度的小波系数。
matlab[level1, level2, level3, level4] = wavedec(data, 4, waveletName);这里将信号分解为4个尺度的小波系数,分别存储在`level1`、`level2`、`level3`和`level4`变量中。
第四步:滤波在小波变换后,可以对小波系数进行滤波操作。
可以通过设定一个阈值,将小波系数中小于该阈值的部分设为0,从而达到去噪的效果。
matlabthreshold = 0.5;level1(filteredLevel1 < threshold) = 0;level2(filteredLevel2 < threshold) = 0;level3(filteredLevel3 < threshold) = 0;level4(filteredLevel4 < threshold) = 0;这里使用了一个阈值为0.5的例子,小于该阈值的小波系数将被设为0。
离散小波变换去噪Matlab源程序
![离散小波变换去噪Matlab源程序](https://img.taocdn.com/s3/m/aa0ac5d36bec0975f465e28a.png)
%自动小波阈值选择去噪(scale-dependent),lambda=m/0.6745*sqrt(2*ln(n))%参考文献:% Ma X, Zhou C, Kemp I J. Automated wavelet selection and thresholding for PD detection[J]. Electrical Insulation Magazine IEEE, 2002, 18(2):37-45.%主要函数:wavedec,detcoef,wrcoeffunction y_denoised=DWTdenoising_automaticthreshold(noisydata,wavebase,nlevel,thresholdtype,threshold)% y_denoised--去噪后信号% noisydata--含噪信号-待去噪信号% wavebase--母小波、小波基函数% nlevel--分解层数% thresholdtype--去噪方法(hard-硬阈值,soft-软阈值)% threshold--去噪时使用的阈值策略Scale: median(C)/0.6745*sqrt(2*ln(nj)); Robust: median(C)/0.6745*sqrt(2*ln(N)); Sqtwolog: sqrt(2*ln(N))% 读程序之前先了解[C,L]=wavedec得到的结果N=length(noisydata); %数据长度if size(noisydata,1)>size(noisydata,2) %处理行向量,列向量转置noisydata=noisydata';endif nargin==1 %查看输入的参数个数(nargin),比如只输入了noisydata,后面的wavebase等参数均为输入wavebase='db1'; %小波基nlevel=1; %分解层数thresholdtype='hard'; %阈值方法threshold='Scale';elseif nargin==2nlevel=1; %分解层数thresholdtype='hard'; %阈值方法threshold='Scale';elseif nargin==3thresholdtype='hard';threshold='Scale';elseif nargin==4threshold='Scale';endendendend[C,L]=wavedec(noisydata,nlevel,wavebase);L1=fliplr(L(1:nlevel+1));switch thresholdtypecase 'hard' %硬阈值去噪for j=1:nlevelCD=detcoef(C,L,j);if strcmp(threshold,'Robust')lambda=median(abs(CD))/0.6745*sqrt(2*log(N));elseif strcmp(threshold,'Sqtwolog')lambda=sqrt(2*log(N));elselambda=median(abs(CD))/0.6745*sqrt(2*log(L1(j))); %scale-dependent threshold endendfor k=1:L1(j)if abs(CD(k))<=lambdaCD(k)=0;endendC(sum(L1(j+1:end))+1:sum(L1(j+1:end))+L1(j))=CD;endcase 'soft' %软阈值去噪for j=1:nlevelCD=detcoef(C,L,j);if strcmp(threshold,'Robust')lambda=median(abs(CD))/0.6745*sqrt(2*log(N));elseif