沧州数学一元一次方程单元测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图1,已知,在内,在内,
.
(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,
________ ;
(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与
重合时,旋转了多少度?
(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.
【答案】(1)100
(2)解:∵平分,
∴,
设,
则,,
由,
得:,
解得:,
∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;
(3)解:不改变
①当时,如图,
,,
∵,,
∴
;
② 时,如图,
此时,与重合,
此时,;
③当时,如图,
,,
;
综上,在旋转过程中,的度数不改变,始终等于
【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°
【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;
2.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,
(1)求,的值;
(2)若线段以每秒3个单位的速度,向右匀速运动,当 ________时,点与点重合,当 ________时,点与点重合;
(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?
(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.
【答案】(1)解:由题意得:
∵
∴,
∴,
(2)8;
(3)解:秒后,点表示的数为,点表示的数为
∵重合
∴
解得 .
∴线段从开始运动到完全通过所需要的时间是6秒
(4)解:①当点在的左侧时
∵
∴
解得
②当点在的右侧时
∵
∴
解得:
所以当或时,
【解析】【解答】(2)若线段以每秒3个单位的速度,
则A点表示为-10+3t, B点表示为-8+3t,
点与点重合时,-10+3t=14
解得t=8
点与点重合时,-8+3t=20
解得t=
故填:8;;
【分析】(1)由与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点在的左侧时②当点在的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.
3.某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.
(1)求准备包车回家过春节的农民工人数;
(2)已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,问租用哪种客车更合算?请说明理由.
【答案】(1)解:设需单独租45座客车x辆,依题意得
45x=60(x-1)-15
解这个方程,得 x=5
则45x=45×5=225
答:准备回家过春节的农民工有225人
(2)解:由(1)知,需租5辆45座客车或4辆60座客车;
而租5辆45座客车的费用为 5×5000=25000(元),
租4辆60座客车的费用为4×6000=24000(元).
故,租4辆60座客车更合算
【解析】【分析】(1)设需单独租45座客车x辆,根据单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位列出方程解出答案即可;(2)根据(1)知,需租5辆45座客车或4辆60座客车和租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,求出答案即可。
4.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2
(1)按照这个规定,当a=3时,请你计算
(2)按照这个规定,若 =1,求x的值。
【答案】(1)解:当a=3时,
=2a×5a-3×4
=10a2-12
=10×32-12
=90-12
=78
(2)解:∵ =1
∴4(x+2)-3(2x-1)=1
去括号,可得:4x+8-6x+3=1
移项,合并同类项,可得:2x=10,
解得x=5
【解析】【分析】(1)根据规定先求出的表达式,再化简,然后把a=3代入求值即可;
(2)根据新定义的规定把=1的右式化成整式,然后去括号、移项、合并同类项,x项系数化为1即可解出x.
5.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;
(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
200元,第二天只购买乙种商
品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?
【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。
由已知得15x+35(100-x)=2700
解得x=40
答:购进甲商品40件,乙商品60件。
(2)解:设:购进甲商品x件,购进乙商品(100-x)件。
利润W=5x+10(100-x)
根据题意可得5x+10(100-x)≤760和x≤50;
解得48≤x≤50,
∴进货方案有三种
①甲48件,乙52件,
②甲49件,乙51件
③甲50件,乙50件
(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)
第二天:打折,
打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)
打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)
答:购买甲商品10件,乙商品8件或者9件。
【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可
6.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.
(1)甲旅客购买了一张机票的原价为1500元,需付款________元;
(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);
(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?
【答案】(1)1200
(2)0.7x+200
(3)解:第一张机票的原价为1440÷0.8=1800(元).
设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,
根据题意得:1440+0.7y+200=1800+y-910,
解得:y=2500,
∴1800+y-910-1440=1950.
答:丙旅客第二张机票的原价为2500元,实际付款1950元
【解析】【解答】解:(1)1500×0.8=1200(元).
故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).
【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.
7.阅读下列例题,并按要求回答问题:
例:解方程.
解:①当时,,解得;
②当时,,解得.
所以原方程的解是或.
(1)以上解方程的方法采用的数学思想是________.
(2)请你模仿上面例题的解法,解方程:.
【答案】(1)分类讨论
(2)解:①当时,,
解得,
②当时,,
解得,
∴原方程的解是或.
【解析】【分析】(1)材料中是分①、②两种情况来解答题目,明确的体现了“分类讨论”的数学思想;(2)模仿例题,分两种情况分别求解即可.
8.已知线段AB=60cm.
(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?
(2)在(1)的条件下,几秒钟后,P、Q相距12cm?
(3)如图2,AO=PO=10厘米,∠POB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.
