教育最新K12九年级数学上学期末模拟试题一(无答案) 北师大版

合集下载

北师大版九年级上册数学《期末》模拟考试及答案免费

北师大版九年级上册数学《期末》模拟考试及答案免费

北师大版九年级上册数学《期末》模拟考试及答案免费 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a < B .1a >- C .12a -<≤ D .12a -≤<6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.25394+B.25392+C.18253+D.253182+二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.分解因式:2x +xy =_______.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是__________.4.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为__________.5.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.计算:()011342604sin π-----+().3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为AB 的中点,求ABC ∠和ABD ∠的大小;(Ⅱ)如图②,过点D 作O 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、D6、B7、D8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)12、()x x+y.3、3m≤.4、55°5、16、(,6)三、解答题(本大题共6小题,共72分)1、x=32、33、(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)4、(1)52°,45°;(2)26°5、(1)60,10;(2)96°;(3)1020;(4)2 36、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

【北师大版】九年级数学上期末第一次模拟试卷附答案

【北师大版】九年级数学上期末第一次模拟试卷附答案

一、选择题1.如图,反比例函数k y x=的图象过矩形OABC 的顶点B ,OA ,OC 分别在x 轴、y 轴的正半轴上,矩形OABC 的对角线OB ,AC 交于点(1,2)E ,则k 的值为( )A .4B .8C .4-D .8- 【答案】B【分析】 根据矩形性质、反比例函数解析式和直角坐标系的知识求解.【详解】解:由题意可得A 的横坐标为1×2=2,C 的纵坐标为2×2=4,∴B 的坐标为(2,4),∵B 在反比例函数图象上,∴4,2k = ∴k=2×4=8,故选B .【点睛】本题考查矩形的性质和反比例函数的综合应用,熟练掌握矩形性质和数形结合思想的应用是解题关键.2.反比例2k y x =的图象经过点(-1,3),则k 的值为( ) A .3B .32C .32-D .3-【答案】C【分析】根据反比例函数图象上点的坐标特征,把点(-1,3)代入反比例函数解析式可得关于k 的一元一次方程,解方程求出k 值即可得答案.【详解】∵反比例2k y x =的图象经过点(-1,3),∴3=21k -, 解得:k=32-. 故选:C .【点睛】本题考查反比例函数图象上点的坐标特征,熟记函数图象上的点的坐标都满足函数解析式是解题关键.3.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .y x =3C .y =﹣1xD .y =x 2﹣1 【答案】C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、y x=3,可以化为y =3x ,是正比例函数; C 、y =﹣1x是反比例函数; D 、y =x 2﹣1是二次函数;故选:C .【点睛】 本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明4.如图所示的立体图形,其俯视图正确的是( )A .B .C .D .5.如图,长方体的底面是长为4cm、宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于( )A.36cm B.38cm C.312cm D.324cm6.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A .B .C .D .7.有一个三角形木架三边长分别是15cm,20cm,24cm,现要再做一个与其相似的三角形木架,而只有长为12cm和24cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种8.如图,在ABC中,中线BE,CD相交于点O,连接DE,给出下列结论∶①12DEBC=;②12SS=△DOE△COB;③AD OEAB OB=;④13COEADCSS=△△;⑤23BDOBCOSS=△△.其中不正确的个数是()A.1 B.2 C.3 D.49.若ABC的每条边长增加各自的20%得A B C''',则B'∠的度数与其对应角B的度数相比()A.增加了20%B.减少了20%C.增加了()120%+D.没有改变10.一个不透明的袋子里装有黄、白、红三种颜色的球,其中黄色16个,白色8个和红色若干,小明通过多次摸球试验后,发现摸到红球的频率稳定在0.5左右,则摸到黄球的概率约为()A.23B.12C.13D.1611.下列方程中,是一元二次方程的是( )A .12x +=B .21x y +=C .243x x -=D .35-=xy 12.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小二、填空题13.对于函数2y x=,当函数值1y <-时,自变量x 的取值范围是_________. 14.分别以矩形OABC 的边OA ,OC 所在的直线为x 轴,y 轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC 折叠使点B 落在G(3,0)上,折痕为EF ,若反比例函数k y x=的图象恰好经过点E ,则k 的值为_______.15.一块直角三角形板ABC ,∠ACB =90°,BC =12cm ,AC =8cm ,测得BC 边的中心投影B 1C 1长为24cm ,则A 1B 1长为_____cm .16.如图所示的几何体的三视图,这三种视图中画图不符合规定的是________.17.已知ABC ∽DEF ,且面积比为1:9,若ABC 的周长为8cm ,则DEF 的周长是______cm .18.四张背面相同的卡片,分别为12,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a ,再在剩余的卡片中抽取一张点数记为b ,则点(a ,b )恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________; 19.对于有理数a ,b ,定义{}min ,a b :当a b ≥时,{}min ,a b b =;当a b ≤时,{}min ,a b a =.若{}22min 40,12440m n m n -+--=,则n m 的值为______. 20.如图,四边形ABCD 是一个正方形,E 是BC 延长线上一点,且AC =EC ,则∠DAE 的度数为_________.三、解答题21.已知,反比例函数(0)k y k x=≠与正比例函数12y x =-,在平面直角坐标系内相交于A 、B 两点,点A 的坐标是(2,)m . (1)求m 和k 的值.(2)求点B 的坐标.22.学习了相似三角形的知识后,爱探究的小明下晚自习后利用路灯的光线去测量了一路灯的高度,并作出了示意图:如图,路灯(点P )距地面若干米,身高1.6米的小明站在距路灯的底部(O 点)20米的A 点时,身影的长度AM 为5米;(1)请帮助小明求出路灯距地面的高度;(2)若另一名身高为1.5米小龙站在直线OA 上的C 点时,测得他与小明的距离AC 为7米,求小龙的身影的长度.【答案】(1)路灯距地面的高度为8米;(2)小龙的身影的长度为3米【分析】(1)根据MAB MOP △△得出AB AM OP OM =,代入求解即可; (2)根据NCD NOP △△得出CD CN OP ON=,结合(1)代入求解即可. 【详解】解:(1)∵AB ⊥OM ,PO ⊥OM ,∴MAB MOP △△,∴AB AM OP OM =, ∴1.65205OP =+, ∴OP=8,即路灯距地面的高度为8米;(2)∵CD ⊥OM ,PO ⊥OM ,∴NCD NOP △△,∴CD CN OP ON=, ∵OC=OA-AC=20-7=13,CD=1.5,OP=8,∴1.5813CN CN=+, ∴CN=3, 即小龙的身影的长度为3米.【点睛】本题考查相似三角形的应用,理解题意,找出相似三角形是解题的关键.23.在如图的方格纸中,OAB 的顶点坐标分别为(00)(21)(13)----,,,,,O A B ,111O A B △与OAB 是关于点P 为位似中心的位似图形.(1)在图中标出位似中心P 的位置,并写出点P 及点B 的对应点1B 的坐标; (2)以原点O 为位似中心,在位似中心的同侧画出OAB 的一个位似22OA B △,使它与OAB 的位似比为2∶1,并写出点B 的对应点2B 的坐标.24.为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x 小时,将它分为4个等级:A(02x ≤<),B (24x ≤<),C (46x ≤<),D (6x ≥),并根据调查结果绘制了如下两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次调查了______名学生;(2)在扇形统计图中,等级D 所对应的扇形的圆心角为______︒;(3)请补全条形统计图;(4)在等级D 中3男2女表现最为优秀,现从5人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中一男一女的概率.25.关于x 的方程()22210x x m ---=有实数根,且m 为非正整数.求m 的值及此时方程的根.26.如图1、图2都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.已知点O ,M ,N ,A ,B 均在格点上,请按要求完成下列问题:(1)在图①中,仅用无刻度直尺在网格中画出∠MON 的平分线OP ,并简要说明画图的依据;(2)在图②中,仅用无刻度直尺在网格中画一个Rt △ABC ,使点C 在格点上,并简要说明画图的依据.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.5.D解析:D【解析】【分析】根据长方体的体积公式可得.【详解】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故选:D.【点睛】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.6.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.7.B解析:B【分析】长24cm 的木条与三角形木架的最长边相等,则长24cm 的木条不能作为一边,设从24cm 的一根上截下的两段长分别为xcm 和ycm ,且x+y≤24cm ;长12cm 的木条不能与15cm 的边对应,否则x+y>24cm ,故分12cm 的木条与20cm 的边对应和与24cm 的边对应讨论即可求解.【详解】解:长24cm 的木条与三角形木架的最长边相等,要满足两边之和大于第三边,则长24cm 的木条不能作为一边,设从24cm 的木条上截下两段长分别为xcm ,ycm (x+y≤24),由于长12cm 的木条不能与15cm 的一边对应,否则x+y >24cm ,当长12cm 的木条与20cm 的一边对应时,则12152420==x y , 解得:9,14.4==x y ,此时+23.424=<x y ,故满足; 当长12cm 的木条与24cm 的一边对应时,则12152024==x y , 解得:7.5,10==x y ,此时+17.524=<x y ,故满足; 综上所述,共有2种截法,故选:B .【点睛】本题考查了相似三角形的应用:构建三角形相似,然后利用相似三角形的性质:相似三角形的对应边成比例计算即可.8.B解析:B【分析】根据中位线的性质,//DE BC ,通过证明DOE COB △∽△,得DOE COB S S ;根据相似三角形性质,通过证明ADE ABC △△∽,证得AD OE AB OB=;结合点D 是AB 的中点,点E 是AC 的中点,通过三角形面积关系计算,即可得到COE ADC S S △△,同理计算得BDO BCO S S △△,即可得到答案.【详解】根据题意得:点D 是AB 的中点,点E 是AC 的中点 ∴DE 是ABC 的中位线∴12DE BC =,即①结论正确; 又∵DE 是ABC 的中位线 ∴//DE BC∴DEO CBO ∠=∠,EDO BCO ∠=∠∴DOE COB △∽△ ∴12OE OD DE OB OC BC ===,214DOE COB S DE SBC ⎛⎫== ⎪⎝⎭,即②结论错误; 又∵//DE BC ∴ADE ABC =∠∠,AED ACB ∠=∠∴ADE ABC △△∽ ∴12AD DE AB BC == ∴AD OE AB OB =,即③结论正确; ∵12OE OB = ∴13OE OE BE OB OE ==+ ∴13COE BEC S OE S BE ==△△ ∵点D 是AB 的中点,点E 是AC 的中点 ∴12ADC ABC S AD S AB ==△△,12BEC ABC S CE S AC ==△△ ∴111326COE COE BEC ABC BEC ABC S S S S S S =⨯=⨯=△△△△△△ ∴1632COE COEABC ADC S S S S ==△△△△,即④结论正确; ∵12OD DE OC BC == ∴12BDO BCO S OD S OC ==△△,即⑤结论错误; 故选:B .【点睛】本题考查了三角形中位线、相似三角形、平行线的知识;解题的关键是熟练掌握三角形中位线、相似三角形的性质,从而完成求解.9.D【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.【详解】解:∵△ABC的每条边长增加各自的20%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.故选:D.【点睛】本题考查了相似图形,熟练掌握相似三角形的判定是解题的关键.10.C解析:C【分析】根据多次摸球试验后,发现摸到红球的频率稳定在0.5左右,可以计算出摸到黄球和白球的概率和为1−0.5=0.5,由此可估计到布袋中的三种球可能共有48个,则利用概率公式即可得出结论.【详解】解:∵通过多次摸球试验后发现,摸到红球的频率稳定在0.5左右,∴摸到黄球和白球的概率和为1−0.5=0.5.则布袋中的三种球可能共有:168480.5+=个,∴摸到黄球的概率约为:161483=.故选:C.【点睛】此题考查了利用频率估计概率,解答此题的关键是掌握频率和概率的关系及概率的计算方法.11.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A、是一元一次方程,不符合题意;B、是二元一次方程,不符合题意;C、是一元二次方程,符合题意;D、是二元二次方程,不符合题意;【点睛】此题考查一元二次方程,熟记定义是解题的关键.12.D解析:D 【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可. 【详解】解:A 、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B 、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C 、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D 、平移和旋转都不改变图形的形状和大小,正确, 故选:D . 【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.【分析】先求出时x 的值再画出函数图象利用函数图象法即可得【详解】对于函数当时解得画出函数的图象如下:由图象可知当时故答案为:【点睛】本题考查了反比例函数的图象与性质正确画出图象熟练掌握图象法是解题关键 解析:20x -<<【分析】先求出1y =-时,x 的值,再画出函数图象,利用函数图象法即可得. 【详解】 对于函数2y x=, 当1y =-时,21x=-,解得2x =-, 画出函数2y x=的图象如下:由图象可知,当1y <-时,20x -<<, 故答案为:20x -<<. 【点睛】本题考查了反比例函数的图象与性质,正确画出图象,熟练掌握图象法是解题关键.14.3【分析】设CE 的长为a 利用折叠的性质得到EG=BE=4-aED=3-a 在Rt △EGD 中利用勾股定理可求得a 的值得到点E 的坐标即可求解【详解】过G 作GD ⊥BC 于D 则点D(32)设CE 的长为a 根据折叠解析:3 【分析】设CE 的长为a ,利用折叠的性质得到EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,利用勾股定理可求得a 的值,得到点E 的坐标,即可求解. 【详解】过G 作GD ⊥BC 于D ,则点D(3,2),设CE 的长为a ,根据折叠的性质知:EG=BE=4-a ,ED=3-a , 在Rt △EGD 中,222EG ED DG =+, ∴()()2224a 3a 2-=-+,解得:32a =, ∴点E 的坐标为(32,2), ∵反比例函数ky x=的图象恰好经过点E ,∴3232k xy ==⨯=, 故答案为:3. 【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,反比例函数图象上点的特征,作出辅助线构造直角三角形是解题的关键.15.8【分析】由题意易得△ABC ∽△A1B1C1根据相似比求A1B1即可【详解】∵∠ACB=90°BC=12cmAC=8cm ∴AB=4cm ∵△A1B1C1是△ABC 的中心投影∴△ABC ∽△A1B1C1∴解析:【分析】由题意易得△ABC ∽△A 1B 1C 1,根据相似比求A 1B 1即可. 【详解】∵∠ACB=90°,BC=12cm ,AC=8cm , ∴,∵△A 1B 1C 1是△ABC 的中心投影, ∴△ABC ∽△A 1B 1C 1,∴A1B 1:AB=B 1C 1:BC=2:1,即A 1B 1.故答案为【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.16.俯视图【解析】解:根据几何体的摆放位置可知主视图正确;左视图正确;俯视图缺少两条看不到的虚线故不符合规定的是俯视图故答案为俯视图解析:俯视图 【解析】解:根据几何体的摆放位置可知,主视图正确;左视图正确;俯视图缺少两条看不到的虚线.故不符合规定的是俯视图.故答案为俯视图.17.24【分析】根据相似三角形的性质求出相似比即可得解;【详解】∵∽且面积比为∴相似比为∵的周长为设的周长为x ∴∴;故答案是24【点睛】本题主要考查了相似三角形的性质准确计算是解题的关键解析:24 【分析】根据相似三角形的性质求出相似比,即可得解; 【详解】 ∵ABC ∽DEF ,且面积比为1:9,∴相似比为1:3,∵ABC的周长为8cm,设DEF的周长为x,∴1∶38∶x=,∴24x=;故答案是24.【点睛】本题主要考查了相似三角形的性质,准确计算是解题的关键.18.【分析】首先画树状图列出所有可能的点(ab)并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点最后利用概率公式即可求得【详解】解:画树状图如下:总共有12种等可能结果其中点(ab)恰解析:5 12【分析】首先画树状图列出所有可能的点(a,b),并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点,最后利用概率公式即可求得.【详解】解:画树状图如下:总共有12种等可能结果,其中点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的可能性有1,12⎛⎫⎪⎝⎭,1,22⎛⎫⎪⎝⎭,1,32⎛⎫⎪⎝⎭,11,2⎛⎫⎪⎝⎭,()1,2,共5种,其概率为5 12,故答案为:5 12.【点睛】本题考查的是用列表法或树状图法求概率,一次函数上点的坐标特征.注意本题为不放回实验.19.36【分析】根据与40的大小再根据从而确定mn 的值即可得出的值【详解】解:∵∴40≤;∴∴(m+6)2+(n-2)2≤0∵(m+6)2+(n-2)20∴m+6=0n-2=0∴m=-6n=2∴故答案为解析:36 【分析】根据22124-+--m n m n 与40的大小,再根据{}22min 40,12440m n m n -+--=,从而确定m ,n 的值即可得出n m 的值. 【详解】解:∵{}22min 40,12440m n m n -+--=,∴40≤22124-+--m n m n ; ∴22412400+-≤++m n n m ∴(m+6)2+(n-2)2≤0, ∵(m+6)2+(n-2)2≥0, ∴m+6=0,n-2=0, ∴m=-6,n=2, ∴()2636=-=n m故答案为:36. 【点睛】本题考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.20.5°【分析】由四边形ABCD 是一个正方形根据正方形的性质可得∠ACB=45°又由AC=EC 根据等边对等角可得∠E=∠CAE 继而根据等腰三角形的性质和三角形的内角和求得∠EAC 的度数进一步即可求得∠D解析:5° 【分析】由四边形ABCD 是一个正方形,根据正方形的性质,可得∠ACB=45°,又由AC=EC ,根据等边对等角,可得∠E=∠CAE ,继而根据等腰三角形的性质和三角形的内角和求得∠EAC 的度数,进一步即可求得∠DAE 的度数. 【详解】解:∵四边形ABCD 是正方形, ∴45ACB ∠=︒,∴18045135ACE ∠=-=︒︒︒, 又∵AC CE =, ∴()118013522.52CAE CEA ∠=∠=⨯︒-︒=︒,则4252.52.52DAE DAC CAE ∠=∠-∠=-︒=︒︒. 故答案为:22.5° 【点睛】此题考查了正方形的性质以及等腰三角形的性质.此题比较简单,注意掌握数形结合思想的应用.三、解答题21.(1)1m =-,2k =-;(2)(2,1)- 【分析】(1)先把点A (2,m )代入12y x =-中求出m 得到A (2,-1)然后把A 点坐标代入ky x=中求出k 得到反比例函数的表达式; (2)解析式联立组成方程组,解方程组即可求得. 【详解】解:(1)∵点()2,A m 在正比例函数12y x =-的图象上, ∴122m -⨯=解得:1m =-. ∴点A 的坐标为(2,1)-; ∵点A (2,1)A -在反比例函数(0)ky k x=≠的图象上, 2k ∴=-,∴反比例函数的解析式为2y x=-. (2)∵122y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:21x y =⎧⎨=-⎩或21x y =-⎧⎨=⎩;∴点B 的坐标为(2,1)-; 【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组,求得方程组的解.22.无23.(1)画图见解析,1(5,1),(3,5)---P B(2)画图见解析,226)(--,B 【分析】(1)连接1O O 并延长与1A A 的延长线相交,交点即为位似中心P ,再根据平面直角坐标系写出点P 和1B 的坐标;(2)延长OA 到2A ,使2=AA OA ,延长OB 到2B ,使2=BB OB ,连接22A B ,再根据平面直角坐标系写出点2B 的坐标; 【详解】解:(1)位似中心P 如图所示,1(5,1),(3,5)---P B ;(2)22OA B △如图所示,226)(--,B ;【点睛】本题考查了利用位似变换作图,熟练掌握位似变换的性质准确找出对应点的位置是解题的关键.24.(1)50;(2)108︒;(3)见详解;(4)恰好选中一男一女的概率为35【分析】(1)由条形统计图中:B 等级人数与B 等级在扇形统计图中占比作比,两者作比即可; (2)由(1)知,总体人数,D 等级的人数与总体人数作比,然后与圆周角相乘即可; (3)由(1)知,总体人数,减去A 等级、B 等级、D 等级的人数,可知C 等级,即可; (4)画出对应的树状图或列表即可求解. 【详解】(1)1326%50÷=,∴ 本次调查了50名学生;(2)155030%÷=,36030%108︒︒⨯=,∴ 等级D 所对应扇形的圆心角为:108°; (3)(4)依题意,对等级D 的3名男生和2名女生进行编号为:男1、男2、男3、女1、女2;列表如下图:男1 男2 男3 女1 女2 男1男1、男2男1、男3 男1、女1 男1、女2 男2男2、男1男2、男3男2、女1 男2、女2 男3男3、男1 男1、男2男3、女1男3、女2 女1女1、男1 女1、男2 女1、男3女1、女2女2女2、男1女2、男2女2、男3女2、女1得5名同学的组合共计10种,恰为一男一女的组合共计6种, ∴ 恰为一男一女的概率为:63105=; ∴ 恰好为一男一女的组合的概率为35. 【点睛】本题考查条形统计图和扇形统计图的性质,重点在结合已知量及相互关系来求解. 25.0m =,121x x ==. 【分析】根据一元二次方程有实数根可以判断△≥0,又根据m 为非正整数,可以判断0m =,进而求解即可; 【详解】解:∵方程有实数根, ∴()()224210m =-+-≥△.解得:0m ≥. 又∵ m 为非正整数, ∴ 0m =.当0m =时,方程为2210x x -+=. 此时方程的解为121x x ==. 【点睛】本题考查了一元二次方程有实数根的情况,正确掌握解一元二次方程的方法是解题的关键;26.(1)见解析;(2)见解析 【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题; (2)利用菱形以及平行线的性质即可解决问题. 【详解】解:(1)如图1,射线OP 即为所求的∠MON 的平分线.作图依据是:可判定△MOP ≌△NOP ,于是有∠MOP =∠NOP .(2)如图2,△ABC 即为所求作的直角三角形,其中∠ACB =90°.作图依据是:①菱形的对角线互相垂直,即BC ⊥EF ;②可判定AC ∥EF ,则AC ⊥BC ,所以∠ACB =90°.【点睛】本题考查作图−应用与设计、菱形的性质等知识,解题的关键是掌握菱形的性质并灵活运用所学知识解决问题.。