strcmp(threshold,'Sqtwolog')lambda=sqrt(2*log(N));elselambda=median(abs(CD))/0.6745*sqrt(2*log(L1(j))); %scale-dependent threshold endendfor k=1:L1(j)if abs(CD(k))<=lambdaCD(k)=0;elseif CD(k)>lambdaCD(k)=CD(k)-lambda;elseif CD(k)<-lambdaCD(k)=CD(k)+lambda;endendendendC(sum(L1(j+1:end))+1:sum(L1(j+1:end))+L1(j))=CD;endotherwiseprintf('Wrong Input Parameters!\n');endy_denoised=zeros(size(noisydata));for j=1:nlevely_denoised=y_denoised+wrcoef('d',C,L,wavebase,j); %逐层恢复细节系数endy_denoised=y_denoised+wrcoef('a',C,L,wavebase,nlevel); %恢复近似系数。
小波去噪的matlab程序 -回复
![小波去噪的matlab程序 -回复](https://img.taocdn.com/s3/m/f053c81a3a3567ec102de2bd960590c69ec3d80e.png)
小波去噪的matlab程序-回复如何使用Matlab进行小波去噪。
小波去噪是数值信号处理中常用的一种方法,它可以有效地去除信号中的噪声,保留有用的信号部分。
Matlab是一个强大的数值计算和数据可视化工具,也提供了丰富的信号处理工具箱,其中包括小波去噪算法。
本文将介绍如何使用Matlab进行小波去噪,以帮助读者更好地理解和应用这一方法。
首先,我们需要定义被噪声污染的信号。
在Matlab中,可以通过生成具有噪声的信号来模拟实际应用。
以下是一段生成具有高斯白噪声的正弦信号的代码:fs = 1000; 采样频率T = 1/fs; 采样间隔L = 1000; 信号长度t = (0:L-1)*T; 时间向量f = 50; 正弦信号频率A = 0.7; 正弦信号幅度x = A*sin(2*pi*f*t); 生成正弦信号添加高斯白噪声mu = 0; 噪声均值sigma = 0.5; 噪声标准差n = sigma*randn(size(t)); 生成高斯白噪声x_noisy = x + n; 带噪声的信号上述代码中,我们生成了一个频率为50 Hz的正弦信号,并添加了均值为0、标准差为0.5的高斯白噪声。
生成的带噪声的信号存储在变量`x_noisy`中。
接下来,我们需要选择一种小波基函数以分析信号,并选择合适的小波系数阈值来进行去噪。
Matlab提供了多种小波基函数和小波系数阈值选择方法,如Daubechies小波基函数和固定阈值法、SureShrink方法等。
以下是一段使用Daubechies小波基函数和可视化小波系数阈值选择结果的代码:执行小波变换[c, l] = wavedec(x_noisy, 5, 'db4'); 小波分解可视化小波系数figure;subplot(2,1,1);plot(x_noisy);title('原始信号');subplot(2,1,2);plot(c);title('小波系数');小波系数阈值选择thr = wthrmngr('dw1ddenoLVL','penalhi',c,l); 阈值选择sorh = 's'; 阈值类型,s代表软阈值,h代表硬阈值keepapp = 1; 保留近似系数X = wdencmp('gbl',c,l,'db4',5,thr,sorh,keepapp); 小波去噪可视化去噪结果figure;subplot(2,1,1);plot(x_noisy);title('带噪声的信号');subplot(2,1,2);plot(X);title('去噪后的信号');上述代码中,我们使用了Daubechies小波基函数对信号进行了5级小波分解,并可视化了小波系数。
matlab程序的高斯谐波小波滤波的实现-概述说明以及解释
![matlab程序的高斯谐波小波滤波的实现-概述说明以及解释](https://img.taocdn.com/s3/m/c98f3dcb70fe910ef12d2af90242a8956aecaa60.png)
matlab程序的高斯谐波小波滤波的实现-概述说明以及解释1.引言1.1 概述概述:在数字图像处理领域,滤波是一种常用的图像增强技术,旨在消除图像中的噪声,并凸显图像中的细节和特征。
高斯谐波小波滤波是一种有效的滤波方法,通过结合高斯滤波、谐波滤波和小波变换技术,能够在保持图像细节的同时有效地去除噪声。
本文将介绍如何利用Matlab编程实现高斯谐波小波滤波,包括原理、实现步骤以及实现效果评估等内容。
