高考物理带电粒子在复合场中的运动答题技巧及练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练
1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.
(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;
(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;
(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .
【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=
;⑶
+
.
【解析】
试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2
由运动定律有2
111
v Bqv m R =
解得12Bqa
v m
=
(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在
x =
2
a
的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.
即 sinθ′=sinθ=
2a R
另有2
v Bqv m R
=
解得 sinθ′=sinθ=
2aqB
mv
(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐
标,由动能定理有 qEy m=1
2 mv
2
m
-
1
2
mv2
由题知 v m=ky m
若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m
2
v
R
在最高处有 v0=kR0
联立解得22
()
m
E E
v v
B B
=++
考点:带电粒子在符合场中的运动;动能定理.
2.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求
(1)M、N两点间的电势差U MN ;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t.
【来源】带电粒子在电场、磁场中的运动
【答案】1)U MN=(2)r=(3)t=
【解析】
【分析】
【详解】
(1)设粒子过N点时的速度为v,有:
解得:
粒子从M点运动到N点的过程,有:
解得:
(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:
解得:
(3)由几何关系得:
设粒子在电场中运动的时间为t1,有:
粒子在磁场中做匀速圆周运动的周期:
设粒子在磁场中运动的时间为t2,有:
3.如图,M、N是电压U=10V的平行板电容器两极板,与绝缘水平轨道CF相接,其中CD 段光滑,DF段粗糙、长度x=1.0m.F点紧邻半径为R的绝缘圆筒(图示为圆筒的横截面),圆筒上开一小孔与圆心O在同一水平面上,圆筒内存在磁感应强度B=0.5T、方向垂直纸面向里的匀强磁场和方向竖直向下的匀强电场E.一质量m=0.01kg、电荷量q=-0.02C的小球a从C点静止释放,运动到F点时与质量为2m、不带电的静止小球b发生碰撞,碰撞后a球恰好返回D点,b球进入圆筒后在竖直面内做圆周运动.不计空气阻力,小球a、b 均视为质点,碰时两球电量平分,小球a在DF段与轨道的动摩因数μ=0.2,重力加速度大小g=10m/s2.求
(1)圆筒内电场强度的大小;
(2)两球碰撞时损失的能量;
(3)若b球进入圆筒后,与筒壁发生弹性碰撞,并从N点射出,则圆筒的半径.
【来源】福建省宁德市2019届普通高中毕业班质量检查理科综合物理试题
【答案】(1)20N/C;(2)0J;(3)
16
tan
R
n
π
=(
n≥3的整数)
【解析】【详解】
(1)小球b要在圆筒内做圆周运动,应满足:1
2
Eq=2mg
解得:E=20 N/C
(2)小球a到达F点的速度为v1,根据动能定理得:Uq-μmgx=1
2
mv12
小球a从F点的返回的速度为v2,根据功能关系得:μmgx=1
2
mv22
两球碰撞后,b球的速度为v,根据动量守恒定律得:mv1=-mv2+2mv
则两球碰撞损失的能量为:ΔE=1
2
mv12-
1
2
mv22-
1
2
mv2
联立解得:ΔE=0
(3)小球b进入圆筒后,与筒壁发生n-1次碰撞后从N点射出,轨迹图如图所示:
每段圆弧对应圆筒的圆心角为2
n
π
,则在磁场中做圆周运动的轨迹半径:
r1=Rtan
n
π
粒子在磁场中做圆周运动:
2
1
1
2
2
v
qvB m
r
=
联立解得:
16
tan
R
n
π
=
(n≥3的整数)
4.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB∥CD、AD∥BC,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为B.一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d,带电粒子的质量为m,带电量为q,不计粒子的重力.求:
(1)带电粒子入射速度的大小;
(2)带电粒子在矩形区域内作直线运动的时间;
(3)匀强电场的电场强度大小.
【来源】【市级联考】广东省广州市2019届高三12月调研测试理科综合试题物理试题
【答案】(1)
cos
qBd
mθ
(2)
cos
sin
m
qB
θ
θ(3)
2
cos
qB d
mθ
【解析】
【分析】
画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强.
【详解】
(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .
由几何关系可知:cos d R
θ=
洛伦兹力做向心力:20
0v qv B m R
= 解得0cos qBd
v m θ
=
(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x
θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ
θ
=
(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B
解得2qB d
E mcos θ
=
【点睛】
此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.