2022-2023年北师大版九年级数学第一学期期末模拟试卷含答案

2022-2023年北师大版九年级数学第一学期期末模拟试卷含答案

2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.55.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>29.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:710.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是.12.已知=,则=.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x <0)上,D点在双曲线y=(x>0)上,则k的值为6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=;(2)补全条形统计图;(3)这次调查结果的众数是;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是.22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数【分析】根据分式有意义可得中x≠0.【解答】解:函数y=中,自变量x的取值范围是x≠0,故选:C.3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)2=0,则x1=x2=2,故选:B.4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.5【分析】根据平行线分线段成比例定理得到=,即=,然后利用比例性质求DF的长.【解答】解:∵直线a∥b∥c,∴=,即=,∴DF=.故选:D.5.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)【分析】依次把各个选项的横坐标代入反比例函数y=的解析式中,得到纵坐标的值,即可得到答案.【解答】解:A.把x=3代入y=得:y==﹣4,即A项错误,B.把x=﹣2代入y=得:y==6,即B项正确,C.把x=﹣2代入y=得:y==6,即C项错误,D.把x=﹣3代入y=得:y==4,即D项错误,故选:B.6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连结菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>2【分析】设出点A的坐标,可得点B的坐标.易得△ABC为直角三角形,面积等于×AC×BC,把相关数值代入求值即可.【解答】解:设点A的坐标为(x,y),点A在反比例函数解析式上,∴点B的坐标为(﹣x,﹣y),k=xy=1∵AC平行于y轴,BC平行于x轴,∴△ABC的直角三角形,∴AC=2y,BC=2x,∴S=×2y×2x=2xy=2.故选:B.9.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:7【分析】由于DE∥FG∥BC,那么△ADE∽△AFG∽△ABC,根据AD:AF:AB=1:2:4,可求出三个相似三角形的面积比.进而可求出△ADE、四边形DFGE、四边形FBCG 的面积比.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD:AF:AB=1:2:4,∴S△ADE:S△AFG:S△ABC=1:4:16,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,16a,则S四边形DFGE和S四边形FBCG分别是3a,12a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:12.故选:C.10.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④【分析】证明Rt△CFG≌Rt△CDG,得出①正确;在证明△ADE≌△DCG得出AE=DG,得出AE=AG,②不正确;证出GH是△AFD的中位线,得出GH∥AF,证出∠AFD=90°,即AF⊥DE,③正确;证明△ADE∽△F AE,得出===2,得出DE=2AE,AE=2EF,因此DF=4EF,④正确;即可得出答案.【解答】解:连接CG交ED于点H.如图所示:∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG(HL),∴GF=GD,①正确.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,在△ADE和△DCG中,,∴△ADE≌△DCG(ASA),∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AE=AG,②不正确;∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE,③正确;∵AD=AB,AB=2AE,∴AD=2AE,∵∠AFE=90°=∠DAE,∠AEF=∠DEA,∴△ADE∽△F AE,∴===2,∴DE=2AE,AE=2EF,∴DF=4EF,④正确;故选:C.二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.【分析】方程变形后,开方即可求出解.【解答】解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故答案为:x1=﹣4,x2=412.已知=,则=.【分析】依据比例的性质,即可得到=.【解答】解:∵=,∴7a﹣7b=3a+3b,∴4a=10b,∴=,故答案为:.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率【分析】先画树状图展示所有9种等可能的结果数,再找出其中小智和小慧被分到同一个项目标组进行志愿服务的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中小智和小慧被分到同一个项目标组进行志愿服务的结果数为3,所以小智和小慧被分到同一个项目标组进行志愿服务的概率为=.14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是【解答】解:过D作DE⊥AB交AB的延长线于E,∴∠E=∠CAB=90°,∵斜边BC绕点B逆时针方向旋转90°至BD的位置,∴BD=BC,∠CBD=90°,∴∠DBE+∠CBA=∠CBA+∠C=90°,∴∠DBE=∠C,∴△ABC≌△EDB(AAS),∴DE=AB=2,BE=AC=3,∴AE=2+3=5,∴AD===,15.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为6.【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【解答】解:∵A(﹣1,a)在双曲线y=﹣(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB==,∵四边形ABCD是正方形,∴BC=AB=,设C(n,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为:6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.【分析】利用因式分解法求解可得.【解答】解:∵2x2﹣5x+3=0,∴(x﹣1)(2x﹣3)=0,则x﹣1=0或2x﹣3=0,解得x=1或x=1.5.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.【分析】(1)利用待定系数法即可求得函数的解析式;(2)一次函数的值大于反比例函数的值的x的取值范围,就是对应的一次函数的图象在反比例函数的图象的上边的自变量的取值范围.【解答】解:(1)把A(﹣4,2)代入y=得:m=﹣8,则反比例函数的解析式是:y=﹣;把y=﹣4代入y=﹣,得:x=n=2,则B的坐标是(2,﹣4).根据题意得:,解得:,则一次函数的解析式是:y=﹣x﹣2;(2)使一次函数的函数值小于反比例函数的函数值的x的取值范围是:﹣4<x<0或x >2.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=15%;(2)补全条形统计图;(3)这次调查结果的众数是偶尔使用;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?【分析】(1)由“从不使用”的人数及其对应百分比求得总人数,继而用“经常使用”的人数除以总人数可得m的值;(2)根据各类别人数之和等于总人数求得“偶尔使用”的人数即可补全条形图;(3)根据众数的定义求解可得;(4)用总人数乘以样本中“经常使用”的人数对应的百分比可得.【解答】解:(1)∵被调查的学生总人数为25÷25%=100(人),∴经常使用的人数对应的百分比m=×100%=15%,故答案为:15%;(2)偶尔使用的人数为100﹣(25+15)=60(人),补全条形统计图如下:(3)∵偶尔使用的人数最多,∴这次调查结果的众数是偶尔使用,故答案为:偶尔使用;(4)估计“经常使用”共享单车的学生大约有3000×15%=450(人).19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?【分析】先根据销售利润=每件利润×数量,再设出单价应定为x元,再根据这个等式列出方程,即可求出答案.【解答】解:设销售单价定为x元,根据题意得:(x﹣40)[500﹣(x﹣50)÷0.1]=8000.解得:x1=60,x2=80当售价为60时,月成本[500﹣(60﹣50)÷0.1]×40=16000>10000,所以舍去.当售价为80时,月成本[500﹣(80﹣50)÷0.1]×40=8000<10000.答:销售单价定为80元.20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.【分析】(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.【解答】证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是或.【分析】(1)证明∠ECD+∠EDC=90°即可解决问题.(2)由△CFE∽△EFD,得,由此即可解决问题.(3)分两种情形,当△BCE∽△FGD时,当△BCE∽△FDG时,分别计算即可.【解答】(1)证明:∵EC、ED分别为∠BCD、∠ADC的角平分线,∴∠BCE=∠DCE,∠ADE=∠CDE,∵BC∥AD,∴∠BCD+∠ADC=180°,∴2∠ECD+2∠EDC=180°,∴∠ECD+∠EDC=90°,22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.【分析】(1)先根据菱形的性质求出BC=3,再利用含30度角的直角三角形的性质求出BM,即可得出结论;(2)先判断出四边形ABNM是平行四边形,得出∠AMB=∠EBD,进而判断出△ABM ∽△EDB,即可得出结论;(3)先判断出AM+AN=BN+AN,再判断出点N的运动轨迹是线段CP,进而判断出再CP上取一点N使AN+BN最小,最后利用轴对称构造出图形,计算即可得出结论.【解答】解:(1)如图1,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,CD=BC=AB=,∵∠BCD=120°,∴∠CBD=30°,∴OC=BC=,∴OB=OC=,∴BD=3,∵∠BCD=120°,∠DCM=30°,∴∠BCM=90°,∴CM=BC=1,∴BM=2CM=2,∴DM=BD﹣BM=1;(2)∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵MN∥CD,MN=CD,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形,∴AM∥BN,∴∠AMB=∠EBD,∵AB∥CD,∴∠ABM=∠EDB,∴△ABM∽△EDB,∴,∴AM•DE=BE•AB,∵AB=CD,∴AM•DE=BE•CD;(3)如图2,∵四边形ABCD是菱形,∴∠ABD=∠ABC,CD∥AB,∵∠BCD=120°,∴∠ABC=60°,∴∠ABD=30°,连接CN并延长交AB的延长线于P,∵CD∥MN,CD=MN,∴四边形CDMN是平行四边形,∴当点M从点D向B运动时,点N从点C向点P运动(点N的运动轨迹是线段CP),∠APC=∠ABD=30°,由(2)知,四边形ABNM是平行四边形,∴AM=BN,∴AM+AN=AN+BN,而AM+AN最小,即:AN+BN最小,作点B关于CP的对称点B',当点A,N,B'在同一条线上时,AN+BN最小,即:AM+AN的最小值为AB',连接BB',B'P,由对称得,BP=B'P=AB=,∠BPB'=2∠APC=60°,∴△BB'P是等边三角形,B'P过点B'作B'Q⊥BP于Q,∴BQ=B'P=,∴B'Q=BQ=,∴AQ=AB+BQ=,在Rt△AQB'中,根据勾股定理得,AB'==3,即:AM+AN的最小值为3,故答案为3.∴∠CED=90°.即CE⊥DE;(2)解:∵∠EAD=∠EFD,∠ADE=∠FDE,DE=DE,∴△EAD≌△EFD(AAS),∴EF=EA,∵E为AB的中点,∴AE=EF=3∵∠CED=90°,∴∠CEF+∠FED=90°,∵EF⊥CD,∴∠FED+∠EDF=90°,∴∠CEF=∠EDF,∴△CFE∽△EFD,∴,即CF•DF=EF•EF,∴CF•DF=9.(3)解:①当△BCE∽△FGD时,∵∠BCE=∠AED,∴∠FED=∠FGD,∴ED=DG,∴∠EDF=∠GDF,∴△EDC≌△GDC(SAS),∴∠ECD=∠GCD,∵∠BCE+∠ECD+∠DCG=180°,∴∠BCE=∠AED=60°,设BC=x,则BE=x,∴AE=x,∴AD=3x,∴.②当△BCE∽△FDG时,∠BCE=∠FDG,∵∠BCE=∠ECF,∴∠ECF=∠FDG,∴EC∥DG,∴∠BCE=∠CGD,∴∠CGD=∠FDG,∴CD=CG.∵S△CDG=,∴FG=AB.∵EC∥DG,∴=,∴.综合以上可得的值为或.故答案为:或.。