通过本文的学习,读者将能够了解该滤波方法的优势和应用前景,为进一步的图像处理工作提供参考和指导。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分中,我们将介绍本文的概述,包括高斯谐波小波滤波的背景和意义,引出文章的主要内容。
同时,我们还会说明文章的结构,分析每个部分的主要内容和目标。
在正文部分中,我们将首先介绍Matlab程序的基本信息,包括程序的功能和特点。
然后,我们将详细解释高斯谐波小波滤波的原理,包括其工作原理和优势。
最后,我们将详细阐述实现这一滤波方法的步骤,以便读者能够清楚地了解如何在Matlab中实现高斯谐波小波滤波。
在结论部分,我们将对实现效果进行评估,分析该滤波方法的优点和不足。
同时,我们还将展望该方法在未来的应用前景,总结全文的主要内容,为读者提供一个全面的结论。
1.3 目的本文的目的是介绍利用Matlab程序实现高斯谐波小波滤波的方法。
通过详细介绍高斯谐波小波滤波的原理和实现步骤,读者可以了解这种滤波方法的具体操作步骤和实现过程。
同时,通过对实现效果的评估和应用前景的展望,希望读者能够深入了解高斯谐波小波滤波在信号处理中的作用和价值,以及它在实际应用中的潜力和优势。
最终,通过总结本文的内容,读者能够对高斯谐波小波滤波有一个全面的认识,并能够运用Matlab 程序进行相关领域的研究和应用。
2.正文2.1 Matlab程序介绍Matlab是一种强大的数学软件,广泛应用于科学计算、数据分析和图形绘制等领域。
matlab11种数字信号滤波去噪算法
![matlab11种数字信号滤波去噪算法](https://img.taocdn.com/s3/m/e72a6690c0c708a1284ac850ad02de80d4d806c2.png)
matlab11种数字信号滤波去噪算法Matlab是一种强大的数学软件,广泛应用于信号处理领域。
在数字信号处理中,滤波去噪是一个重要的任务,可以提高信号的质量和准确性。
本文将介绍Matlab中的11种数字信号滤波去噪算法。
1. 均值滤波:该算法通过计算信号中一定窗口内的像素平均值来去除噪声。
它适用于高斯噪声和椒盐噪声的去除。
2. 中值滤波:该算法通过计算信号中一定窗口内的像素中值来去除噪声。
它适用于椒盐噪声的去除。
3. 高斯滤波:该算法通过对信号进行高斯模糊来去除噪声。
它适用于高斯噪声的去除。
4. 维纳滤波:该算法通过最小均方误差准则来估计信号的真实值,并去除噪声。
它适用于高斯噪声的去除。
5. 自适应滤波:该算法通过根据信号的局部特性来调整滤波器的参数,从而去除噪声。
它适用于非线性噪声的去除。
6. 小波去噪:该算法通过将信号分解为不同频率的小波系数,并对系数进行阈值处理来去除噪声。
它适用于各种类型的噪声的去除。
7. Kalman滤波:该算法通过对信号进行状态估计和观测更新来去除噪声。
它适用于线性系统的去噪。
8. 粒子滤波:该算法通过使用一组粒子来估计信号的状态,并通过重采样来去除噪声。
它适用于非线性系统的去噪。
9. 线性预测滤波:该算法通过使用线性预测模型来估计信号的未来值,并去除噪声。
它适用于平稳信号的去噪。
10. 自适应线性组合滤波:该算法通过对信号进行线性组合来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
11. 稀疏表示滤波:该算法通过使用稀疏表示模型来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
以上是Matlab中的11种数字信号滤波去噪算法。
每种算法都有其适用的场景和优缺点,根据具体的信号和噪声类型选择合适的算法进行去噪处理。
Matlab提供了丰富的函数和工具箱,可以方便地实现这些算法,并对信号进行滤波去噪。
通过合理选择和组合这些算法,可以有效提高信号的质量和准确性,为后续的信号处理任务提供更好的基础。
小波去噪MATLAB实现
![小波去噪MATLAB实现](https://img.taocdn.com/s3/m/5676f1452b160b4e767fcf37.png)
第4章医学图像小波去噪的MATLAB实现4.1 小波基的确定不同的小波基具有不同的时频特征,用不同的小波基分析同一个问题会产生不同的结果,故小波分析在应用中便存在一个小波基或小波函数的选取和优化问题。
我们在应用中要把握小波函数的特征,根据应用需要,选择合适的小波基。
在小波分析应用中要考查小波函数或小波基的连续性、正交性、对称性、消失矩、线性相位、时频窗口的中心和半径以及时频窗的面积等,这些特征关系到如何选择合适的小波基。
本节选取了一些常见的小波基,首先固定小波分解层数和阈值,然后改变小波基,运行结果。
通过计算峰值信噪比(PSNR)来判定哪个小波基对医学图像去噪效果好。
下表为不同小波基去噪前带噪图像的峰值信噪比(PSNR)和去噪后图像的峰值信噪比(PSNR),通过峰值信噪比对不同小波基的去噪效果进行评价,从而选出对图像去噪效果较好的小波基。
表4-1 不同小波基去噪后图像的峰值信噪比通过去噪效果图4-1和表4-1以及图像评价原则我们可以很容易选出对图像去噪效果好,而又很好的保持图像细节的小波基。