5.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。
一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入
电场,不计粒子重力和空气阻力,P 、O 两点间的距离为
20
2mv qE。
(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ;
(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。
【来源】2019年辽宁省辽阳市高考物理二模试题
【答案】(1)02v ;20mv qE (
2)0
(21)E
B v +≥
【解析】 【详解】
(1)由动能定理有:
2
22
0011222
mv qE mv mv qE ⋅=- 解得:v =2v 0
设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=02
2
v v =
解得:θ=45° 根据tan 21x
y
θ=⋅
=,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20
mv x qE
=
(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:
s =R +R sinθ
又:2
v qvB m R
=
解得:0
(21)E
B v +=
故0
(21)E
B v +≥
6.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、
Q 两点之间的距离为
2
L
,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;
(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。
【来源】【省级联考】吉林省名校2019届高三下学期第一次联合模拟考试物理试题 【答案】(1)2U E L =
,M eU
v m
=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3
348M R L m t v eU
ππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】
(1)在加速电场中,从P 点到Q 点由动能定理得:2
012
eU mv = 可得02eU
v m
=
电子从Q点到M点,做类平抛运动,
x轴方向做匀速直线运动,
02
L m t L
v eU ==
y轴方向做匀加速直线运动,2
1
22
L eE
t
m
=⨯
由以上各式可得:
2U
E
L
=
电子运动至M点时:22
()
M
Ee
v v t
m
=+
即:2
M
eU
v
m
=
设v M的方向与x轴的夹角为θ,
2
cos
2
M
v
v
θ==
解得:θ=45°。
(2)如图甲所示,电子从M点到A点,做匀速圆周运动,因O2M=O2A,O1M=O1A,且O2A∥MO1,所以四边形MO1AO2为菱形,即R=L
由洛伦兹力提供向心力可得:
2
M
M
v
ev B m
R
=
即
2
M
mv mv
B
eR L e
==
3
3
4
8
M
R L m
t
v eU
ππ
==
(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于2R',即222
R L
'=
因电子在磁场中的运动具有周期性,如图丙所示,电子到达N 点且速度符合要求的空间条件为:2(2)2n R L '
=(n =1,2,3,…) 电子在磁场中做圆周运动的轨道半径0
M
mv R eB '=
解得:022n emU
B eL
=
(n =1,2,3,…) 电子在磁场变化的半个周期内恰好转过
1
4
圆周,同时在MN 间的运动时间是磁场变化周期的整数倍时,可使粒子到达N 点且速度满足题设要求,应满足的时间条件是014
2
T T = 又00
2m
T eB π=
则T 的表达式为22T n emU
=
(n =1,2,3,…)。
7.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图甲所示.磁场的磁感应强度B (图像中的B 0末知)随时间t 的变化情况如图乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0向右做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.不考虑地磁场的影响,求:
(1)电场强度E 的大小;
(2)小球从M 点开始运动到第二次经过D 点所用的时间;
(3)小球运动的周期,并画出运动轨迹(只画一个周期).
【来源】【百强校】2015届辽宁师范大学附属中学高三模拟考试物理卷(带解析)
【答案】(1)
mg
q
E=(2)2
t0(
1
3π
+1) (3)T=8t0,
【解析】
【分析】
【详解】
(1)小球从M点运动到N点时,有qE=mg,
解得
mg
q
E=.
(2)小球从M点到达N点所用时间t1=t0,小球从N点经过个圆周,到达P点,所以t2=t0小球从P点运动到D点的位移
x=R=0
mv
B q,
小球从P点运动到D点的时间
3
00
R m
t
v B q
=
=
2m
t
qB
π
=,t3=0
2
3
t
π
,
所以时间
1230
()
1
3
21
t t t t t
π
+++
==.
(3)小球运动一个周期的轨迹如图所示.小球的运动周期为
T=8t0.