北师大版九年级上数学期末测试模拟卷及答案

北师大版九年级上数学期末测试模拟卷及答案

北师大版九年级上数学期末测试模拟卷及答案(全卷满分100分 限时90分钟) 一. 选择题(每小题3分,共36分)1. 图1所示的物体的左视图(从左面看得到的视图)是( )图1 A . B . C . D . 2.用配方法解方程,经过配方,得到( )A.B.C.D.3.正方形、矩形、菱形都具有的特征是( )A. 对角线互相平分B. 对角线相等C. 对角线互相垂直D. 对角线平分一组对角 4.下列说法错误..的是( ) A 、任意两个直角三角形一定相似 B 、 任意两个正方形一定相似 C 、位似图形一定是相似图形D 、 位似图形每一组对应点到位似中心的距离之比都等于位似比 5.若a 、b 、c 、d 是互不相等的正数,且dcb a = ,则下列式子错误..的是( ) A 、d dc b b a -=- B 、d c d c b a b a +-=+- C 、2222d c b a = D 、1111++=++d c b a6. 如图所示,在四边形ABCD 中,AB //CD ,∠ABC =α,∠BAD =β,则AD :BC 等于( )A.B.C.D.7.过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为 A .91 B .31 C .21 D .328.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x ,则可列方程为: A .()140012002=+x B .()140012003=+xC .()200114002=-x D .()()1400120012002002=++++x x9.在同一平面直角坐标系中,直线与双曲线的交点个数为( ) A. 0个B. 1个C. 2个D. 无法确定10.如图5,已知AD 是△ABC 的高,EF 是△ABC 的中位线,则下列结论中错误的是: ( ) A .EF ⊥AD B .EF =21BC C .DF =21AC D .DF =21AB11. 当-2≤x ≤l 时。

配套K12九年级数学上册期末综合复习一(无答案)(新版)北师大版

配套K12九年级数学上册期末综合复习一(无答案)(新版)北师大版

_C _A_B广东省佛山市顺德区江义初级中学2016届九年级数学上册期末综合复习一一、选择题(本大题共10题,每题3分,共30分)1、一元二次方程05322=+-xx的一次项是()A x3B x3- C 3 D -3反比例函数xy6=的图像上有点),2(11yp-,),2(22yp,则下列不等式中正确的是()A 021>+yy B021<+yy C 021<-yy D021>-yy3、如图,在△ABCRT中,︒=90∠C,8=BC,6=AC,则=Atan(A53B54C43D344、如图,在菱形ABCD中,︒≠90∠ABC,对角线AC与BD相交于点O,图中的直角三角形有()A 2个B 4个C 6个D 8个5、解是1-=x和3=x的一元二次方程是()A 0322=+-xx B 0322=++xxC 0322=--xx D 0322=-+xx下列四个三角形中,与右图中的三角形相似的是()A B C D如图,是某几何体的主视图、左视图、俯视图,则该几何体的体积是()A π3 B π2C πD 12数学老师上概率课时,把2张背面完全相同而正面花色不同的扑克牌撕成两半变成4个半张牌放在一个盒子里,搅匀后随机抽取两张,恰好可以拼成一张扑克牌的概率是()_C_B68第6题图3主视图 3俯视图左视图A21 B 31 C 51 D 61 某电商公司10月份的营业额为50万元,计划利用“双11”及年终促销,希望12月份营业额达到90万元,若用x 表示每月营业额的平均增长率,则可列出的方程是( )A 90350=+xB 90)1(50=+xC 90)1(502=+x D ()[]9012502=+++x xA EAD如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 的点F 处,若5=AE ,3=BF ,则CD 的长是( )A 9B 8C 7D 10 填空题(本大题共6小题,每题4分,共24分)︒⋅30tan 3=___________12、如图,ABCD 是正方形,△CDE 是等边三角形,则∠EAB 度数是________.13、某玩具店进了一纸箱红黄蓝三种颜色的球1000个,这些球除颜色外形状大小都相同。