从图4-1中我们可以看出选用sym3小波基去噪后噪声得到了明显的抑制,但是图像的细节被弱化了,读图有所影响。
选用sym5小波基去噪后,噪声没有得到很好的抑制,而且图像细节已明显消损,对读图有所影响。
选用coif2小波基对图像进行去噪后,噪声得到一定的抑制,图像的细节保持的也很好。
选用coif5小波基对图像去噪后,图像细节明显消损,对读图有所影响。
选用db2小波基对图像去噪后图像的噪声虽然得到抑制但细节变得模糊,很难辨别。
选用db6小波基对图像进行去噪后,图像失真比较明显。
从表4-1中可以看出去噪后图像的PSNR ,其中使用coif2小波基去噪后图像的PSNR最大,通常峰值信噪比PSNR愈大愈好。
实验结果如图4-1所示:原始图像 加噪图像图4-1 不同小波基去噪效果图综上所述,coif2小波基去噪效果很好,所以本次课程设计中我选择coif2小波基进行医学图像小波去噪方法研究。
小波变换去噪matlab源码
![小波变换去噪matlab源码](https://img.taocdn.com/s3/m/755fa1c0aff8941ea76e58fafab069dc502247c3.png)
小波变换去噪matlab源码小波变换是一种广泛应用于信号处理和图像处理的技术。
它通过将信号分解成不同频率的子信号,从而提供了一种有效的降噪方法。
要在MATLAB中进行小波变换去噪,您可以使用MATLAB的信号处理工具箱中提供的函数。
下面是一个示例的MATLAB源代码,用于实现小波变换去噪:```MATLAB% 加载待处理的信号signal = load('input_signal.mat');% 设置小波函数和分解层数wavelet = 'db4'; % 使用 Daubechies 4 小波函数level = 5; % 设置分解层数% 执行小波变换[coefficients, levels] = wavedec(signal, level, wavelet);% 通过阈值处理降噪threshold = wthrmngr('dw2ddenoLVL', coefficients, levels);cleaned_coefficients = wthresh(coefficients, 'h', threshold);denoised_signal = waverec(cleaned_coefficients, levels, wavelet);% 显示和保存降噪后的信号plot(denoised_signal);save('denoised_signal.mat', 'denoised_signal');```这段代码首先加载了待处理的信号,然后定义了所使用的小波函数和分解层数。
接下来,它执行了小波变换,并通过阈值处理来降噪信号。
最后,代码显示了降噪后的信号,并将其保存到文件中。
值得注意的是,该示例中使用了默认的阈值选取方式(dw2ddenoLVL),您可以根据具体的应用场景选择适合的阈值选取方法。
以上是关于在MATLAB中使用小波变换进行信号去噪的简单示例代码。
二维小波阈值去噪 matlab-定义说明解析
![二维小波阈值去噪 matlab-定义说明解析](https://img.taocdn.com/s3/m/a8d10fd9dbef5ef7ba0d4a7302768e9951e76e3d.png)
二维小波阈值去噪matlab-概述说明以及解释1.引言1.1 概述概述:二维小波阈值去噪是一种常用的信号处理技术,用于降低信号中的噪声干扰以及提高信号的质量和清晰度。
通过对信号进行二维小波变换和阈值处理,可以有效地去除信号中的噪声成分,保留信号的重要信息。
在本文中,我们将介绍二维小波变换的原理和小波阈值去噪的方法,以及在MATLAB环境下的实现过程。
通过对实验结果的分析和展望,我们可以看到二维小波阈值去噪在信号处理中的广泛应用前景,帮助读者更好地理解和掌握这一重要技术。
1.2 文章结构本文将分为引言、正文和结论三个部分来展开讨论。
在引言部分,将会对二维小波阈值去噪这一主题进行概述,并介绍文章的结构和目的。
在正文部分,将详细介绍二维小波变换的原理,小波阈值去噪的方法以及在MATLAB中如何实现小波去噪。
最后,在结论部分,将对实验结果进行分析,展望二维小波阈值去噪在未来的应用前景,并对全文进行总结。
通过这样的结构安排,读者将能够全面了解二维小波阈值去噪的相关知识,深入掌握该领域的核心概念和技术方法。
1.3 目的本文旨在介绍二维小波阈值去噪方法在信号处理领域中的应用。
通过对二维小波变换原理和小波阈值去噪方法的介绍,以及在MATLAB中的具体实现,旨在帮助读者深入了解该技术在信号处理中的重要性和实用性。
通过实验结果分析和应用前景展望,希望读者能够对二维小波阈值去噪方法有更深入的理解,并为其在实际应用中提供参考和指导。
最终,通过总结本文的内容,读者将能够对二维小波阈值去噪方法有一个全面的认识,为进一步的研究和应用提供基础和启发。
2.正文2.1 二维小波变换原理在信号处理领域,小波变换是一种用于分析信号频谱和时域特征的强大工具。
