高考数学压轴专题2020-2021备战高考《集合与常用逻辑用语》易错题汇编及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高考数学《集合与常用逻辑用语》专题解析
一、选择题
1.已知集合*4
x
M x N ⎧=∈⎨⎩且*10x N ⎫∈⎬⎭,集合40x N x
Z ⎧⎫=∈⎨⎬⎩⎭,则( ) A .M N = B .N M ⊆ C .20x M N x
Z ⎧⎫
⋃=∈⎨⎬⎩⎭
D .*40x M N x
N ⎧⎫
⋂=∈⎨⎬⎩⎭
【答案】D 【解析】 【分析】 【详解】
由题意可得:集合M 表示能被20整除的正整数, 而集合N 表示能被40整除的整数,
据此可得,集合N 与集合M 的公共元素为能被40整除的正整数, 即*40x M N x
N ⎧⎫
⋂=∈⎨⎬⎩⎭
, 本题选择D 选项.
2.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件
【答案】A 【解析】 【分析】
根据直线平行的等价条件,求出m 的值,结合充分条件和必要条件的定义进行判断即可. 【详解】
当m=1时,两直线方程分别为直线l 1:x+y ﹣1=0,l 2:x+y ﹣2=0满足l 1∥l 2,即充分性成立,
当m=0时,两直线方程分别为y ﹣1=0,和﹣2x ﹣2=0,不满足条件. 当m≠0时,则l 1∥l 2⇒322
11
m m m --=≠-, 由321m m
m -=得m 2﹣3m+2=0得m=1或m=2, 由
211
m -≠-得m≠2,则m=1, 即“m=1”是“l 1∥l 2”的充要条件,
故答案为:A 【点睛】
(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线1110a x b y c ++=和直线2220a x b y c ++=平行,则12210a b a b -=且两直线不重合,求出参数的值后要代入检验看两直线是否重合.
3.已知命题p :若x y >且y z >,则()()112
2
log log x y y z -<-,则命题p 的逆否命题
及其真假分别为( )
A .若()()112
2
log log x y y z -≥-,则x y ≤且y z ≤,真
B .若()()112
2
log log x y y z -≥-,则x y ≤或y z ≤,真
C .若()()112
2
log log x y y z -≥-,则x y ≤且y z ≤,假
D .若()()112
2
log log x y y z -≥-,则x y ≤或y z ≤,假
【答案】D 【解析】 【分析】
先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】
命题p 的逆否命题为“若()()112
2
log log x y y z -≥-,则x y ≤或y z ≤”;
由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】
本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.
4.下列命题是真命题的是( )
A .若平面α,β,γ,满足αγ⊥,βγ⊥,则//αβ;
B .命题p :x R ∀∈,211x -≤,则p ⌝:0x R ∃∈,2
011x -≤;
C .“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;
D .命题“若()110x
x e -+=,则0x =”的逆否命题为:“若0x ≠,则()110x
x e -+≠”.
【答案】D 【解析】 【分析】
根据面面关系判断A ;根据否定的定义判断B ;根据充分条件,必要条件的定义判断C ;根据逆否命题的定义判断D. 【详解】
若平面α,β,γ,满足αγ⊥,βγ⊥,则,αβ可能相交,故A 错误; 命题“p :x R ∀∈,211x -≤”的否定为p ⌝:0x R ∃∈,2
011x ->,故B 错误;
p q ∨为真,说明,p q 至少一个为真命题,则不能推出p q ∧为真;p q ∧为真,说明,p q
都为真命题,则p q ∨为真,所以“命题p q ∨为真”是“命题p q ∧为真”的必要不充分条件,故C 错误;
命题“若()110x
x e -+=,则0x =”的逆否命题为:“若0x ≠,则()110x
x e -+≠”,故
D 正确; 故选D 【点睛】
本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.
5.已知命题:p “关于x 的方程240x x a -+=无实根”,若p 为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是( ) A .[1,)+∞ B .(1,)+∞
C .(,1)-∞
D .(,1]-∞
【答案】B 【解析】
【分析】
求出p 为真命题时,a 的取值,由充分不必要条件的性质,得出314m +>,即可得出答案.
【详解】
当p 为真命题时,1640a ∆=-<,即4a > 令{|4}A a a =>,{|31}B a a m =>+
因为p 为真命题的充分不必要条件为31a m >+,所以B A
即314m +>,解得1m > 故选:B 【点睛】
本题主要考查了由充分不必要条件求参数范围,属于中档题.
6.已知集合,则
( )
A .
B .
C .
D .
【答案】C
【解析】 【分析】 由题意,集合,
,再根据集合的运算,即可求解.
【详解】
由题意,集合


所以,故选C.
【点睛】
本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基
础题.
7.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件
【答案】C 【解析】 【分析】
利用基本不等式和充分,必要条件的判断方法判断. 【详解】
222x y x y ++≥Q 且224x y
+≤ ,
224222x y x y x y ++∴≤≤⇒+≤ , 等号成立的条件是x y =,
又2x y xy +≥Q ,0,0x y >>
221xy xy ∴≤⇒≤ , 等号成立的条件是x y =,
2241x y xy ∴+≤⇒≤,
反过来,当1
2,3
x y ==
时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】
本题考查基本不等式和充分非必要条件的判断,属于基础题型.