2022-2023年北师大版初中数学九年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版初中数学九年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版数学九年级上册期末考试测试卷及答案(一)一、选择题(每小题3分,共30分)1.已知三角形的两边长分别是3和4,第三边是方程035122=+-x x 的一个根,则此三角形的周长是( )A.12B.14 C .15 D .12或142、下面左图中所示几何体的左视图是( )3.下列方程中是一元二次方程的是( ) A.2)3)(2(x x x =-+ B.62=y C.51322=+-x x D.132=+y x 4.已知点(3,﹣4)在反比例函数xky =的图象上,则下列各点也在该反比例函数图象上的是( )A .(3,4)B .(-3,-4)C .(-2,6)D .(2,6)5.有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、等腰梯形四个图案,卡片背面完全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( ) A .41 B .21 C .43D . 16.下列说法中,不正确的是( )A .两组对边分别平行的四边形是平行四边形 B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形7.如果ab=cd ,且abcd ≠0,则下列比例式不正确的是( ) A.d c b a = B.b d c a = C.a c d b = D.ca b d = 8.已知一次函数b kx y +=的图象经过第一、三、四象限,则反比例函数xkby =的图象在( )A .一、二象限B .一、三象限C .三、四象限D .二、四象限9.关于x 的一元二次方程0242=-+x kx 有实数根,则k 的取值范围是( ) A .2-≥k B .0k 2≠->且k C .02≠-≥k k 且 D .2-≤k 10.如图,在矩形ABCD 中,AB=4,BC=3,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ) A.2 B.25 C.5 D.825二.填空题:(每小题4分,共24分)11.如图,直线l 1//l 2//l 3且与直线a 、b 相交于点A 、B 、C 、D 、E 、F ,若AB=1,BC=2,DE=1.5,则DF= .12.在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有 个.13.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x 人,则根据题意可列方程为 . 14.反比例函数xky =(k>0)图象上有两点),(11y x 与),(22y x ,且210x x <<,则1y 2y (填“”或“”或“”).15.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且∠ADF=∠BED=∠CFE=90°,则△DEF 与△ABC 的面积之比为 .>=<16. 如图,在正方形ABCD 中,对角线AC 与BD 相交于点O , 点E 在OC 上一点(不与点O 、C 重合),AF ⊥BE 于点F ,AF 交BD 于点G ,则下述结论:①BCE ABG ∆≅∆、②AG=BE 、 ③∠DAG=∠BGF 、④AE =DG 中,一定成立的有 .三、解答题(一)(每小题6分,共18分)17、解方程:)2(4)2(3x x x -=-18. 如图,点O 是平面直角坐标系的原点,点A 、B 、C 的坐标分别是(1,-1)、(2,1)、(1,1).作图:以点O 为位似中心在y 轴的左侧把原来的四边形OABC 放大两倍(不要求写出作图过程);(1)直接写出点A 、B 、C 对应点A ’、B ’、C ’的坐标.19.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同.从中随机摸出一个小球记下数字为x ,再从剩下的三个球中随机摸出一个球记下数字为y ,点A 的坐标为(x,y).运用画树状图或列表的方法,写出A 点所有可能的坐标,并求出点A 在反比例函数xy 12=图象上的概率.四、解答题(二)(每小题7分,共21分)20.如图,为测量旗杆的高度,身高1.6m 的小明在阳光下的影长为1.4m ,同一时刻旗杆在太阳光下的影子一部分落在地面上,一部分落墙上,测量发现落在地面上的影长BC=9.2m ,落在墙上的影长CD=1.5m,请你计算旗杆AB 的高度.(结果精确到1m )21.如图,在等边三角形ABC 中,D 是BC 的中点,以AD 为边向左侧作等边三角形ADE. (1)求∠CAE 的度数.(2)取AB 的中点F ,连接CF 、EF.试证明四边形CDEF 是平行四边形.22.如图,某养猪户想用30米长的围栏设计一个矩形的养猪圈,其中猪圈一边靠墙MN ,另外三边用围栏围住,MN 的长度为15m ,为了让围成的猪圈(矩形ABCD )面积达到112m 2,请你帮忙计算一下猪圈的长与宽分别是多少?五、解答题(三)(每小题9分,共27分)23.如图,一次函数)13(++-=k x y 和反比例函数xky =的图象相交于点A 与点B.过A 点作AC ⊥x 轴于点C ,6=∆AOC S . (1)求反比例函数和一次函数的解析式; (2)求点A 与点B 的坐标; (3)求△AOB 的面积.24.如图,在矩形ABCD 中,AB=3cm ,BC=6cm.点P 从点D 出发向点A 运动,运动到点A 即停止;同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s.连接PQ 、AQ 、CP.设点P 、Q 运动的时间为ts. (1) 当t 为何值时,四边形ABQP 是矩形; (2) 当t 为何值时,四边形AQCP 是菱形; (3) 分别求出(2)中菱形AQCP 的周长和面积.25.如图1,在Rt △ABC 中,∠BAC=90º.AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E. (1) 求证:△ABF ∽△COE ; (2) 当O 为AC 边中点,且2=AB AC 时,如图2,求OE OF的值; (3) 当O 为AC 边中点,且n AB AC =时,直接写出OEOF的值.答案一、选择题(每小题3分,共30分)1.A2.B3.B4.C5.B6.C7.A8.D9.C 10.D 二、填空题(每小题4分,共24分)11.4.5 12.18 13.110)1(=-x x 14. > 15.3116.①②④三、解答题(一)(每小题6分,共18分)17.2,3421=-=x x18.解:(1)如图,四边形OA ’B ’C ’为所求.(2)A ’(-2,2),B ’(-4,-2),C ’(-2,-2) 19.解:依题意列表得:x y 2 3 4 6 2 (2,3) (2,4) (2,6) 3 (3,2) (3,4) (3,6) 4 (4,2) (4,3) (4,6) 6(6,2)(6,3)(6,4)由上表可得,点A 的坐标共有12种结果,其中点A 在反比例函数xy 12=上的有4种:(2,6)、(3,4)、(4,3)、(6,2), ∴点A 在反比例函数x y 12=上的概率为=12431. 四、解答题(二)(每小题7分,共21分) 20.(1)解:如图,过点D 作DE ⊥AB 交AB 于E ,∵∠B =∠BCD =90º, ∴四边形BCDE 为矩形∴BE =CD =1.5,ED =BC =9.2由已知可得4.16.1=ED AE ∴5.104.16.12.94.16.1≈⨯=⋅=DE AE∴AB =AE+BE =10.5+1.5=12(m) 因此,旗杆AB 的高度为12m.21.解:(1)∵△ABC 与△ADE 为等边三角形 ∴∠BAC =∠DAE =60º∵D 是BC 的中点 ∴∠CAD =∠DAB =⨯2160º=30º∴∠CAE =∠CAD+∠DAE =30º+60º=90º (2)在等边△ABC 中,D 、F 分别是BC 、AB 的中点∴AD =CF ,∠FCB =⨯2160º=30º,AD ⊥BC在等边△ADE 中,AD =DE ,∠ADE =60º∴CF =AD =DE ,∠EDB =90º-60º=30º=∠FCB ∴CF ∥DE ∴四边形CDEF 是平行四边形.22. 解:设猪圈靠墙的一边长为x 米,依题意得:112)230(=-x x即:056152=+-x x 解得:8,721==x x当7=x 时,=-x 23030-7×2=16>15,不合题意,舍去. 当8=x 时,=-x 23030-8×2=14<15,符合题意. 答:猪圈的长是14m ,宽是8m.五、解答题(三)(每小题9分,共27分) 23.解:(1)设A 点坐标为),(y x ,∵A 点在反比例函数xky =图象上,∴k xy = ∵622=-=⋅=∆xyAC OC S AOC∴12-=xy xy =-12,即12-=k ∴反比例函数的解析式为xy 12-=,一次函数解析式为1+-=x y(2)由(1)可得⎪⎩⎪⎨⎧+-=-=112x y x y ,解得⎩⎨⎧-==3411y x ,⎩⎨⎧=-=4322y x ∴A (-3,4),B (4,-3) (3)过点B 作BD ⊥x 轴于点D ∵A (-3,4),B (4,-3) ∴ AC =4,BD =3设直线y =-x+1与x 轴交于点为E ∴ 0=-x+1 ∴ x =1 ∴ OE =1∴ 27312141212121=⨯⨯+⨯⨯=⋅+⋅=+=∆∆∆BD OE AC OE S S S BOE AOE ABC ∴ △AOB 的面积为27. 24.解:(1)由已知可得,BQ =DP =t,AP =CQ =6-t在矩形ABCD 中,∠B =90º,AD//BC ,当BQ =AP 时,四边形ABQP 为矩形 ∴t =6-t ,得t =3 故当t =3s 时,四边形ABQP 为矩形. (2)由(1)可知,四边形AQCP 为平行四边形∴当AQ =CQ 时,四边形AQCP 为菱形即t t -=+6322时,四边形AQCP 为菱形,解得t =49故当t =49s 时,四边形AQCP 为菱形. (3)当t =49时,AQ =415,CQ =415则周长为:4AQ =4×415=15cm 面积为:4453415=⨯=⋅AB CQ25.解:(1)证明:∵AD ⊥BC ∴∠DAC+∠C =90º∵∠BAC =90º, ∴∠DAC+∠BAF =90º ∴∠BAF =∠C. ∵OE ⊥OB, ∴∠BOA+∠COE =90º, ∵∠BOQ+∠ABF =90º, ∴∠ABF =∠COE. ∴△ABF ∽△COE(2)∵∠BAC =90º,2=ABAC,AD ⊥BC ∴BCA Rt BAD Rt ∆∆∽ ∴2==ABACBD AD设AB =1则AC =2,BC =5,BO =2 ∴552=AD ,55121==AD BD , ∵∠BDF =∠BOE =90º,∠FBD =∠EBO , ∴△BDF ∽△BOE. 由(1)知BF =OE ,设OE =BF =x ,∴xDF 2551=, ∴DF x 10=,在△DFB 中,2210151x x +=, ∴32=x ,∴2342322=-=-=BF OB OF , ∴2232234==OE OF (3)n OEOF =.2022-2023年北师大版数学九年级上册期末考试测试卷及答案(二)一、填空题1.一元二次方程x 2+4x=0的一根为x=0,另一根为( )A.x=2B.x=-2C.x=4D.x=-42.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为( ) A.1 B.-1 C 12 D .-123.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是( )4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是()A1 3B16C19D235.如图,△ABC中,点D,E分别在AB,AC边上,DE//BC,若AD=2DB,则△ADE与△ABC的面积比为()A2 3B49C25D356.下列四个表格表示的变量关系中,变量y是x的反比例函数的是()7.在平面直角坐标系中,将四边形OABC四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是()A与原四边形关于x轴对称 B.与原四边形关于原点位似,相似比为1:2C.与原四边形关于原点中心对称D.与原四边形关于原点位似,相似比为2:18,股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是()A.(1+10%)(1-x)2=1B.(1-10%)(1+x)2=1C.(1-10%)(1+2x)=1D.(1+10%)(1-2x)=19.如图是一个几何体的三视图,则该几何体可能是下列的()10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为( )A.4B.6C.12D.24 二、填空题(本大题含5个小题,每小题2分,共10分) 11.反比例函数3-y x=的图象位于坐标系的第_________________象限. 12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.13.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 15.如图,点A,C 分别在反比例函数4-y x= (x<0)与9y x = (x>0)的图象上,若四边形OABC是矩形,且点B恰好在y轴上,则点B的坐标为______________三、解答题(本大题含8个小题,共60分)16.解下列方程:(每题4分,共8分)(1)x2-8x+1=0;(2)x(x-2)+x-2=017.(本题6分)已知矩形ABCD,AE平分∠DAB交DC的延长线于点E,过点E作EF⊥AB,垂足F在边AB的延长线上,求证:四边形ADEF是正方形.18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C均为这三根木杆的俯视图(点A,B,C在同一直线上).(1)图1中线段AD是点A处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE分别是点A,B处的木杆在路灯照射下的影子,其中DE∥AB,点O是路灯的俯视图,请在图2中画出表示点C处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A的距离为2m,AD=2.4m,OB=1.5m,则点B处木杆的影子线段BE的长为___________m19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y万元,x个月还清,且y是x的反比例函数,其图象如图所示(1)求y与x的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.21.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?22.(本题12分)综合与实践:问题情境:如图1,矩形ABCD中,BD为对角线,AD k,且k>1.将△ABDAB Array以B为旋转中心,按顺时针方向旋转,得到△FBE(点D的对应点为点E,点A的对应点为点F),直线EF交直线AD于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF相似,这个三角形是_______,它与△ABF的相似比为______(用含k的式子表示);数学思考:(2)如图2,当点E落在DC边的延长线上时,点F恰好落在矩形ABCD 的对角线BD上,此时k的值为______实践探究(3)如图3,当点E恰好落在BC边的延长线上时,求证:CE=FG;(4)当k=43时,在△ABD绕点B旋转的过程中,探究下面的问题:请从A,B两题中任选一题作答:A:当AB的对应边FB与AB垂直时,直接写出DGAB的值.B:当AB的对应边FB在直线BD上时,直接写出DGAB 的值AB23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(k ≠0)的图象上(1)判断四边形OBAC 的形状,并证明.(2)直接写出反比例函数ky x=(k ≠0)的表达式.(3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题 请从A,B 两题中任选一题作答,我选择___________ A:若点B 的对应点B ’恰好落在反比例函数ky x= (k ≠0)的图象上,求m 的值,并直接写出此时S 的值 B:若S=12OAB S ∆,求m 的值;(4)如图3,连接BC,交AO 于点D,点P 是反比例函数ky x= (k ≠0)的图象上的一点, 请从A,B 两题中任选一题作答,我选择____________ A:在x 轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由;B:在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由参考答案说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分 一、选择题(本大题含10个小题,每小题3分,共30分) 1.一元二次方程x 2+4x=0的一根为x=0,另一根为( )A.x=2B.x=-2C.x=4D.x=-4 【答案】D【解析】()21240400,4x x x x x x ∵+=∴+=∴==-.2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为( ) A.1 B.-1 C 12 D .-12【答案】B【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=--3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是()【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是()A1 3B16C19D23【答案】A【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况∴在一次游戏中两人手势相同的概率是31935.如图,△ABC中,点D,E分别在AB,AC边上,DE//BC,若AD=2DB,则△ADE与△ABC的面积比为()A2 3B49C25D35【答案】B【解析】∵DE∥BC,∴△ADE∽△ABC,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y是x的反比例函数的是()【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是()A与原四边形关于x轴对称 B.与原四边形关于原点位似,相似比为1:2C.与原四边形关于原点中心对称D.与原四边形关于原点位似,相似比为2:1【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.8,股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是()A.(1+10%)(1-x)2=1B.(1-10%)(1+x)2=1C.(1-10%)(1+2x)=1D.(1+10%)(1-2x)=1【答案】A【解析】(1+10%)(1-x)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的()【答案】A【注意】左视图左内右外10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为( )A.4B.6C.12D.24 【答案】C【解析】∵矩形ABCD ∽矩形A B C D ''''∴9030129023024AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分) 11.反比例函数3-y x=的图象位于坐标系的第_________________象限 【答案】二、四 【解析】当k>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随X 的增大而减小;当k<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随X 的增大而增大;两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.【答案】20 (第12题图) 【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F , ∵两条纸条宽度相同,∴AE=AF .∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC •AE=CD •AF .AE=AF .∴BC=CD ,∴四边形ABCD 是菱形. ∵菱形四边相等∴四边形ABCD 的周长为4AB=2013.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________ 【答案】35-【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴512AM AD -=即352DM DA -= 同理可得352DN DB -=∵∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DMAB DA= 即3522MN -=∴35MN =- 14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】1:4【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得60300mm n=+ 化简得4m n =∴袋中红、白两种颜色小球的数量比应为m:n=1:4 15.如图,点A,C 分别在反比例函数4-y x= (x<0)与9y x = (x>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】B(0,1366) 【解析】如图,作AD ⊥x 轴,垂足为D ,CE ⊥x 轴,垂足为E.约定49,,,A m C n m n ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭(m<0,n>0) 由k 字形结论可得AD ODOE CE =即49m m nn--=化简得mn=-6 再根据平行四边形坐标特点相邻之和减相对可得00490B B x m n y m n =+-=⎧⎪⎨=-+-⎪⎩∴491366,6,666B m n y =-==-+=- ∴B(0,1366) 三、解答题(本大题含8个小题,共60分) 16.解下列方程:(每题4分,共8分) (1)x 2-8x+1=0; 解:移项得:x 2-8x=-1DE配方得:x 2-8x+42=-1+42 即(x-4)2=15直接开平方得415x -=±∴原方程的根为12415,415x x =+=- (2)x(x-2)+x-2=0解:提取公因式(x-2)得(x-2)(x+1)=0 ∴原方程的根为122,1x x ==-17.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证:四边形ADEF 是正方形.【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上).(1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴OA OB OD OE =即2 1.51.822.4 1.5OA OB BE m OA OD OB BE BE=∴=∴=++++19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,x 个月还清,且y 是x 的反比例函数,其图象如图所示 (1)求y 与x 的函数关系式;(2)王叔叔购买的商品房的总价是__________万元; (3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y 与x 之间的函数关系式为ky x=(k ≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k=解得k=60∴y 与x 之间的函数关系式为60y x(x>0) (2)90;∵王叔叔每月偿还贷款本金y 万元,x 个月还清∴贷款金额xy=60万元 ∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元 根据题意,得y=0.2,x=300由图,y ≤2000的图像位于Ⅱ区域即x ≥300 ∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下:ⅡⅠ0.2300由列表可知共有12种结果,每种结果出现的可能性相同小明恰好展示“唱歌”和“演奏”才艺的结果有2种:(1, 4),(4,1) 所以小明恰好展示“唱歌”和“演奏”才艺的概率是21126=. 21.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元? 解:设这种商品的涨价x 元,根据题意,得 (40-30+x )(600-10x )=10000 即(10+x )(60-x )=1000()()106070(205070,20501000)x x ++-=+=⨯=解得x 1=10,x 2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元 答:售价应定为50元. 22.(本题12分)综合与实践: 问题情境:如图1,矩形ABCD 中,BD 为对角线,ADk AB= ,且k>1.将△ABD 以B 为旋转中心,按顺时针方向旋转,得到△FBE(点D的对应点为点E,点A 的对应点为点F),直线EF 交直线AD 于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF 相似,这个三角形是_______,它与△ABF 的相似比为______(用含k 的式子表示); 【答案】(1)△DBE;【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴,AB BFABF DBE BD BE=∠=∠ ∴△ABF ∽△DBE ∵ADk AB=∴△DBE 与△ABF相似比为1BD AB = 数学思考:(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时k 的值为______【解析】由旋转性质可得△ABD ≌△FBE∴BD=BE ,AD=FE ∵ 矩形ABCD ∴AD=BC ∴EF=BC ∵BD FE DE BC =(等面积转换) ∴BD=DE ∴等边三角形BDE ∴tan 603ADAB==实践探究(3)如图3,当点E 恰好落在BC 边的延长线上时,求证:CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点OA B由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBC OD= OG, OE=OBOD+OB=OG+OE,即BD=GE ∵BD=BE ∴BE= EG∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE (4)当k=43时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题 请从A,B 两题中任选一题作答,我选择 A:当AB 的对应边FB 与AB 垂直时,直接写出DGAB的值. 【答案】1733或 【解析】如图4m3m3mBGB:当AB 的对应边FB 在直线BD 上时,直接写出DGAB的值 【答案】51063或【解析】如图 情况1:425cos 5255236AD FD m ADB GD m BD GD GD mDG AB m ∠==∴=∴=∴==情况2:48cos 105101033AD FD mADB GD mBD GD GD DG m AB m ∠==∴=∴=∴==23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(k ≠0)的图象上3mE4mCG(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明:过点A 作AE ⊥x 轴于点E∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得AB=22AE BE +=5∴ AB= BO∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC. ∴四边形OBAC 是菱形 (2)直接写出反比例函数ky x=(k ≠0)的表达式. 【答案】12y x=【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)∵C 恰好落在反比例函数k y x =的图象上∴4123k k =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题 请从A,B 两题中任选一题作答,我选择___________ A:若点B 的对应点B ’恰好落在反比例函数ky x=(k ≠0)的图象上,求m 的值,并直接写出此时S 的值【解析】连接BB ’△OAB 沿y 轴向下平移得到△OA ’B', BB ’∥y 轴,BB ’=m∵B(-5,0)∴点B'的横坐标为-5将x=-5代入12y x=.得y=-2.4 B'(-5,-2,4),BB ’=2.4,即m=2.4B:若S=12OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA ’交x 轴于点H,设A'B',A ’O ′交OB于点M,N 则AA ′=m,由平移可知∠MAN=∠BAO,AH ⊥OB,A ’M ∥AB, ∴△A ’MN ∽△ABO21122A MN ABO S A H A H S AH AH '''⎛⎫==∴= ⎪⎝⎭∵AH=4, ∴22A H '= ∴AA ’=AH-A ’H=4- 22,即m=4- 22 (4)如图3,连接BC,交AO 于点D,点P 是反比例函数ky x= (k ≠0)的图象上的一点, 请从A,B 两题中任选一题作答,我选择____________ A:在x 轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下:P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,m m) OP 为对角线:()016127002Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪⇒⎨⎨==+-∴=+-⎩⎪⎩∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t tm t y y y y m =+-∴=+--=--⎧=⎧⎪⇒⎨⎨=-=+-∴=+-=⎩⎪⎩∴P 2(6,-2)与Q 2(-7,0);PD 为对角线:(1)06127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪⇒⎨⎨=-=+-∴=+-⎩⎪⎩∴P 3(-6,-2)与Q 3(-7,0) B:在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由 【答案】存在,点Q 的坐标如下()()()12344,2262,64,10,5,(262,64)Q Q Q Q -+-----+【解析】先求P 点坐标,分别过O 、A 作直线交12y x=于 P 1,P 2,P 3,P 4设P 2P 4所在直线为y=kx ,P 2(m ,n )∴n=mk 由A(-2,4)易得tan ∠1=tan ∠2=12则12n k m ==直线12y x=与12y x=联立解得2626,66x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩ ∴()()2426,6,26,6P P --222260262Q A P O x x x x =+-=-+-=-,2246064Q A P O y y y y =+-=+-=+∴()2262,64Q -+ 同理4(262,64)Q ---+设P 1P 3所在直线为12y x =+b 将A(-2,4)代入可得b=5 152y x =+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩∴()()132,6,12,1P P --()112024Q P O A x x x x =+-=+--= 116042Q P O A y y y y =+-=+-= ∴()14,2Q同理()310,5Q --2022-2023年北师大版数学九年级上册期末考试测试卷及答案(三)答案解析部分一、单选题1.【答案】C2.【答案】A3.【答案】A4.【答案】B5.【答案】D6.【答案】A。