与傅里叶变换不同,小波变换具有良好的时频局部化性质,能够在时域和频域上同时提供精确的信息。
在图像处理中,我们通常使用二维小波变换来分析和处理图像信号。
二维小波变换将图像信号分解为不同尺度和方向上的小波系数。
matlab小波去噪详解超全超全有程序
![matlab小波去噪详解超全超全有程序](https://img.taocdn.com/s3/m/f0a5d30ca8114431b90dd8c5.png)
小波去噪[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname')式中:输入参数x 为需要去噪的信号;1.tptr :阈值选择标准.1)无偏似然估计(rigrsure)原则。
它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。
对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。
2)固定阈值(sqtwolog)原则。
固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。
3)启发式阈值(heursure)原则。
它是rigrsure原则和sqtwolog 原则的折中。
如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。
4)极值阈值(minimaxi)原则。
它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。
2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h).3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整.4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。
输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd].常见的几种小波:haar,db,sym,coif,bior用MATLAB对一语音信号进行小波分解,分别用强阈值,软阈值,默认阈植进行消噪处理。
复制内容到剪贴板代码:%装载采集的信号leleccum.matload leleccum;%=============================%将信号中第2000到第3450个采样点赋给sindx=2000:3450;s=leleccum(indx);%=============================%画出原始信号subplot(2,2,1);plot(s);title('原始信号');%=============================%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);%=============================%对信号进行强制性消噪处理并图示结果dd3=zeros(1,length(d3));dd2=zeros(1,length(d2));dd1=zeros(1,length(d1));c1=[a3 dd3 dd2 dd1];s1=waverec(c1,l,'db1');subplot(2,2,2);plot(s1);grid;title('强制消噪后的信号');%=============================%用默认阈值对信号进行消噪处理并图示结果%用ddencmp函数获得信号的默认阈值[thr,sorh,keepapp]=ddencmp('den','wv',s);s2=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp); subplot(2,2,3);plot(s2);grid;title('默认阈值消噪后的信号');%=============================%用给定的软阈值进行消噪处理sosoftd2=wthresh(d2,'s',1.823);softd3=wthresh(d3,'s',2.768);c2=[a3 softd3 softd2 softd1];s3=waverec(c2,l,'db1');subplot(2,2,4);plot(s3);grid;title('给定软阈值消噪后的信号');ftd1=wthresh(d1,'s',1.465);。
matlab小波降噪方式
![matlab小波降噪方式](https://img.taocdn.com/s3/m/7c598b1cabea998fcc22bcd126fff705cc175c92.png)
matlab小波降噪方式Matlab小波降噪方式小波降噪是一种常见的信号处理方法,可以有效地从噪声中恢复出原始信号。
在Matlab中,有多种小波降噪方式可以选择,本文将介绍其中几种常用的方法。
