南关区第一中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南关区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知的终边过点,则等于( )()2,37tan 4πθ⎛⎫
+ ⎪⎝⎭A . B .
C .-5
D .5
1
5
-
1
5
2. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )
A .众数
B .平均数
C .中位数
D .标准差
3. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( )
A .(﹣∞,﹣2)
B .D .上是减函数,那么b+c (

A .有最大值
B .有最大值﹣
C .有最小值
D .有最小值﹣
4. 在区间上恒正,则的取值范围为(

()()2
2f x a
x a =-+[]0,1A . B .
C .
D .以上都不对
0a >0a <<
02a <<5. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点
位于( )
A .点A 处
B .线段AD 的中点处
C .线段AB 的中点处
D .点D 处
6. 已知集合,,则( )
{2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B =I A .
B .
C .
D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}
-【命题意图】本题考查集合的交集运算,意在考查计算能力.7. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95
S
S =A .1
B .2
C .3
D .4
8. 下列函数在其定义域内既是奇函数又是增函数的是( )A .
B .
C .
D .
9. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范
围是(

A .(0,1)
B .(1,+∞)
C .(﹣1,0)
D .(﹣∞,﹣1)
10.将函数(其中)的图象向右平移
个单位长度,所得的图象经过点
x x f ωsin )(=0>ω4
π
,则的最小值是( ))0,4
3(
π
ω班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .
D .
3
1
3
5
11.设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( )
A .1
B .2
C .3
D .412.已知函数()21
11x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为(

A .1
B .1-
C .2
D .2
-二、填空题
13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
14.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 . 
15.设集合 ,满足
{}{}
22
|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.
A B =∅I {}|52A B x x =-<≤U a =16.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中:①f (x )是周期函数;
②f (x ) 的图象关于x=1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上为减函数;⑤f (2)=f (0).
正确命题的个数是 . 
17.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .
18.已知圆,则其圆心坐标是_________,的取值范围是________.22
240C x y x y m +-++=:m 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
三、解答题
19.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.
(I)求直方图中a的值及甲班学生每天平均学习时间在区间[10,12]的人数;
(II)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.
20.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)
(1)求点C到直线AB的距离;
(2)求AB边的高所在直线的方程.
21.已知等差数列{a n}满足a2=0,a6+a8=10.
(1)求数列{a n}的通项公式;
(2)求数列{}的前n项和.
22.定义在R 上的增函数y=f (x )对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ),则(1)求f (0); (2)证明:f (x )为奇函数;
(3)若f (k •3x )+f (3x ﹣9x ﹣2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 
23.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2: =1.
(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.
24.如图,四边形是等腰梯形,,四边形
ABEF ,2,AB EF AF BE EF AB ====P 是矩形,平面,其中分别是的中点,是的中点.
ABCD AD ⊥ABEF ,Q M ,AC EF P BM
(1)求证: 平面;PQ P BCE (2)平面.
AM ⊥BCM
南关区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】B 【



考点:三角恒等变换.2. 【答案】D
【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88.B 样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A 错.平均数86,88不相等,B 错.中位数分别为86,88,不相等,C 错A 样本方差S 2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,
B 样本方差S 2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确
故选D .
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题. 
3. 【答案】B
【解析】解:由f (x )在上是减函数,知f ′(x )=3x 2+2bx+c ≤0,x ∈,则
⇒15+2b+2c ≤0⇒b+c ≤﹣.
故选B . 
4. 【答案】C 【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则
()(
)2
2f x a
x a =-+[]0,1,即,解得,故选C.(0)0
(1)0f f >⎧⎨>⎩2
020
a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.5. 【答案】A 【解析】解:如图,
E 为底面ABCD 上的动点,连接BE ,CE ,D 1E ,对三棱锥B ﹣D 1EC ,无论E 在底面ABCD 上的何位置,面BCD 1 的面积为定值,
要使三棱锥B ﹣D 1EC 的表面积最大,则侧面BCE 、CAD 1、BAD 1 的面积和最大,而当E 与A 重合时,三侧面的面积均最大,
∴E 点位于点A 处时,三棱锥B ﹣D 1EC 的表面积最大.故选:A