北师大版九年级数学上册期末试卷及答案(K12教育文档)

北师大版九年级数学上册期末试卷及答案(K12教育文档)

(直打版)北师大版九年级数学上册期末试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)北师大版九年级数学上册期末试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)北师大版九年级数学上册期末试卷及答案(word版可编辑修改)的全部内容。

九年级上数学期末试卷一.选择题(共10小题)1.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B. 3 C. 0 D. 0或32.方程x2=4x的解是()A. x=4 B. x=2 C. x=4或x=0 D. x=03.如图,在 ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C.D.3题4.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A. 11+ B. 11﹣ C. 11+或11﹣ D. 11+或1+5.有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形5题6.如图是由5个大小相同的正方体组成的几何体,它的俯视图为( )A. B. C. D.7.下列函数是反比例函数的是()A. y=x B. y=kx﹣1 C. y=D. y=8.矩形的面积一定,则它的长和宽的关系是( )A.正比例函数 B.一次函数C.反比例函数D.二次函数9.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.极差是5 B.中位数是9 C.众数是5 D.平均数是910.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A. 24 B. 18 C. 16 D. 6二.填空题(共6小题)11.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为_____.12.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.13.有两张相同的矩形纸片,边长分别为2和8,若将两张纸片交叉重叠,则得到重叠部分面积最小是_________ ,最大的是_________ .14.直线l1:y=k1x+b与双曲线l2:y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为_________ .15.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0。

北师大版九年级数学上册期末模拟考试【及参考答案】

北师大版九年级数学上册期末模拟考试【及参考答案】

北师大版九年级数学上册期末模拟考试【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是()A.5 B.15C.15-D.-52.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.下列判断正确的是()A.带根号的式子一定是二次根式 B.5a一定是二次根式C.21m+一定是二次根式 D.二次根式的值必定是无理数4.下列选项中,矩形具有的性质是()A.四边相等 B.对角线互相垂直C.对角线相等 D.每条对角线平分一组对角5.若α,β是方程2x2x20180+-=的两个实数根,则2α3αβ++的值为() A.2015 B.2016-C.2016 D.20196.一个等腰三角形的两条边长分别是方程27100x x-+=的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .B .C .D .8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .9.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2cm B.3cm C.4cm D.5cm 二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:3x9x-=_______.3.若a、b为实数,且b=2211a a-+-+4,则a+b=__________.4.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=__________厘米.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___________cm.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.3.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .4.如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE ,(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.5.在四张背面完全相同的纸牌A 、B 、C 、D ,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A 、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、C6、A7、C8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、()()x x 3x 3+-3、5或34、35、136、15.三、解答题(本大题共6小题,共72分)1、4x =2、(1)证明见解析;(2)-2.3、答案略4、解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD , ∴四边形AEBD 是平行四边形.∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC .∴∠ADB=90°.∴平行四边形AEBD 是矩形.(2)当∠BAC=90°时,矩形AEBD 是正方形.理由如下:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD .∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.5、(1)详见解析;(2)14.6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。

【北师大版】九年级数学上期末模拟试卷附答案(1)

【北师大版】九年级数学上期末模拟试卷附答案(1)

一、选择题1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是( )A .①②B .①④C .②③D .②④ 2.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( )A .12B .13C .23D .293.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有( )A .6个B .16个C .18个D .24个 4.下列事件属于不可能事件的是() A .太阳从东方升起B .1+1>3C .1分钟=60秒D .下雨的同时有太阳 5.如图,在⊙O 中,直径AB =10,弦DE ⊥AB 于点C ,若OC :OB =3:5,连接DO ,则DE 的长为( )A .3B .4C .6D .86.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF AC ⊥,则EF 是O 的切线B .若EF 是O 的切线,则EF AC ⊥ C .若32BE EC =,则AC 是O 的切线D .若BE EC =,则AC 是O 的切线 7.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( ) A .18cm 2B .218cm πC .27cm 2D .227cm π 8.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 9.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .平行四边形C .圆D .五角星10.下列图形:线段、等边三角形、平行四边形、矩形、菱形、正方形、直角梯形,既是轴对称图形又是中心对称图形的个数是( )A .6B .5C .4D .311.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---12.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51-B 51+C 53+D 21二、填空题13.不透明的盒子中装有除标号外完全相同的4个小球,小球上分别标有数-4,-2,3,5.从盒子中随机抽取一个小球,数记为a ,再从剩下的球中随机抽取一个小球,数记为b ,则使得点(),a a b -在第四象限的概率为______.14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.15.一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.16.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .17.如图,AB 是⊙O 的直径,C 是BA 延长线上一点,点D 在⊙O 上,且CD=OA ,CD 的延长线交⊙O 于点E ,若∠BOE=54°,则∠C=______.18.如图,把Rt ABC ∆绕点A 逆时针旋转40︒,得到Rt AB C ''∆,点C '恰好落在边AB 上,连接BB ',则BB C ''∠=___________度.19.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .20.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________. 三、解答题21.“十一期间”,美美家电商场举行了买家电进行“翻牌抽奖”的活动其规则为:现准备有4张牌,4张牌分别对应100,200,300,400(单位:元)的现金.(1)如果某位顾客随机翻1张牌,那么这位顾客抽中200元现金的概率为______.(2)如果某位顾客随机翻2张牌,且第一次翻过的牌需放回洗匀后再参加下次翻牌,用列表法或画树状图求该顾客所获现金总额不低于500元的概率.22.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.24.在下列网格图中,每个小正方形的边长均为1个单位.在Rt △ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1; (2)若点B 的坐标为(-3,5),试在图中画出平面直角坐标系,并标出A ,C 两点的坐标. 25.如图,已知抛物线2y x bx c =-++经过点(1,0)A -,(3,0)B ,与y 轴交于点C ,点P 是抛物线上一动点,连接PB ,PC .(1)求抛物线的解析式;(2)①如图1,当点P 在直线BC 上方时,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .若2PE ED =,求PBC 的面积;②抛物线上是否存在一点P ,使PBC 是以BC 为底边的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案26.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据随机事件、不可能事件、必然事件的定义逐个判断即可得.【详解】①打开电视机,正在播广告,是随机事件;②从只装红球的口袋中,任意摸出一个球恰好是白球,是不可能事件;③同性电荷,相互排斥,是必然事件;④抛掷硬币1000次,第1000次正面向上,是随机事件;综上,为随机事件的是①④,故选:B .【点睛】本题考查了随机事件、不可能事件、必然事件,掌握理解各定义是解题关键. 2.D解析:D【分析】画树状图展示所有9种等可能的结果数,利用第二象限内点的坐标特征确定点(,)P m n 在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中点(,)P m n 在第二象限的结果数为2,所以点(,)P m n 在第二象限的概率29. 故选:D .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了点的坐标.3.B解析:B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.4,故口袋中白色球的个数可能是40×0.4=16个.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.4.B解析:B【分析】不可能事件就是一定不会发生的事件,依据定义即可判断.【详解】A.太阳从东方升起,是必然事件,故本选项错误;B. 1+1=2<3,故原选项是不能事件,故本选项正确;C. 1分钟=60秒,是必然事件,故本选项错误;D.下雨的同时有太阳,是随机事件,故本选项错误.故选:B.【点睛】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D【分析】根据题意可求出OC长度,再根据勾股定理求出CD长度,最后根据垂径定理即可得到DE 长度.【详解】∵AB=10,∴OB=5OC:OB=3:5,∴OC=3,在Rt OCD △ 中,2222534CD OD OC =-=-=∵DE ⊥AB ,∴DE =2CD =8,故选:D .【点睛】本题考查垂径定理、勾股定理.掌握垂径定理“垂直于弦的直径平分这条弦”是解题的关键.6.D解析:D【分析】A 、如图1,连接OE ,根据同圆的半径相等得到OB=OE ,根据等边三角形的性质得到∠BOE=∠BAC ,求得OE ∥AC ,于是得到A 选项正确;B 、由于EF 是⊙O 的切线,得到OE ⊥EF ,根据平行线的性质得到B 选项正确;C 、根据等边三角形的性质和圆的性质得到AO=OB ,如图2,过O 作OH ⊥AC 于H ,根据三角函数得到OH=3AO≠OB ,于是得到C 选项正确;由于C 正确,D 自然就错误了.【详解】解:A 、如图,连接OE ,则OB=OE ,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC ,∴OE ∥AC ,∵EF ⊥AC ,∴OE ⊥EF ,∴EF 是⊙O 的切线∴A 选项正确B 、∵EF 是⊙O 的切线,∴OE ⊥EF ,由A 知:OE ∥AC ,∴AC ⊥EF ,∴B选项正确;C、如图,∵,∴CE=3BE,∵AB=BC,BO=BE,∴AO=CE=3OB,∴,∴AC是⊙O的切线,∴C选项正确.D、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴,∴D选项错误;故选:D.【点睛】本题考查了切线的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.7.B解析:B【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【详解】解:底面周长是2×3π=6π,则圆锥的侧面积是:12×6π×6=18π(cm2).故选:B.【点睛】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.8.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键. 9.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、等边三角形是轴对称图形,不是中心对称图形,故本选项不合题意;B 、平行四边形不是轴对称图形,是中心对称图形,故本选项不合题意;C 、圆既是轴对称图形,又是中心对称图形,故本选项符合题意;D 、五角星是轴对称图形,不是中心对称图形,故本选项不合题意;故选:C .【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.C解析:C【分析】根据轴对称图形与中心对称图形的定义解答即可.【详解】解:线段,既是中心对称图形,又是轴对称图形;等边三角形,不是中心对称图形,是轴对称图形;平行四边形,是中心对称图形,不是轴对称图形;矩形,既是中心对称图形,又是轴对称图形;菱形,既是中心对称图形,又是轴对称图形;正方形,既是中心对称图形,又是轴对称图形;直角梯形,既不是中心对称图形,又不是轴对称图形;所以,既是中心对称图形,又是轴对称图形的有:线段,矩形,菱形,正方形共4个. 故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 11.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线25y x =-的图象向右平移1个单位所得函数图象的关系式是:()251y x =--; 由“上加下减”的原则可知,抛物线()251y x =--的图象向上平移3个单位长度所得函数图象的关系式是()2513y x =--+.故选:B .【点睛】本题考查了二次函数的图象平移,熟知函数图象平移的法则是解答此题的关键. 12.B解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a a b b +-=(,解得:a b =, ∵a b >0,∴a b =,∴当a=1时,12b ==,【点睛】本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.二、填空题13.【分析】画树状图展示所有12种等可能的结果找出点在第四象限的结果数然后根据概率公式求解【详解】解:画树状图为:共有12种等可能的结果其中点在第四象限的结果数为1所以使得点在第四象限的概率=故答案为: 解析:112【分析】画树状图展示所有12种等可能的结果,找出点(),a a b -在第四象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有12种等可能的结果,其中点(),a a b -在第四象限的结果数为1,所以使得点(),a a b -在第四象限的概率=112. 故答案为:112. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了第四象限内点的坐标特征. 14.20【分析】利用频率估计概率设原来红球个数为x 个根据摸取30次有10次摸到白色小球结合概率公式可得关于x 的方程解方程即可得【详解】设原来红球个数为x 个则有=解得x=20经检验x=20是原方程的根故答解析:20【分析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.【分析】先观察次地板一共有多少块小正方形铺成再把是黑色的小正方块数出来用黑色的小整块数目比总的小正方块即可得到答案【详解】解:由图可知该地板一共有3×5=15块小正方块黑色的小正方块有5块因此停在黑解析:1 3【分析】先观察次地板一共有多少块小正方形铺成,再把是黑色的小正方块数出来,用黑色的小整块数目比总的小正方块即可得到答案.【详解】解:由图可知,该地板一共有3×5=15块小正方块,黑色的小正方块有5块,因此,停在黑色方砖上的概率是51 153=,故答案是1 3 .【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确数出黑色的小正方块是做对题目的关键,还需要注意,每个小正方块的大小是否一样,才能避免错误.16.1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm底面圆的半径为rcm∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm,底面圆的半径为rcm,∵面积为3πcm2的扇形围成一个圆锥的侧面,扇形的圆心角是120°,∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键. 17.18°【分析】连接OD 利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C 即可解决问题【详解】连接OD ∵CD=OA=OD ∴∠C=∠DOC ∴∠ODE=∠C+∠DOC=2∠C ∵OD=O解析:18°.【分析】连接OD ,利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C ,即可解决问题.【详解】连接OD ,∵CD=OA=OD ,∴∠C=∠DOC ,∴∠ODE=∠C+∠DOC=2∠C ,∵OD=OE ,∴∠E=∠EDO=2∠C ,∴∠EOB=∠C+∠E=3∠C=54°,∴∠C=18°,故答案为:18°.【点睛】本题考查了圆的认识及等腰三角形的性质及三角形的外角性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.18.20【分析】先根据旋转的性质得到∠AC′B′=∠C=90°∠BAB′=40°AB=AB′则利用等腰三角形的性质和三角形内角和定理可计算出∠ABB′的度数然后利用直角三角形两锐角互余计算∠BB′C′【解析:20【分析】先根据旋转的性质得到∠AC′B′=∠C=90°,∠BAB′=40°,AB=AB′,则利用等腰三角形的性质和三角形内角和定理可计算出∠ABB′的度数,然后利用直角三角形两锐角互余计算∠BB′C′.【详解】解:∵Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,∴∠AC′B′=∠C=90°,∠BAB′=40°,AB=AB′,∵AB=AB′,∴∠ABB′=∠AB′B,∴∠ABB′=1(180°-40°)=70°,2∴∠BB′C′=90°-∠CBB′=20°.故答案为:20.【点睛】本题考查了旋转的性质,等腰三角形的性质.理解旋转前后对应角相等,旋转角相等,对应线段相等是解题关键.19.6【分析】根据题意可以得到水珠落地点(点P)到喷水口(点O)的距离就是OP的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x∴解析:6【分析】根据题意可以得到水珠落地点(点P)到喷水口(点O)的距离就是OP的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x,∴y=-x2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P)到喷水口(点O)的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.20.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】原方程变为(21a )-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a )-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】 本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键.三、解答题21.(1)14;(2)58 【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果,找出随机翻2张牌所获现金总额不低于500元的结果数,然后根据概率公式求解.【详解】(1)随机翻1张牌,那么抽中200元现金的概率为14; 故答案为14; (2)画树状图为:共有16种等可能的结果,其中随机翻2张牌所获现金总额不低于500元的结果数为10, 所以所获现金总额不低于500元的概率=105=168.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 22.(1)相切;(2)94π 【分析】(1)先利用角平分线的性质得到点P 到BC 的距离等于PA ,然后根据直线与圆的位置关系进行判断.(2)由全等三角形的性质,先求出CD=2,由勾股定理求出AC=4,再利用勾股定理求出PD 的长度即可.【详解】解:(1)作PD ⊥BC ,交BC 于点D ,如图:∵PB 平分∠ABC ,∴点P 到BC 的距离等于PA ,∴PA=PD ,∴BC 为⊙P 的切线.故答案为:相切.(2)由(1)可知,易得△ABP ≌△DBP ,∴BD=AB=3,∴CD=5-3=2,∵在直角△ABC 中,由勾股定理,得22534AC =-=,设PA PD r ==,∴4PC r =-,在直角△PDC 中,由勾股定理,则()22242r r -=+,解得:32r =, ∴圆的面积为:223924S r πππ==•=(). 【点睛】 本题考查了圆的定义,勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行解题.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.(1)见解析;(2)见解析;A(0,1),C(-3,1)【分析】(1)根据图形旋转的性质画出△AB1C1即可;(2)根据B点坐标,作出平面直角坐标系,即可写出各点坐标.【详解】(1)解:旋转后图形如图所示(2)解:由B点坐标,建立坐标系如图所示,则A(0,1),C(-3,1).【点睛】本题考查的是作图-旋转变换,熟知图形旋转的性质是解答此题的关键.25.(1)2y x 2x 3=-++;(2)①32PBC S =△;②1P ⎝⎭,21122P ⎛ ⎝⎭.【分析】(1)将A (-1,0),B (3,0)代入y=-x 2+bx+c ,可求出答案;(2)①先求出点C 的坐标,进而可求得直线BC 的函数关系式,再设()2,23P m m m -++,进而可表示出点E 的坐标为(,3)E m m -+,再根据PD=3ED 列出方程求解即可;②设点P 的坐标为()2,23P m m m -++,根据PB=PC 可得PB 2=PC 2,进而可列出方程求解即可.【详解】(1)抛物线2y x bx c =-++经过点()1,0A -,()3,0B , 22(1)0330b c b c ⎧---+=∴⎨-++=⎩, 解得23b c =⎧⎨=⎩ ∴抛物线解析式为2y x 2x 3=-++.(2)①在2y x 2x 3=-++中,当0x =时,3y =,()0,3C ∴设直线BC 的解析式为y kx b =+,则330b k b =⎧⎨+=⎩, 31b k =⎧∴⎨=-⎩∴直线BC 的解析式为3y x =-+,若2PE ED =,则3PD ED =,设()2,23P m m m -++,则(,3)E m m -+, 2233(3)m m m ∴-++=-+,即2560m m -+=,解得12m =,23m =(舍)当2m =时,()2,3P ,()2,1E ,则1PE =,131322PBC S ∴=⨯⨯=△, ②假设存在点P ,使PBC 是以BC 为底边的等腰三角形, 设点P 的坐标为()2,23P m m m -++, ∵PBC 是以BC 为底边的等腰三角形,∴PB=PC ,∴PB 2=PC 2, ∵()2,23P m m m -++,B (3,0),C (0,3),∴(m-3)2+(-m 2+2m+3)2=m 2+(-m 2+2m+3-3)2整理得m 2-m-3=0,解得m 1=1132+,m 2=1132-, 当m=1132+时,-m 2+2m+3=1132+, ∴点P 的坐标为(1132+,1132+), 当m=113-时,-m 2+2m+3=113-, ∴点P 的坐标为(113-,113-), 综上所述:抛物线上存在一点P ,使PBC 是以BC 为底边的等腰三角形,此时点P 的坐标为1113113,22P ⎛⎫++ ⎪ ⎪⎝⎭,2113113,22P ⎛⎫-- ⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,考查的是二次函数的性质,等腰三角形的性质,两点距离公式等知识,其中,熟练掌握方程的思想方法解题的关键.26.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元, 则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元. (2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键.。