一、小波变换简介小波变换是一种时间-频率分析方法,可以将信号分解成不同尺度的小波函数。
通过小波变换,可以将信号的时域特征和频域特征结合起来,更好地描述信号的局部特性。
二、小波降噪原理小波降噪的基本原理是通过将信号在小波域进行分解,根据小波系数的幅值和相位信息,对信号进行去噪处理。
具体而言,小波降噪方法将信号分解成多个尺度的小波系数,然后根据小波系数的幅值和相位信息对信号进行处理,最后再将处理后的小波系数进行逆变换得到降噪后的信号。
三、小波降噪方法1. 阈值去噪法阈值去噪法是小波降噪中最常用的方法之一。
该方法通过设置阈值,将小波系数中幅值小于阈值的系数置零,从而实现去噪效果。
常用的阈值选择方法有固定阈值、基于软硬阈值的方法等。
2. 基于小波包变换的降噪法小波包变换是小波变换的一种扩展形式,可以对信号进行更细致的分解和重构。
基于小波包变换的降噪法可以在小波域中选择最佳小波包基函数,对信号进行更精细的降噪处理。
3. 基于模态分解的小波降噪法模态分解是一种将信号分解成若干个本征模态函数的方法,它可以有效地提取信号的局部特性。
基于模态分解的小波降噪法将信号进行模态分解,然后对每个本征模态函数进行小波降噪处理,最后将处理后的本征模态函数进行重构。
四、Matlab中的小波降噪函数在Matlab中,有多个工具箱和函数可以实现小波降噪。
其中,wavelet toolbox是Matlab中最常用的小波分析工具箱,提供了丰富的小波变换和小波降噪函数。
1. wdenoise函数wdenoise函数是Matlab中最基本的小波降噪函数,可以实现简单的阈值去噪。
该函数的基本语法为:y = wdenoise(x,'DenoisingMethod',method,'Wavelet',wavename) 2. wpdencmp函数wpdencmp函数是基于小波包变换的小波降噪函数,可以实现更精细的降噪处理。
小波去噪matlab程序
![小波去噪matlab程序](https://img.taocdn.com/s3/m/640ec105bc64783e0912a21614791711cc797989.png)
小波去噪matlab程序
本文介绍了一种使用小波去噪图像的matlab程序,主要步骤如下:
(1)首先从图像获取原始数据,并转换为灰度图像;
(2)接下来进行小波变换,将灰度图片转换为小波系数矩阵;
(3)引入一种基于稀疏性表示的噪声检测剔除技术,从小波系数矩阵中提取出噪声数据;
(4)最后,用剔除噪声后的小波系数矩阵进行逆小波变换,可以得到去噪后的图像数据,这就是小波去噪后的图像。
为了进一步检测去噪技术的有效性,我们对去噪前后两种图像进行了PSNR(峰值信噪比)和SSIM(结构相似度)检测,结果发现,去噪后的图像的PSNR和SSIM都比去噪前的图像有显著的提升,这证明了小波去噪技术的有效性。
总之,本文介绍了一种基于小波去噪的图像处理方法,其所提供的解决方案可以很好地提高图像质量。
因此,小波去噪技术可以在实际应用中发挥重要作用。
matlab小波阈值去噪
![matlab小波阈值去噪](https://img.taocdn.com/s3/m/2e875e34bfd5b9f3f90f76c66137ee06eff94e80.png)
matlab小波阈值去噪
一、MATLAB小波阈值去噪
如今,MATLAB小波阈值去噪技术成为信号去噪研究中的一个热点。
事实上,MATLAB小波阈值去噪技术是一种近几年新兴的信号处理技术,它能有效地去除信号中的噪声。
本文首先介绍了MATLAB小波阈值去噪的基本原理,然后详细阐述了MATLAB小波阈值去噪的处理方法,最后结合实例对MATLAB小波阈值去噪进行了分析,并给出了实际应用中的一些技术指导意见。
1.MATLAB小波阈值去噪的基本原理
MATLAB小波阈值去噪是一种基于小波变换的去噪技术,它首先将原始信号进行小波变换,得到的结果是一组小波系数,通过比较这组小波系数和预定义的阈值,然后将比阈值小的系数置为零,最后将小波变换结果反向变换,就可以得到满足某种条件的去噪结果。
2.MATLAB小波阈值去噪的处理方法
(1)时域噪声提取
MATLAB小波阈值去噪的处理方法主要包括时域噪声提取、小波变换和小波阈值处理三个步骤。
其中,时域噪声提取是一个非常重要的步骤,主要是计算每个原始信号的均值和标准差,然后根据这些数据来进行时域噪声提取。
(2)小波变换
小波变换是MATLAB小波阈值去噪处理方法的核心步骤,这一步主要是进行小波变换,通过选择合适的小波分解级数,将原始信号分
解成不同尺度的小波子空间,然后比较这些子空间中每个小波系数的幅度大小,以确定哪些小波系数是噪声。
(3)小波阈值处理
小波阈值处理是小波变换步骤的重要结果,主要是比较不同小波系数的幅度和阈值,确定哪些系数应当被置零,从而有效地去除噪声。
之后,再将变换后的小波系数反向变换,从而得到去噪后的信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[转帖]小波去噪matlab程序