【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题. 
6. 【答案】C
【解析】当时,,所以,故选C .{2,1,0,1,2,3}x ∈--||3{3,2,1,0}y x =-∈---A B =I {2,1,0}--7. 【答案】A 【解析】1111]
试题分析:.故选A .111]19951553
9()9215()52
a a S a a a S a +===+考点:等差数列的前项和.8. 【答案】B
【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A 、D ;
对C :
在(-和(
上单调递增,
但在定义域上不单调,故C 错;故答案为:B 9. 【答案】A
【解析】解:函数f (x )=的图象如下图所示:
由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点,即方程f (x )=k 有两个不同的实根,故选:A
10.【答案】D

点:由的部分图象确定其解析式;函数的图象变换.()ϕω+=x A y sin ()ϕω+=x A y sin 11.【答案】B
【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2﹣y=0,x ∈R ,y ∈R}═{(x ,y )|
}
将x 2﹣y=0代入x 2+y 2=1,得y 2+y ﹣1=0,△=5>0,所以方程组有两组解,
因此集合M ∩N 中元素的个数为2个,故选B .
【点评】本题既是交集运算,又是函数图形求交点个数问题 
12.【答案】A 【解析】
试题分析:由已知得()2112x f x x x -=
=-,则()21
'f x x
=,所以()'11f =.考点:1、复合函数;2、导数的几何意义.
二、填空题
13.【答案】 ①③⑤ 
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1
,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
14.【答案】 (﹣2,﹣6) .
【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,
则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),
故答案为:(﹣2,﹣6).
【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.
15.【答案】
7
,3
2
a b
=-=
【解析】
考点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键. 16.【答案】 3个 .
【解析】解:∵定义在(﹣∞,+∞)上的偶函数f(x),∴f(x)=f(﹣x);
∵f(x+1)=﹣f(x),∴f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),f(﹣x+1)=﹣f(x)
即f(x+2)=f(x),f(﹣x+1)=f(x+1),周期为2,对称轴为x=1
所以①②⑤正确,
故答案为:3个
17.【答案】 .
【解析】解:由题意画出几何体的图形如图
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.
∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.
在RT△SHO中,OH=OC=OS
∴∠HSO=30°,求得SH=OScos30°=1,
∴体积V=Sh=××22×1=.
故答案是.
【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S 位置是关键.考查空间想象能力、计算能力. 
18.【答案】,.
(1,2)-(,5)-∞【解析】将圆的一般方程化为标准方程,,∴圆心坐标,2
2
(1)(2)5x y m -++=-(1,2)-而,∴的范围是,故填:,.
505m m ->⇒<m (,5)-∞(1,2)-(,5)-∞三、解答题
19.【答案】
【解析】解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a )×2=1,解得a=0.0375,因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为.
所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人).
(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).
由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.




所以随机变量ξ的分布列为:
ξ
0 1 2 3
P

20.【答案】 【解析】解(1)∵

∴根据直线的斜截式方程,直线AB :
,化成一般式为:4x ﹣3y+12=0,
∴根据点到直线的距离公式,点C 到直线AB 的距离为
;(2)由(1)得直线AB 的斜率为,∴AB 边的高所在直线的斜率为

由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,
∴AB边的高所在直线的方程为3x+4y﹣7=0.
21.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.
∴,解得,
∴a n﹣1+(n﹣1)=n﹣2.
(2)=.
∴数列{}的前n项和S n=﹣1+0+++…+,
=+0++…++,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n=.
22.【答案】
【解析】解:(1)在f(x+y)=f(x)+f(y)中,
令x=y=0可得,f(0)=f(0)+f(0),
则f(0)=0,
(2)令y=﹣x,得f(x﹣x)=f(x)+f(﹣x),
又f(0)=0,则有0=f(x)+f(﹣x),
即可证得f(x)为奇函数;
(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,
f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),
即有k•3x<﹣3x+9x+2,得,
又有,即有最小值2﹣1,
所以要使f(k•3x)+f(3x﹣9x﹣2)<0恒成立,只要使即可,
故k的取值范围是(﹣∞,2﹣1).
23.【答案】
【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x﹣1)2+y2=1,
由可得曲线C1的极坐标方程为ρ=2cosθ,曲线C2的极坐标方程为ρ2(1+sin2θ)=2.
(Ⅱ)射线与曲线C1的交点A的极径为,
射线与曲线C2的交点B的极径满足,解得,
所以.
24.【答案】(1)证明见解析;(2)证明见解析.
【解析】
考点:直线与平面平行的判定;直线与平面垂直的判定.。

相关文档
最新文档