【北师大版】九年级数学上期末模拟试题(及答案)(1)

【北师大版】九年级数学上期末模拟试题(及答案)(1)

一、选择题1.如图,正方形ABCD内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.2πB.2πC.12πD.2π2.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.183.如图所示,小明、小刚利用两个转盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则()A.公平B.对小明有利C.对小刚有利D.公平性不可预测4.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A .点数为3的倍数B .点数为奇数C .点数不小于3D .点数不大于35.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .146.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF AC ⊥,则EF 是O 的切线B .若EF 是O 的切线,则EF AC ⊥C .若32BE EC =,则AC 是O 的切线 D .若BE EC =,则AC 是O 的切线7.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( ) A .点P 在O 内B .点P 在O 上C .点P 在O 外 D .无法判断8.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .29.道路千万条,安全第一条,下列交通标志是中心对称图形的为( )A .B .C .D .10.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-1,3)B .(3,-1)C .(31-,)D .(-2,1)11.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >12.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A .512B .512C 53+ D 21二、填空题13.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.14.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01) 每批粒数n 800 100012001400 1600 1800 2000发芽的频数m76294811421331151817101902发芽的频率mn0.953 0.948 0.952 0.951 0.949 0.950 0.95115.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____. 16.如图,若∠BOD =140°,则∠BCD=___________ .17.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案18.如图,已知ABC ∆中,AB AC =,90BAC ∠=︒,直角EPF ∠的顶点P 是BC 中点,两边PE .PF 分别交AB .AC 于点E .F ,给出下列四个结论:①AE CF =;②EPF ∆是等腰直角三角形;③EF AB =;④四边形AEPF 的面积随着点E .F 的位置不同发生变化,当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A .B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).19.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________20.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.三、解答题21.图1是一枚质地均匀的骰子,每个面上的点数分别是1,2,3,4,5,6,图2是一个正五边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面朝上的点数是几,就从图中的A 点开始沿着逆时针方向连续跳动几个顶点,第二次从第一次的终点开始,按第一次的方法继续…(1)随机掷一次骰子,则棋子跳动到点C 处的概率是_________. (2)随机掷两次骰子,用列表法求棋子最终跳动到点C 处的概率.22.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为 ;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率. 23.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 24.如图,在7×7的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC .(1)请你以选取的格点为顶点再画出一个三角形,要求所画的三角形与△ABC 组成的图形是中心对称图形;(2)若网格中每个小正方形的边长为1,请猜想新得到的中心对称图形是什么特殊图形(不用证明),并求出它的面积.25.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(1)直接写出c ,m 的值; (2)求此二次函数的解析式.26.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.(1)若每件衬衫降价5元,则每件商品盈利________元,每天可售出________件,商场每天盈利________元;(2)若每件衬衫降价x 元,则每件商品盈利________元,每天可售出________件(用含x 的代数式表示);(3)若商场平均每天盈利2100元,每件衬衫应降价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可. 【详解】因为⊙O 2分米,⊙O 的面积为22ππ=⎝⎭平方分米;1=分米,面积为1平方分米;因为豆子落在圆内每一个地方是均等的, 所以P (豆子落在正方形ABCD 内)122ππ==.故答案为A . 【点睛】此题主要考查几何概率的意义:一般地,如果试验的基本事件为m ,随机事件A 所包含的基本事件数为n,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=nm.2.C解析:C【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.3.C解析:C【分析】根据题意画树形图即可判断.【详解】解:如图:根据树形图可知:所有等可能的情况有8种,其中配成紫色(红与蓝)的有3种,所以3588 P P(小明胜)(小刚胜)=,=所以此规则对小刚有利.故选:C.【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4.C解析:C 【分析】总共有六种情况,分别计算出所求情况的个数,比较即可得出可能性最大的. 【详解】解:掷一枚普通的正六面体骰子共6种情况, A.掷一枚骰子,点数为3的倍数有2种,概率13; B.点数为奇数有3种,概率12; C.点数不小于3有四种,概率23; D.点数不大于3有3种,概率12, 故可能性最大的是点数不小于3,选C . 【点睛】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.5.D解析:D 【分析】 连接OC 、OD ,设O 半径为r ,利用正方形性质得:MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON ,利用面积差可得S 阴影部分=S 扇形COD ,再利用正方形的性质得到∠COD =90°,则S 扇形=214r π,所以阴影部分面积是圆的面积的14【详解】解:如图,连接OC 、OD ,设O 半径为r ,∵直径//MN AD ,AD ∥BC ∴MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON , ∴S 阴影部分=S 扇形COD , ∵四边形ABCD 是正方形 ∴∠COD =90°,∴S 扇形=290360r π︒︒=214r π,∵圆的面积为2r π∴所以阴影部分面积是圆的面积的14故选:D【点睛】本题考查扇形面积计算公式、正方形的性质,利用了面积的和差计算不规则图形的面积,解题的关键是掌握扇形的面积公式.6.D解析:D【分析】A、如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到OH=3AO≠OB,于是得到C选项正确;由于C正确,D自然就错误了.【详解】解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、如图,∵,∴BE,∵AB=BC,BO=BE,∴AO=CE=OB,3∴,∴AC是⊙O的切线,∴C选项正确.D、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴,∴D选项错误;故选:D.【点睛】本题考查了切线的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.7.A解析:A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.8.A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222-=-=,BD OB OD.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.D解析:D【分析】根据中心对称图形定义可得答案.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.10.C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴2222==132AO OE--∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,3∴A′(31),故选:C.【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.D解析:D【分析】当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,则m=4,画出函数图象即可求解.【详解】解:当y1=y2,即(x﹣2)(x﹣m)=3x,把x =1代入得,(1﹣2)(1﹣m )=3, ∴m =4,∴y 1=(x ﹣2)(x ﹣4), 抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A 、B 关于抛物线的对称轴对称,从图象看在点B 处,即x =5时,y 1>y 2, 故选:D . 【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.12.B解析:B 【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论. 【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b , 则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a abb+-=(, 解得:152a b -±=, ∵ab>0, ∴152a b -+=, ∴当a=1时,5151b +==-, 故选:B . 【点睛】本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.二、填空题13.【分析】先列表求出所有情况数然后再确定一男一女的情况数最后运用概率公式计算即可【详解】解:列表如下:男1 男2 女1 女2 女3 男1 (男1男2)(男1女1)(男1女2)(男1女3)解析:3 5【分析】先列表求出所有情况数,然后再确定一男一女的情况数,最后运用概率公式计算即可.【详解】解:列表如下:所以由概率公式可得选中一男一女的概率为123= 205.故答案为35.【点睛】本题主要考查了运用列表法求概率,正确的列表是解答本题的关键.14.【分析】观察表格得到这种黄豆发芽的频率稳定在095附近即可估计出这种黄豆发芽的概率【详解】当n足够大时发芽的频率逐渐稳定于095故用频率估计概率黄豆发芽的概率估计值是095故答案为:095【点睛】本解析:0.95【分析】观察表格得到这种黄豆发芽的频率稳定在0.95附近,即可估计出这种黄豆发芽的概率.【详解】当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,黄豆发芽的概率估计值是0.95.故答案为:0.95. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.28【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近所以用黄球的频率乘以总球数求解【详解】解:根据题意得:40×(1﹣30)=28(个)答:口袋中黄球的个数约为28个故答案为:解析:28 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解. 【详解】 解:根据题意得: 40×(1﹣30%)=28(个) 答:口袋中黄球的个数约为28个. 故答案为:28. 【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16.【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌 解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得. 【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒,1702BED BOD ∠∴∠==︒,由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒, 故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.17.8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【解析:8【分析】设圆锥的底面半径为r,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r,然后利用勾股定理计算出圆锥的高.【详解】解:设圆锥底面圆的半径为r,则有,rππ=212r=6∴22-=.1068cm故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.18.①②【分析】利用旋转的思想观察全等三角形寻找条件证明三角形全等根据全等三角形的性质对题中的结论逐一判断【详解】解:∵∠APE∠CPF都是∠APF的余角∴∠APE=∠CPF∵AB=AC∠BAC=90°解析:①②【分析】利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【详解】解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,又∵AP=CP,∠EPA=∠FPC,∠EAP=∠FCP=45°∴△APE ≌△CPF (ASA ),同理可证△APF ≌△BPE , ∴AE =CF ,△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,①②正确,④错误,四边形AEPF 的面积是固定的;∵旋转过程中,EF 的长度的变化的,故EF≠AB ,③错误, 始终正确的是①②, 故答案为:①②. 【点睛】本题主要考查了等腰直角三角形的判定及性质的运用,三角形的中位线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.19.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可 解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值. 【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点, ∴△=b 2-4a=0, 若a=1,则b 可取2.故答案为1,2(答案不唯一). 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.20.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4 【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】解:∵a ,b 是方程22430x x +-=的两根,∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩,()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.三、解答题21.(1)16;(2)29.【分析】(1)当朝上的点数为2时,可以到达点C,根据概率公式计算即可;(2)先列表得到36种等可能的结果,再找出两数的和2或7或12的结果数,然后根据概率公式求解.【详解】解:(1)随机掷一次骰子,朝上的点数可能是1,2,3,4,5,6,共6种情况,其中只有点数是2的情况时棋子跳动到点C处,所以棋子跳动到点C处的概率= 16.故答案为:16;(2)表格如下:2,5),(3,4),(4,3),(5,2),(6,1),(6,6)共8种,∴棋子最终跳动到点C处的概率=82 369.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A的结果数目m,然后根据概率公式计算事件A的概率.22.(1)14;(2)图表见解析,14【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【详解】解:(1)因为设立了四个“服务监督岗”,而“洗手监督岗”是其中之一,所以,李老师被分配到“洗手监督岗”的概率=14;故答案为:14;(2)画树状图为:共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,所以李老师和王老师被分配到同一个监督岗的概率=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.(1)见解析;(2)43 3π-【分析】(1)根据AB是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果;(2)作OM⊥AC,垂足为M,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA⊥AE,∴AE是⊙O的切线.(2)解:作OM ⊥AC ,垂足为M . ∵∠B=60°, ∴∠AOC=2∠B=120°, ∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴AM=3, ∴AC=2AM=23, ∴S 阴=S 扇形AOC -S △AOC = 120414-231336023ππ.【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 24.(1)如图所示见解析;(2)是平行四边形,面积是6. 【分析】(1)确定出对称中心,然后根据中心对称图形的性质作出即可;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,再根据格点的特点,利用三角形的面积公式即可得平行四边形的面积. 【详解】(1)如图所示:所画的三角形与△ABC 组成的图形是中心对称图形;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形, 面积是:123262⨯⨯⨯=. 【点睛】本题考查了利用中心对称的性质作图,平行四边形的判定,熟练掌握中心对称的性质是作图的关键,要注意对称中心的确定. 25.(1)4c =,52m =;(2)219(1)22y x =-++或2142y x x =--+【分析】(1)根据表格中对应值可知对称轴的值和抛物线与y 轴的交点,即可求得c 的值,根据抛物线的对称性即可求得m 的值;(2)直接利用待定系数法求出二次函数解析式即可. 【详解】解:(1)根据图表可知:二次函数y=ax 2+bx+c 的图象过点(0,4),(-2,4),∴对称轴为直线2012x -+==-,c=4, ∵(-3,52)的对称点为(1,52), ∴m=52; (2)∵对称轴是直线x=-1, ∴顶点为(-1,92), 设y=a (x+1)2+92, 将(0,4)代入y=a (x+1)2+92得, a+92=4, 解得a=-12, ∴这个二次函数的解析式为y=-12(x+1)2+92. 【点睛】 本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求解函数对称轴是解题的关键.26.(1)40,40,1600;(2)45x -,204x +;(3)每件衬衫应降价30元【分析】(1)每件衬衫降价5元,每件盈利=原来的盈利-5元;所售件数=20+多售出的件数;商场每天盈利=(原来的盈利-5元)×(20+多售出的件数);(2)每件衬衫降价x 元,每件盈利=原来的盈利-x 元;所售件数=20+多售出的件数; (3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x 元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【详解】解:(1)若每件衬衫降价5元,则每件商品盈利:45-5=40(元),每天可售出:20+4×5=40(件),商场每天盈利:40×40=1600(元),故答案为:40,40,1600;(2)若每件衬衫降价x 元,则每件商品盈利:45-x (元),每天可售出:20+4x (件)故答案为:45x -,204x +;(3)每件衬衫应降价x 元,根据题意得:(45)(20)2100x x --=2403000x x -+=解得:110x =,230x =当10x =时,20460x +=;当30x =时,204140x +=;∵要减少库存,∴应增加销售量,∴30x =∴每件衬衫应降价30元.【点睛】此题主要考查了一元二次方程的应用的销售问题,关键是正确理解题意,找出题目中等量关系,列出方方程.。