****************************************** clear
clc
%在噪声环境下语音信号的增强
%语音信号为读入的声音文件
%噪声为正态随机噪声
sound=wavread('c12345.wav');
count1=length(sound);
noise=0.05*randn(1,count1);
for i=1:count1
signal(i)=sound(i);
end
for i=1:count1
y(i)=signal(i)+noise(i);
end
%在小波基'db3'下进行一维离散小波变换[coefs1,coefs2]=dwt(y,'db3'); %[低频高频]
count2=length(coefs1);
count3=length(coefs2);
energy1=sum((abs(coefs1)).^2);
energy2=sum((abs(coefs2)).^2);
energy3=energy1+energy2;
for i=1:count2
recoefs1(i)=coefs1(i)/energy3;
end
for i=1:count3
recoefs2(i)=coefs2(i)/energy3;
end
%低频系数进行语音信号清浊音的判别
zhen=160;
count4=fix(count2/zhen);
for i=1:count4
n=160*(i-1)+1:160+160*(i-1);
s=sound(n);
w=hamming(160);
sw=s.*w;
a=aryule(sw,10);
sw=filter(a,1,sw);
sw=sw/sum(sw);
r=xcorr(sw,'biased');
corr=max(r);
%为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8
output1(i)=0;
elseif corr<=0.1
output1(i)=1;
end
end
for i=1:count4
n=160*(i-1)+1:160+160*(i-1);
if output1(i)==1
switch abs(recoefs1(i))
case abs(recoefs1(i))<=0.002
recoefs1(i)=0;
case abs(recoefs1(i))>0.002 & abs(recoefs1(i))<=0.003
recoefs1(i)=sgn(recoefs1(i))*(0.003*abs(recoefs1(i))-0.000003)/0.002; otherwise recoefs1(i)=recoefs1(i);
end
elseif output1(i)==0
recoefs1(i)=recoefs1(i);
end
end
%对高频系数进行语音信号清浊音的判别
count5=fix(count3/zhen);
for i=1:count5
n=160*(i-1)+1:160+160*(i-1);
s=sound(n);
w=hamming(160);
sw=s.*w;
a=aryule(sw,10);
sw=filter(a,1,sw);
sw=sw/sum(sw);
r=xcorr(sw,'biased');
corr=max(r);
%为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8
output2(i)=0;
elseif corr<=0.1
output2(i)=1;
end
end
for i=1:count5
n=160*(i-1)+1:160+160*(i-1);
if output2(i)==1
switch abs(recoefs2(i))
case abs(recoefs2(i))<=0.002
recoefs2(i)=0;
case abs(recoefs2(i))>0.002 & abs(recoefs2(i))<=0.003
recoefs2(i)=sgn(recoefs2(i))*(0.003*abs(recoefs2(i))-0.000003)/0.002;
otherwise recoefs2(i)=recoefs2(i);
end
elseif output2(i)==0
recoefs2(i)=recoefs2(i);
end
end
%在小波基'db3'下进行一维离散小波反变换
output3=idwt(recoefs1, recoefs2,'db3');
%对输出信号抽样点值进行归一化处理
maxdata=max(output3);
output4=output3/maxdata;
%读出带噪语音信号,存为'101.wav'
wavwrite(y,5500,16,'c101');
%读出处理后语音信号,存为'102.wav'
wavwrite(output4,5500,16,'c102');
最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改。