8.如图所示,在xOy坐标平面内,虚线PQ与x轴正方向的夹角为60°,其右侧有沿y轴正方向的匀强电场;左侧有垂直于纸面向里的匀强磁场,磁感应强度大小为B.一质量为m,带电量为q的带负电的粒子自坐标原点O射入匀强磁场中,经过一段时间后恰好自虚线PQ上的M点沿x轴正方向进入匀强电场,粒子在电场中的运动轨迹与x轴的交点为N.已知O、M3;O、N
3
)L,粒子重力不计.求:
(1)带电粒子自坐标原点O 射入匀强磁场的速度大小; (2)匀强电场的电场强度大小;
(3)若自O 点射入磁场的粒子带正电,粒子的质量、带电量、初速度等都不变,则在粒子离开O 点后的运动中第二次与虚线PQ 相交的交点坐标. 【来源】2019年山东省德州市高三一模物理试卷
【答案】(1)qBL m ;(2)23qB L m ;(3)(3
6
L ,12L ).
【解析】 【详解】
(1)粒子在磁场中运动时qvB =2
mv r
3=2r sin60°
解得粒子自坐标原点O 射入匀强磁场的速度大小v =qBL
m
(2)粒子自M 到N 做类平抛运动 3sin60°=2
12qE t m
垂直电场方向;(
3
12
+)L 360Lcos ︒=vt 1 得电场强度E =23qB L
m
(3)若自O 点射人磁场的粒子带正电,粒子在磁场中逆时针转过240°后自R 点垂直于电 场方向离开磁场,如图所示.
离开磁场时x 坐标;330R x rcos L =-︒= y 坐标:3
302
R y r rsin L =-
+︒=() 粒子进入电场后自R 到S 做类平抛运动 垂直电场方向;2Rs x vt = 沿电场方向:2
22Rs qE y t m
= tan60°=
RS
RS
y x 解得:2t =
23m ,RS x =23
L ,2RS y L = 第二次与虚线PQ 的交点S 的x 坐标:RS R x x x =+=3
6
L y 坐标:12
RS R y y y L =+=
则第二次与虚线PQ 的交点S 的坐标为(
3
6
L ,12L )
9.如图,平面直角坐标系中,在,y >0及y <-3
2
L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-
3
2
L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向
沿x轴正方向,然后经过x轴上的点P2
(3
2
L,0
)进入磁场.在磁场中的运转半径R=
5
2
L (不计粒子重力),求:
(1)粒子到达P2点时的速度大小和方向;
(2)
E
B
;
(3)粒子第一次从磁场下边界穿出位置的横坐标;
(4)粒子从P1点出发后做周期性运动的周期.
【来源】2019年内蒙古呼和浩特市高三物理二模试题
【答案】(1)
5
3
v0,与x成53°角;(2)0
4
3
v
;(3)2L;(4)
()
40537
60
L
v
π
+
.
【解析】
【详解】
(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,
由运动学规律知
3
2
L=v0t1,
L=
2
y
v
t1
可得t1=
3
2
L
v,v y=
4
3
v0
故粒子在P2的速度为v22
0y
v v
+=
5
3
v0
设v与x成β角,则tanβ=
y
v
v
=
4
3
,即β=53°;
(2)粒子从P1到P2,根据动能定理知qEL=
1
2
mv2-
1
2
mv02可得
E =2089mv qL
粒子在磁场中做匀速圆周运动,根据qvB =m 2
v R
解得:B =mv qR =05352
m v q L ⨯⨯=023mv qL
解得:
43
v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-3
2
L 直线与Q ′点,可得: P 2O ′=
3253L cos o
=5
2
L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-
32
L 直线从M 点穿出磁场,由几何关系知M 的坐标x =
3
2
L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=0
32L
v
在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =0
37120L
v π 从M 运动到N ,a =qE m =2
89v L
则t 3=v a =0
158L v
则一个周期的时间T =2(t 1+t 2+t 3)=
()0
4053760L
v π+.
10.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。
其中S 、a 、圆心O 点在同一竖直线上。
不计粒子的重力和粒子之间的作用力。
求: (1)能到达a 点的粒子速度v 的大小;
(2)若e 、f 两粒子带不同种电荷,它们的比荷之比为1︰3,都能到达a 点,则对应A 、B 两金属板间的加速电压U 1︰U 2的绝对值大小为多大;
(3)在满足(2)中的条件下,若e 粒子的比荷为k ,e 、f 两粒子在磁场圆中射出的两位置恰好在圆形磁场的同一条直径上,则两粒子在磁场圆中运动的时间差△t 为多少?