【答案】(1)解:设经过t秒后P、Q相遇,
由题意得:2t+4t=60,
解得t=10,
答:经过10秒钟后P、Q相遇
(2)解:设经过x秒P、Q相距12cm,
当相遇前相距12cm时,
由题意得:2x+4x+12=60,
解得:x=8,
当相遇后相距12cm时,
由题意得:2x+4x-12=60,
解得:x=12,
答:经过8秒钟或12秒钟后,P、Q相距12cm
(3)解:设点Q运动的速度为ycm/s,
∵点P,Q只能在直线AB上相遇,
∴点P第一次旋转到直线AB上的时间为:40÷10=4s,
若此时相遇,则4y=60-20,
解得:y=10,
点P第二次旋转到直线AB上的时间为:(40+180)÷10=22s,
若此时相遇,则22y=60,
解得:y=,
答:点Q运动的速度为10cm/s或 cm/s.
【解析】【分析】(1)根据相遇问题中的等量关系列方程求解即可;(2)分相遇前相距12cm和相遇后相距12cm,分别列方程求解即可;(3)由于点P,Q只能在直线AB上相遇,所以可先求出点P两次旋转到直线AB上的时间,然后分别列出方程求解即可.
9.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学
2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘
以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同
学继续依次传数给后面的同学,直到传数给同学1为止.
(1)若只有同学1,同学2,同学3做“传数”游戏.
①同学1心里想好的数是2, 则同学3的“传数”是________;
②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.
(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.
【答案】(1)5;3
(2)解:设同学1心里先想好的数为x,由题意得:
同学1的“传数”是2x+1
同学2的“传数”是
同学3的“传数”是2x+1
同学4的“传数”是x
……
同学n(n为大于1的偶数)的“传数”是x
于是
∵n为大于1的偶数
∴n≠0
∴
解得:
故同学1心里先想好的数是13.
【解析】【解答】解:(1)①由题意得:
故同学3的“传数”是5;②设同学1想好的数是a,则
解得:
故答案为:3
【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1
想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n
为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.
10.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.
(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.
若 ,则 ________;若 ,则 ________;
(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.
(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后
的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.
【答案】(1)0;4
(2)解:点表示的数是,理由如下:
设点表示的数是,则点表示的数是
则由题意
解得
(3)或
【解析】【解答】(1)∵由题意得a-1=1-b,
∴当a=2, 则2-1=1-b, 解得b=0;
当a=-2,则-2-1=1-b, 解得b=4.
(3)解:设点表示的数是,则点表示的数是
则由题意表示的数是,表示的数是,
表示的数是,表示的数是,…
又表示的数是,表示的数是,
表示的数是,表示的数是=m+8-4×1 ,…
,
,即,
解得
【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;
(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;
(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.
11.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)郑老师有1000元,他计划为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?
【答案】(1)解:设每个书包的价格为x元,则每本词典的价格为(x-8)元.根据题意,得
3x+2(x-8)=124.
解得x=28.
∴x-8=20.
答:每个书包的价格为28元,每本词典的价格为20元.
(2)解:设购买书包y个,则购买词典(40-y)本.根据题意,得
解得10≤y≤12.5.
因为y取整数,所以y的值为10或11或12.
所以有三种购买方案,分别是:
①书包10个,词典30本;
②书包11个,词典29本;
③书包12个,词典28本.
【解析】【分析】(1)设每个书包的价格为x元,则每本词典的价格为(x-8)元,由“用124元恰好可以买到3个书包和2本词典”可列方程求解即可;(2)设购买书包y 个,则购买词典(40-y)本,根据“ 余下不少于100元且不超过120元的钱购买体育用品”可列不等式组,求解不等式组的正整数解集即可。
12.已知关于m的方程 (m-16)=-5的解也是关于x的方程2 (x-3)-n=3的解.(1)求m、n的值;
(2)已知线段AB=m,在射线AB上取一点P,恰好使=n,点Q为线段PB的中点,求AQ的长.
【答案】(1)解:,
,
,
关于m的方程的解也是关于x的方程的解.,
将,代入方程得:
,
解得:,
故
(2)解:由知:,
当点P在线段AB上时,如图所示:
,
,
点Q为PB的中点,
,
;
当点P在线段AB的延长线上时,如图所示:
,
,
点Q为PB的中点,
,
.
故或
【解析】【分析】(1)解方程 (m-16)=-5 求出m的值,根据关于m的方程 (m-16)=-5的解也是关于x的方程2 (x-3)-n=3的解得出x=m=6,从而将x=6代入方程
即可算出n的值;
(2)由知:,当点P在线段AB上时,如图所示:即可求出
AP,BP的长,根据线段中点的定义得出,最后根据即可算出答案;当点P在线段AB的延长线上时,如图所示:首先算出PB的长,根据线段
中点的定义得出,根据即可算出答案,综上所述即可得出答案。