【北师大版】九年级数学上期末一模试卷(附答案)(1)

【北师大版】九年级数学上期末一模试卷(附答案)(1)

一、选择题1.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为1P ,摸出的球上的数字小于4的记为2P ,摸出的球上的数字为5的概率记为3P ,则1P ,2P ,3P 的大小关系是( )A .123P P P <<B .321P P P <<C .213P P P <<D .312P P P <<2.下列事件中,是必然事件的是( ) A .购买一张彩票,中奖 B .打开电视,正在播放广告C .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7D .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球 3.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B .任意买一张电影票,座位号是2的倍数的概率C .从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率D .从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率4.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (,x y ),那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .165.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139°7.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .338.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103π B .59πC .109π D .518π 9.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( ) A .戴口罩讲卫生B .勤洗手勤通风C .有症状早就医D .少出门少聚集10.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A.(﹣4,﹣23B.(﹣4,﹣3 C.(﹣2,﹣3)D.(﹣2,﹣23)11.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣10234y50﹣4﹣30A.抛物线的开口向下B.抛物线的对称轴为直线x=2C.当0≤x≤4时,y≥0D.若A(x1,2),B(x2,3)是抛物线上两点,则x1 x212.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e是()日一二三四五六12345 6789101112 13141516171819 20212223242526 2728293031a b c d e f g h i图1图2A.17 B.18 C.19 D.20二、填空题13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字为p,随机摸出另一张卡片,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是_____.14.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x (元)统计如下: 组别(元) 40x <4060x ≤<6080x ≤<80100x ≤<人数6374017根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.15.已知一个口袋中装有7张只有颜色不同的卡片,其中3张白色卡片,4张黑色卡片,若往口袋中再放入x 张白色卡片和y 张黑色卡片,从口袋中随机取出一张白色卡片的概率是14,则y 与x 之间的函数关系式为_____. 16.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.17.边长为2的正方形ABCD 的外接圆半径是____________.18.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.19.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.20.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______. 三、解答题21.复工复学后,为防控冠状病毒,学生进校园必须戴口罩,测体温.某校开通了两种不同类型的测温通道共三条.分别为:红外热成像测温(A 通道)和人工测温(B 通道和C 通道).在三条通道中,每位同学都可随机选择其中的一条通过,周五有甲、乙两位同学进校园.(1)当甲同学进校园时,从人工测温通道通过的概率是______.(2)请用列表或画树状图的方法求甲、乙两位同学从不同类型测温通道通过的概率.22.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)23.如图,ABC内接于O,60∠=︒,点D是BC的中点.BC,AB边上的高BACAE,CF相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.24.如图,等腰Rt△ABC中,∠A=45°,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.25.若二次函数y=x2-x-2的图象与x轴交于A,B两点(点A在点B的左侧).(1)求A,B两点的坐标;(2)若P(m,-2)为二次函数y=x2-x-2图象上一点,求m的值.26.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:购买件数x513③(件)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,利用概率公式分别计算,再比较大小可得.【详解】解:∵在1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,∴P1=1、P2=1、P3=0,3则P3<P1<P2,故选:D.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.C解析:C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A错误;B、是随机事件,故B错误;C、是必然事件,故C正确;D、是不可能事件,故D错误;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】A、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;B、任意买一张电影票,座位号是2的倍数的概率不确定,但不一定是0.33,故此选项错误;C、从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率221==0.334+263≈,故此选项正确;D、从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率14;故此选项错误;故选:C.【点睛】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解,难度不大.4.B解析:B【分析】因为掷骰子的概率一样,每次都有六种可能性,因此小莉和小明掷骰子各六次,P的取值有36种.可将x、y值一一代入找出满足抛物线的x、y,用满足条件的个数除以总的个数即可得出概率.【详解】解:列表法:∴点P的坐标共有36种可能,其中能落在抛物线24y x x=-+上的点共有:(1,3)、(2,4)、(3,3),这3种可能,∴其概率为:31 3612=.故选:B.【点睛】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.也考查了二次函数图象上点的坐标特征.5.C解析:C【分析】连接BC,求出∠B=65°,根据翻折的性质,得到∠ADC+∠B=180°,进而得到∠BDC=∠B =65°.【详解】解:连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,AC所对的圆周角为∠B,ABC所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠BDC=∠B=65°,故选:C.【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.6.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.7.C【分析】+的最小值,进而求解即可.利用菱形的性质及相切两圆的性质得出P与D重合时PE PF【详解】解:作点A关于直线CD的对称点A´,连接BD,DA´,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN =60°,∴∠A´DN=60°,∴∠ADB+∠ADA´=180°,∴A´,D,B在一条直线上,+最小,由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时PE PF∵在菱形ABCD中,∠A=60°,∴AB=AD,则△ABD为等边三角形,∴BD=AB=AD=3,∵⊙A,⊙B的半径分别为2和1,∴PE=1,DF=2,+的最小值为3.∴PE PF故选C.【点睛】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P位置是解题的关键.8.C解析:C【分析】先根据等腰三角形的性质求出∠A,再利用圆周角定理求得∠BOC,最后根据弧长公式求求【详解】解:∵∠OCA =50°,OA =OC , ∴∠A =50°, ∴∠BOC =100° ∵BO =2,∴1002101809BC l ππ⨯==. 故答案为C . 【点睛】本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.9.C解析:C 【分析】直接利用轴对称图形和中心对称图形的概念求解. 【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意; B 、不是轴对称图形,也不是中心对称图形,故此选项不合题意; C 、既是中心对称图形也是轴对称图形,故此选项符合题意; D 、不是轴对称图形,也不是中心对称图形,故此选项不合题意; 故选:C . 【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10.D解析:D 【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC =2,∠ABC =30°,∴BC =4,∴AB ∴AD =AB AC BC ⋅=24∴BD =2AB BC .∵点B 坐标为(1,0),∴A 点的坐标为(4,).∵BD =3,∴BD 1=3,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2∵再向下平移2个单位,∴A ′的坐标为(﹣22).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.11.B解析:B【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误;故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 12.C解析:C【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值.【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1,则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-,∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =.故选:C .【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.二、填空题13.【分析】画树状图列出所有等可能结果从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数利用概率公式计算可得【详解】画树状图如下:由树状图知共有6种等可能结果其中使关于x的方程x2+px+q解析:1 2【分析】画树状图列出所有等可能结果,从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数,利用概率公式计算可得.【详解】画树状图如下:由树状图知共有6种等可能结果,其中使关于x的方程x2+px+q=0有实数根的结果有3种结果,∴关于x的方程x2+px+q=0有实数根的概率为3=612,故答案为1 2 .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】先计算出样本中零花钱不低于80元的频率然后根据利用频率估计概率求解【详解】解:每周的零花钱不低于80元的概率是:故答案为:【点睛】本题考查了利用频率估计概率:大量重复实验时事件发生的频率在某解析:17 100【分析】先计算出样本中零花钱不低于80元的频率,然后根据利用频率估计概率求解.【详解】解:每周的零花钱不低于80元的概率是:1717 6374017100=+++,故答案为:17 100.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15.y=3x+5【分析】根据取出白色卡片的概率公式得到相应的方程求解即可【详解】解:∵取出一个白色卡片的概率P=∴12+4x=7+x+y∴y与x的函数关系式为:y=3x+5故答案为:y=3x+5【点睛】解析:y=3x+5【分析】根据取出白色卡片的概率公式得到相应的方程求解即可.【详解】解:∵取出一个白色卡片的概率P=31 74xx y+=++,∴12+4x=7+x+y,∴y与x的函数关系式为:y=3x+5,故答案为:y=3x+5.【点睛】本题考查了概率的计算,熟练掌握并灵活运用是解题的关键.16.【分析】由于ABACBD是⊙O的切线则AC=APBP=BD求出BP的长即可求出BD的长【详解】解:∵ACAP为⊙O的切线∴AC=AP∵BPBD为⊙O的切线∴BP=BD∴BD=PB=AB-AP=8-5解析:3【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.17.【分析】如图:连接ACBD交于点O即为正方形ABCD外接圆的圆心根据正方形的性质可得OA=OC∠AOC=90°根据勾股定理可得OA和OC的值即为为正方形ABCD外接圆的半径【详解】解:如图:连接AC解析:2【分析】如图:连接AC、BD交于点O,即为正方形ABCD外接圆的圆心,根据正方形的性质可得OA=OC,∠AOC=90°,根据勾股定理可得OA和OC的值,即为为正方形ABCD外接圆的半径.【详解】解:如图:连接AC、BD交于点O,即为正方形ABCD外接圆的圆心,∴OA、OB、OC、OD为正方形ABCD外接圆的半径∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°在Rt△AOC中,AC2=OA2+OC2,∵AC=2,OA=OC,∴4=2 OA2,∴OA=2即正方形ABCD外接圆的半径为2故答案为2【点睛】本题考查正方形外接圆的有关知识,利用到正方形的性质,勾股定理,解题的关键是熟练掌握所学知识.18.【分析】延长BN交CM与E判定△NME为等腰直角三角形求出NE的长再据勾股定理可计算得MN的长【详解】解:如下图在正方形ABCD中延长BN交CM于E由题意据中心对称的性质得∠ABE=∠CDM∠MDC2【分析】延长BN交CM与E,判定△NME为等腰直角三角形,求出NE的长,再据勾股定理可计算得MN的长.【详解】解:如下图在正方形ABCD 中延长BN 交CM 于E ,由题意据中心对称的性质,得∠ABE=∠CDM ,∠MDC 与∠MCD 互余,∠ABE 与∠EBC 互余 ∴∠EBC=∠DCM ;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC ≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE 为等腰直角三角形,且∠NEM 是直角,ME=NE=1,由勾股定理得222NE ME +=2【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC ≌△CMD .19.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258,137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.20.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键.三、解答题21.(1)23;(2)49 【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有三个通道,分别是红外热成像测温(A 通道)和人工测温(B 通道和C 通道), ∴从人工测温通道通过的概率是23; 故答案为:23; (2)根据题意画树状图如下:共有9种等可能的结果,其中甲、乙两位同学从不同类型测温通道通过的有4种情况,则甲、乙两位同学从不同类型测温通道通过的概率是49.【点睛】此题考查的是用树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)13;(2)13.【分析】(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.【详解】(1)共有3种可能出现的结果,被分到“B组”的有1种,因此被分到“B组”的概率为13,故答案为:13;(2)用列表法表示所有可能出现的结果如下:小红爸爸王老师A B CA AA AB ACB BA BB BCC CA CB CC3种,∴P(他与小红爸爸在同一组)=31 93 .【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确求解的前提.23.(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.24.(1)90°;(2)【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE的度数;(2)根据勾股定理求出AC的长,根据CD=3AD,可得CD和AD的长,根据旋转的性质可得AD=EC,再根据勾股定理即可得DE的长.【详解】解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°,由旋转的性质可知∠BAD=∠BCE=45°,∴∠DCE=∠BCE+∠BCA=45°+45°=90°;(2)∵BA=BC,∠ABC=90°,∴AC==∵CD=3AD,∴AD=DC=由旋转的性质可知:AD=EC,∴DE==【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质.25.(1)A (-1,0),B(2,0);(2)0或1【分析】(1)解方程x2-x-2=0可得A,B两点的坐标;(2)把P(m,-2)代入y=x2-x-2得m2-m-2=-2,然后解关于m的方程即可.【详解】解:(1)当y=0时,x2-x-2=0,解得x1=-1,x2=2,∴A(-1,0),B(2,0);(2)把P(m,-2)代入y=x2-x-2得m2-m-2=-2,解得m1=0,m2=1,∴m的值为0或1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.x≥(2)20件26.(1)①80;②74;③25【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a件时,单价恰好是50元,80-(a-10)×2=50,解得:a=25,而题目中“单价不得低于50元”,x≥时,单价是50元,∴25x≥;故填:25(2)因为1200>800,所以一定超过了10件,设购买了x件这种服装且多于10件,根据题意得出:[80-2(x-10)]x=1200,解得:x1=20,x2=30,当x=20时,80-2(20-10)=60元>50元,符合题意;当x=30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.。