【来源】河南省名校联盟2019届年高三第五次(3月份)调研考试理科综合物理试题 【答案】(1)1
E v B =;(2)12:3:1U U =;(3)1229t t t kB π∆=-=
【解析】 【详解】
解:(1)能达到a 点的粒子速度设为v ,说明在C 、D 板间做匀速直线运动,有:1qvB qE = 解得:1
E
v B =
(2)由题意得e 、f 两粒子经A 、B 板间的电压加速后,速度都应该为v ,根据动能定理得:
21
qU mv 2
=
它们的比荷之比:
e f
e f
q q :1:3m m = 得出:12U :U 3:1=
(3)设磁场圆的半径为R ,e 、f 粒子进入磁场圆做圆周运动
对e 粒子:2
1211v q vB m r =
对f 粒子:2
2222
v q vB m r =
解得:
12r 3r 1
= e 、f 两粒子在磁场圆中射出的两位置恰好在同一条直径上,说明两粒子的偏转角之和为
180o , e 、f 两粒子的轨迹图如图所示,由几何关系有:
1
R tan θr =
2
R tan θr =
θα90o +=
联立解得:θ30=o ,α60=o
e 、
f 两粒子进入磁场圆做匀速圆周运动的周期满足:
1
12πr T v = 2
22πr T v
=
e f
e f
q q :1:3m m = 在磁场中运动的时间:
112θ
t T 360=o 222αt T 360
=
o 12t t >
两粒子在磁场中运动的时间差为:122
π
Δt t t 9kB =-=
11.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线
y =x 垂直.粒子速度大小5
0 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重
力不计.求:
(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;
(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).
【来源】天津市滨海新区2019届高三毕业班质量监测理科综合能力测试物理试题 【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】
解:(1) 由带电粒子在匀强磁场中运动可得:20
20v B qv m r
= 解得粒子运动的半径:1r m =
(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212
y at =
Eq a m
=
tan 45v at
︒=
联立解得:2x m =,1y m = 由图示几何关系得:d x y R =++ 解得:4d m =
(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r
由如图所示几何关系得:()12r y R =
+
02v v =
由带电粒子在匀强磁场中运动可得:211
v
B qv m r '=
解得:10.1B T '=
若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r 由如图所示几何关系得:()2222r r y R +=+
由带电粒子在匀强磁场中运动可得:212
v
B qv m r ''=
解得121
0.2410
B T T +''=
≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥
(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:
1114t T =
102R
T v π= 20
x t v =
3212
t T =
2
22r T v
π=
解得:()
55
1232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯
12.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存
在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(
q
m
)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:
(1)电场强度的大小; (2)带电微粒的初速度;
(3)带电微粒做圆周运动的圆心坐标.
【来源】【市级联考】福建省厦门市2019届高三5月第二次质量检查考试理综物理试题
【答案】(1)g k (2)2g
kB
(3)2222232(,)28g k B L L k B g -
【解析】 【分析】 【详解】
(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=q
k m
解得g E k
=
(2)由几何关系:2R cos θ=L ,
粒子做圆周运动的向心力等于洛伦兹力:2
v qvB m r
= ;
由
cos y v v
θ=
在进入复合场之前做平抛运动:y gt =v
0L v t =
解得02g v kB
=
(3)由2
12
h gt =
其中2kBL t g = ,
则带电微粒做圆周运动的圆心坐标:'3
2
O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-
13.如图,离子源A 产生的初速度为零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO =d ,HS =2d ,MNQ ∠=90°.(忽略粒子所受重力)
(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ; (2)求质量为m 的离子在磁场中做圆周运动的半径;
(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围. 【来源】2009高考重庆理综 【答案】(1)00U E d =;45°(2)0
2mU eB
3)25x m m m << 【解析】 【分析】 【详解】
(1)正离子被电压为U 0的加速电场加速后速度设为V 1,设 对正离子,应用动能定理有eU 0=
1
2
mV 12, 正离子垂直射入匀强偏转电场,作类平抛运动
受到电场力F =qE 0、产生的加速度为a =F
m
,即a =0qE m ,
垂直电场方向匀速运动,有2d =V 1t , 沿场强方向:Y =12
at 2
, 联立解得E 0=0
U d
又tanφ=
1
V at
,解得φ=45°; (2)正离子进入磁场时的速度大小为V 2()2
21V at + 解得2221()V V at =+正离子在匀强磁场中作匀速圆周运动,由洛仑兹力提供向心力,qV 2B =2
2mV R
,
解得离子在磁场中做圆周运动的半径R =0
2
mU eB
; (3)根据R =0
2
mU eB 质量为4m 的离子在磁场中的运动打在S 1,运动半径为R 1=()0
2
4m U eB
质量为16m 的离子在磁场中的运动打在S 2,运动半径为R 2=()0
2
16m U eB
又ON =R 2-R 1,
由几何关系可知S 1和S 2之间的距离ΔS 222R ON -R 1, 联立解得ΔS =30
2
mU eB
由R′2=(2 R1)2+( R′-R1)2解得R′=5
2
R1,
再根据1
2
R1<R<
5
2
R1,
解得m<m x<25m.