8.若数列{}n a 的前n 项和为n S ,则“()
12
n n n a a S +=”是“数列{}n a 是等差数列”的( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【答案】C 【解析】 【分析】
必要性显然成立;由()12
n n n a a S +=
,()
111(1)2n n n a a S ---+=,得
11(1)(2)n n n a a n a --=+-①,同理可得211(2)(3)n n n a a n a ---=+-②,综合①,
②,得122n n n a a a --=+,充分性得证,即可得到本题答案. 【详解】
必要性显然成立;下面来证明充分性, 若()12
n n n a a S +=
,所以当2n …时,()111(1)2n n n a a S ---+=, 所以()()1112(1)n n n a n a a n a a -=+--+,化简得11(1)(2)n n n a a n a --=+-①,
所以当3n …
时,211(2)(3)n n n a a n a ---=+-②, ①-②得()122(2)(2)n n n n a n a a ---=-+,所以122n n n a a a --=+,即数列{}n a 是等差数列,充分性得证,所以“()
12
n n n a a S +=”是“数列{}n a 是等差数列”的充要条件. 故选:C. 【点睛】
本题主要考查等差数列的判断与证明的问题,考查推理能力,属于中等题.
9.下列有关命题的说法正确的是( )
A .函数1
()f x x
=
在其定义域上是减函数 B .命题“若x y =,则sin sin x y =”的逆否命题为真命题
C .“1x =-”是“2560x x --=”的必要不充分条件
D .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠” 【答案】B 【解析】 【分析】
对于选项A :利用反比例函数的图象与性质判断即可;
对于选项B :利用原命题与它的逆否命题同真假,判断原命题的真假即可; 对于选项C :根据充分条件与必要条件的定义即可判断; 对于选项D :根据原命题的否命题的定义判断即可; 【详解】
对于选项A :由反比例函数的图象与性质知,函数1
()f x x
=在区间()(),0,0,-∞+∞上单调递减,故选项A 错误;
对于选项B :由题意知,当x y =时,sin sin x y =显然成立,故原命题为真命题,根据原命题与其逆否命题同真假可知,其逆否命题亦为真命题,故选项B 正确;
对于选项C :当1x =-时,有2560x x --=成立,反过来,当2560x x --=时,可得
6x =或1x =-,所以“1x =-”是“2560x x --=”的充分不必要条件,故选项C 错误;
对于选项D :根据原命题的否命题的定义知,命题“若21x =,则1x =”的否命题为“若
21x ≠,则1x ≠”,故选项D 错误;
故选:B 【点睛】
本题考查反比例函数的单调性、四种命题之间的关系及真假判断和充分条件与必要条件的判断;熟练掌握四种命题之间的关系及真假判断的方法是求解本题的关键;属于中档题、常考题型.
10.已知集合1|,42k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1|,24k N x x k Z ⎧⎫
==+∈⎨⎬⎩⎭
,则( ) A .M N = B .M N C .N M D .M N ⋂=∅
【答案】C 【解析】 【分析】
化简集合2|,4k M x x k Z +⎧⎫==∈⎨⎬⎩⎭,21|,4k N x x k Z +⎧⎫
==∈⎨
⎬⎩⎭
,结合2()k k Z +∈为和22()k k Z +∈的关系,即可求解. 【详解】
由题意,集合12|,|,424k k M x x k Z x x k Z +⎧⎫⎧⎫==
+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭
, 121|,|,244k k N x x k Z x x k Z +⎧⎫⎧⎫
==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭

因为2()k k Z +∈为所有的整数,而22()k k Z +∈为奇数, 所以集合,M N 的关系为N M .
故选:C . 【点睛】
本题主要考查了集合与集合的关系的判定,其中解答准确合理化简集合的形式是解答的关键,着重考查了推理与运算能力.
11.下面说法正确的是( )
A .命题“若0α=,则cos 1α=”的逆否命题为真命题
B .实数x y >是22x y >成立的充要条件
C .设p ,q 为简单命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”也为假命题
D .命题“0x R ∃∈,使得2
0010x x ++≥”的否定是“x R ∀∈,使得210x x ++≥”
【答案】A 【解析】
【分析】
对每一个选项逐一分析判断得解. 【详解】
A. 命题“若0α=,则cos 1α=”是真命题,所以它的逆否命题为真命题,所以该选项正确;
B. 由22x y >得x y >或x y <-,所以实数x y >是22x y >成立的充分不必要条件,所以该选项错误;
C. 设p ,q 为简单命题,若“p q ∨”为假命题,则,p q 都是假命题,则“p q ⌝∧⌝”为真命题,所以该选项错误;
D. 命题“0x R ∃∈,使得2
0010x x ++≥”的否定是“x R ∀∈,使得210x x ++<”,所以该
选项错误. 故选:A 【点睛】
本题主要考查四种命题及其关系,考查充要条件的判断,考查复合命题的真假的判断,考查特称命题的否定,意在考查学生对这些知识的理解掌握水平.