14.如图所示,半径为r的圆形匀强磁场区域Ⅰ与x轴相切于坐标系的原点O,磁感应强度为B0,方向垂直于纸面向外.磁场区域Ⅰ右侧有一长方体加速管,加速管底面宽度为
2r,轴线与x轴平行且过磁场区域Ⅰ的圆心,左侧的电势比右侧高.在加速管出口下侧距离2r处放置一宽度为2r的荧光屏.加速管右侧存在方向垂直于纸面向外磁感应强度也为B0的匀强磁场区域Ⅱ.在O点处有一个粒子源,能沿纸面向y>0的各个方向均匀地发射大量质量为m、带电荷量为q且速率相同的粒子,其中沿y轴正方向射入磁场的粒子,恰能沿轴线进入长方形加速管并打在荧光屏的中心位置.(不计粒子重力及其相互作用)
(1)求粒子刚进入加速管时的速度大小v0;
(2)求加速电压U;
(3)若保持加速电压U不变,磁场Ⅱ的磁感应强度B=0.9 B0,求荧光屏上有粒子到达的范围?
【来源】江苏省扬州市高邮市2018-2019学年度第二学期高三年级阶段性物理调研试题【答案】(1)(2)(3)
【解析】
【分析】
由运动方向通过几何关系求得半径,进而由洛伦兹力作向心力求得速度;再由几何关系求得半径,由洛伦兹力作向心力联立两式求得粒子速度,应用动能定理求得加速电压;先通过几何关系求得粒子在加速管中的分布,然后由粒子运动的半径及几何关系求得可打在荧光屏上的粒子范围;
【详解】
解:(1)磁场区域Ⅰ内粒子运动轨道半径为:
(2)粒子在磁场区域Ⅱ的轨道半径为:
又
由动能定理得:
解得:
(3)粒子经磁场区域Ⅰ后,其速度方向均与x轴平行;经证明可知: OO1CO2是菱形,所以CO2和y轴平行,v和x轴平行
磁场Ⅱ的磁感应强度B2减小10%,即,
荧光屏上方没有粒子到达的长度为:
即荧光屏上有粒子到达的范围是:距上端处到下端,总长度
15.如图所示,荧光屏MN与x轴垂直放置,荧光屏所在位置的横坐标x0=60cm,在第一象限y轴和MN之间存在沿y轴负方向的匀强电场,电场强度E=1.6×105N/C,在第二象限有半径R=5cm的圆形磁场,磁感应强度B=0.8T,方向垂直xOy平面向外.磁场的边界和x 轴相切于P点.在P点有一个粒子源,可以向x轴上方180°范围内的各个方向发射比荷为q
=1.0×108C/kg的带正电的粒子,已知粒子的发射速率v0=4.0×106m/s.不考虑粒子的重m
力、粒子间的相互作用.求:
(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【来源】陕西省西安市2019年高三物理三模理综物理试题 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】
(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:
qvB =m 20
v r
解得:r =
20
510mv Bq
-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:
由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:
x 0=v 0t 0 h =
2012
at
a =
qE m
解得:h =18cm >2R =10cm
说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:
x =v 0t y =
212
at 代入数据解得:x
设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,
000
tan y qE x v m v v v θ⋅
===
所以:
H =(x 0﹣x )tan θ=(x 0
)
由数学知识可知,当(x 0
)
时,即y =4.5cm 时H 有最大值 所以H max =9cm。