12.已知实数a b 、满足0ab >,则“11
a b
<成立”是“a b >成立”的( ) A .充分非必要条件 B .必要非充分条件
C .充要条件
D .非充分非必要条件
【答案】C 【解析】 【分析】
根据不等式的性质,利用充分条件和必要条件的定义进行判断即可. 【详解】 由
11b a a b ab
--=, 0ab >Q ,∴若
11
a b
< 成立, 则0b a -< ,即a b >成立,反之若a b >, 0ab >Q ,110b a a b ab
-∴
-=<, 即
11
a b
<成立, ∴“
11
a b <成立”是“a b > 成立”充要条件,故选C. 【点睛】
本题主要考查不等式的性质以及充分条件和必要条件的应用,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试
,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直
观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.
13.若集合()(){}
130M x x x =+-<,集合{}
1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-
C .()1,1-
D .()3,1-
【答案】C 【解析】 【分析】
解一元二次不等式求得M ,然后求两个集合的交集. 【详解】
由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】
本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.
14.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【答案】B 【解析】 【分析】
将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件. 【详解】
当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B. 【点睛】
本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.
15.已知全集,U R =2{|2}M x x x =-≥则U C M =( ). A .{|20}x x -<< B .{|20}x x -≤≤ C .{|20}x x x <->或 D .{|20}x x x ≤-≥或
【答案】C 【解析】 【分析】
解二次不等式求出集合M ,进而根据集合补集运算的定义,可得答案.
【详解】
∵全集U=R ,2
{|2}={|20}M x x x x x =-≥-≤≤∴∁U M={x|x<-2或x>0}, 故选C . 【点睛】
本题考查的知识点是集合的交集,并集,补集运算,熟练掌握并正确理解集合运算的定义是解答的关键.
16.数列{}n a 的通项公式为(
)n a n c n N *
=-∈.则“2c <”是“{}n
a 为递增数列”的
( )条件. A .必要而不充分 B .充要
C .充分而不必要
D .即不充分也不必要
【答案】A 【解析】 【分析】
根据递增数列的特点可知10n n a a +->,解得1
2
c n <+
,由此得到若{}n a 是递增数列,则3
2c <
,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()2
2
1n c n c +->-,化简得:12
c n <+, 又n *∈N ,1322n ∴+≥,32
c ∴<, 则2c <¿
{}n a 是递增数列,{}n a 是递增数列2c ⇒<,
∴“2c <”是“{}n a 为递增数列”的必要不充分条件.
故选:A . 【点睛】
本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.
17.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )
A .3(3,)2
-- B .3(3,)2
-
C .3(1,)2
D .3(,3)2
【答案】D 【解析】
试题分析:集合()(){}
{}|130|13A x x x x x =--<=<<,集合
,所以
3|32A B x x ⎧⎫
⋂=<<⎨⎬⎩⎭
,故选D.
考点:1、一元二次不等式;2、集合的运算.
18.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,)+∞
C .(,2]-∞
D .[2,)-+∞
【答案】B 【解析】
由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[
)2,+∞ 本题选择B 选项.
19.已知命题:p 函数()
2
0.5log 2y x x a =++的定义域为R ,命题:q 函数()
52x
y a =--是减函数.若p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,则实数a 的取值范围是( ) A .1a ≤ B .12a <<
C .2a <
D .1a ≤或2a ≥
【答案】A 【解析】 【分析】
由题意知p 为假命题,q 为真命题.
由p 为假命题,即:220x x a ++>不恒成立,故4401a a ∆=-≥⇒≤ .
q 为真命题,即: 5212a a ->⇒<.由此便可得出答案.
【详解】
由p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,得p 为假命题,q 为真命题. 由p :函数(
)
2
0.5log 2y x x a =++为假命题得,220x x a ++>在R 上不恒成立.即
4401a a ∆=-≥⇒≤.
由:q 函数()52x
y a =--是减函数,即:()52x
y a =-是增函数,即5212a a ->⇒<. 两者取交集得:1a ≤. 故选:A 【点睛】
本题主要考查逻辑联结词“或”、“且”、“非”,属于中档题目.
20.已知命题0:(0,)p x ∃∈+∞2
0x >;命题1
:,2q x ⎛⎫∀∈+∞ ⎪⎝⎭
,122x x -+>下列命题中是真命题的为( )
A .q ⌝
B .()p q ∧⌝
C .p q ∧
D .()()p q ⌝∨⌝
【答案】C
【解析】
【分析】 分别判断命题p 为真,命题q 为真,得到答案.
【详解】
取012x =212⎛⎫> ⎪⎝⎭
,故命题p 为真;
因为122x x -+≥=12x =时等号成立,故命题q 为真; 故p q ∧为真,
故选:C .
【点睛】
本题考查了命题的真假判断,意在考查学生的推断能力.。

相关文档
最新文档