北师大九年级(上)期末数学模拟试卷(含答案解析)

北师大九年级(上)期末数学模拟试卷(含答案解析)

九年级(上)期末数学模拟试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.菱形具有而平行四边形不一定具有的性质是()A. 对角相等B. 对边相等C. 邻边相等D. 对边平行2.既是轴对称,又是中心对称图形的是()A. 矩形B. 平行四边形C. 正三角形D. 等腰梯形3.已知正比例函数y=k1x(k1≠0)与反比例函数y=k2(k2≠0)的图象有一个交点的坐x标为(-2,-1 ),则它们的另一个交点的坐标是()A. (2,1)B. (−2,−1)C. (−2,1)D. (2,−1)4.在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A. 垂直B. 相等C. 垂直且相等D. 不再需要条件5.已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4的图象上,则x ()A. y1<y2<y3B. y3<y2<y1C. y3<y1<y2D. y2<y1<y36.下列说法中,错误的是()A. 一组对边平行且相等的四边形是平行四边形B. 两条对角线互相垂直且平分的四边形是菱形C. 四个角都相等的四边形是矩形D. 邻边都相等的四边形是正方形7.若二次函数y=x2+x+m(m-2)的图象经过原点,则m的值必为()A. 0或2B. 0C. 2D. 无法确定8.如图,已知二次函数y=ax2+bx+c的图象,下列结论:①a+b+c<0;②a-b+c>0;③abc<0;④b=2a;⑤△<0.正确的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共18.0分)9.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是______.10.菱形的两条对角线的长分别为6和8,则它的面积是______ .11.在Rt△ABC中,∠C=90°,sin A=12,则sin B= ______ .1312.如果反比例函数y=k−3的图象过点(2,-3),那么k= ______ .x13.为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有______ 个白球.14.已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是______%.按此年平均增长率,预计第4年该工厂的年产量应为______万台.三、计算题(本大题共2小题,共18.0分)15.点A是双曲线y=k与直线y=-x-(k+1)在第二象限的x;交点,AB垂直x轴于点B,且S△ABO=32(1)求两个函数的表达式;(2)求直线与双曲线的交点坐标和△AOC的面积.16.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?四、解答题(本大题共7小题,共60.0分)17.解方程:3x2-2x-3=-2(x-2)2.18.画出图中三棱柱的三视图.19.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(x,y)落在第二象限内的概率;图象上的概率.(2)直接写出点(x,y)落在函数y=−1x20.如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.21.星期天,小强去水库大坝游玩,他站在大坝上的A处看到一棵大树的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面成60°角.在A处测得树顶D的俯角为15°.如图所示,已知AB与地面的夹角为60°,AB为8米.请你帮助小强计算一下这颗大树的高度?(结果精确到1米.参考数据√2≈1.4√3≈1.7)22.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.23.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.答案和解析1.【答案】C【解析】解:菱形具有平行四边形的全部性质,(A)平行四边形对角相等,故本选项错误;(B)平行四边形对边相等,故本选项错误;(C)邻边平行的平行四边形为菱形,故本选项正确,(D)平行四边形对边平行,故本选项错误.故选C.菱形拥有平行四边形的全部性质,且菱形的各边长相等且对角线互相垂直,分析A、B、C、D选项的正确性,即可解题.本题考查了平行四边形对边平行且相等的性质,考查了菱形各边长相等的性质,本题中熟练掌握菱形的性质是解题的关键.2.【答案】A【解析】解:A、矩形是轴对称图形,也是中心对称图形,故本选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正三角形是轴对称图形,不是中心对称图形,故本选项错误;D、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误.故选A.根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:∵两函数图象的一个交点坐标为(-2,-1),∴-1=-2k1,-1=,解得k1=,k2=2,∴正比例函数为y=x,反比例函数为y=,联立两函数解析式可得,解得或,∴两函数图象的另一交点坐标为(2,1),故选A.把已知点的坐标代入两函数解析式可求出函数解析式,再联立两函数解析式可求得另一个交点的坐标.本题主要考查函数图象的交点,利用待定系数法求得两函数解析式是解题的关键.4.【答案】B【解析】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选:B.因为菱形的四边相等,再根据三角形的中位线定理可得,对角线AC与BD需要满足条件是相等.本题很简单,考查的是三角形中位线的性质及菱形的性质.解题的关键在于牢记有关的判定定理,难度不大.5.【答案】D【解析】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.根据反比例函数图象上点的坐标特点解答即可.在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.6.【答案】D【解析】解:A、一组对边平行且相等的四边形是平行四边形,正确;B、两条对角线互相垂直且平分的四边形是菱形,正确;C、四个角都相等的四边形是矩形,正确;D、邻边都相等的四边形是正方形,也可能是菱形,故错误,故选:D.根据矩形、菱形、平行四边形以及正方形的判定定理逐一进行判断,可得选项.此题主要考查了平行四边形、菱形、正方形及矩形的判定.7.【答案】A【解析】解:∵y=x2+x+m(m-2)的图象经过原点,把点(0,0)代入得:m(m-2)=0,解得m=0或m=2.故选:A.由二次函数y=x2+x+m(m-2)的图象经过原点,把点(0,0)代入即可求解.本题考查了二次函数图象上点的坐标特征,属于基础题,关键是把原点代入函数求解.8.【答案】B【解析】解:①正确,由图象可知,当x=1时,y=a+b+c<0;②正确,由图象可知,当x=-1时,y=a-b+c>0③错误,由函数图象开口向下可知,a<0,由图象与y轴的交点在y轴正半轴可知,c>0,由对称轴x=-<0,a<0,可知b<0,所以abc>0;④正确,由图,因为-=-1,所以b=2a;⑤错误,因为函数图象与x轴有两个交点,所以△>0.正确的个数有3个,故选B.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.【答案】y=3(x-3)2+2【解析】解:y=3x2先向上平移2个单位,得到y=3x2+2,再向右平移3个单位y=3(x-3)2+2.故得到抛物线的解析式为y=3(x-3)2+2.故答案为:y=3(x-3)2+2.按照“左加右减,上加下减”的规律得出即可.此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.10.【答案】24【解析】解:∵菱形的面积等于对角线乘积的一半,∴面积S=×6×8=24.故答案为24.菱形的面积等于对角线乘积的一半.此题考查菱形的面积计算方法,属基础题.菱形的面积=底×高=对角线乘积的一半.11.【答案】513【解析】解:Rt△ABC中,∠C=90°,sinA=,即=,设CB=12x,则AB=13x,∴根据勾股定理可得:AC=5x.∴sinB===.故答案为:.根据勾股定理及三角函数的定义解答.本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.【答案】-3【解析】解:∵反比例函数y=的图象过点(2,-3),∴-3=,解得k=-3.故答案为:-3.直接把点(2,-3)代入反比例函数y=即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.【答案】100【解析】解:∵摸出10个球,发现其中有一个球有标记,∴带有标记的球的频率为,设袋中大约有x个白球,由题意得=,∴x=100.故答案为100.根据概率公式,设袋中大约有x 个白球,由题意得=,求解即可.本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据带有标记的球的频率得到相应的等量关系.14.【答案】10;146.41【解析】解:设年平均增长率为x ,依题意列得100(1+x )2=121解方程得x 1=0.1=10%,x 2=-2.1(舍去)所以第4年该工厂的年产量应为121(1+10%)2=146.41万台.故答案为:10,146.41根据提高后的产量=提高前的产量(1+增长率),设年平均增长率为x ,则第一年的常量是100(1+x ),第二年的产量是100(1+x )2,即可列方程求得增长率,然后再求第4年该工厂的年产量.本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出方程是解题的关键.15.【答案】解:(1)设A 点坐标为(x ,y ),且x <0,y >0,则S △ABO =12•|BO |•|BA |=12•(-x )•y =32,∴xy =-3,又∵y =k x ,即xy =k ,∴k =-3,∴所求的两个函数的解析式分别为y =-3x ,y =-x +2;(2)由y =-x +2,令x =0,得y =2.∴直线y =-x +2与y 轴的交点D 的坐标为(0,2),A 、C 两点坐标满足 {y =−3x y =−x +2, 解得x 1=-1,y 1=3,x 2=3,y 2=-1,∴交点A 为(-1,3),C 为(3,-1),∴S △AOC =S △ODA +S △ODC =12•|OD |•(|y 1|+|y 2|)=12×2×(3+1)=4.【解析】(1)欲求这两个函数的解析式,关键求k 值.根据反比例函数性质,k 的绝对值为3且为负数,由此即可求出k ;(2)交点A 、C 的坐标是方程组的解,解之即得;从图形上可看出△AOC 的面积为两小三角形面积之和,根据三角形的面积公式即可求出. 本题主要考查反比例函数与一次函数的交点问题的知识点,此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.16.【答案】解:(1)设每千克应涨价x 元,则(10+x )(500-20x )=6 000(4分) 解得x =5或x =10,为了使顾客得到实惠,所以x =5.(6分)(2)设涨价z 元时总利润为y ,则y =(10+z )(500-20z )=-20z 2+300z +5 000=-20(z 2-15z )+5000=-20(z 2-15z +2254-2254)+5000=-20(z -7.5)2+6125当z =7.5时,y 取得最大值,最大值为6 125.(8分)答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元; (2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.(10分)【解析】本题的关键是根据题意列出一元二次方程,再求其最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x 2-2x+5,y=3x 2-6x+1等用配方法求解比较简单.17.【答案】解:由原方程,得x 2-2x +1=0,配方,得(x-1)2=0,解得x1=x2=1.【解析】将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【答案】解:【解析】主视图应为一个长方形里有一条竖直的虚线;左视图为一个长方形,俯视图为一个三角形.考查三视图的画法;用到的知识点为:三视图为主视图,左视图,俯视图,分别是从物体的正面,左面,上面看得到的图形.注意实际存在,没有被其他棱挡住,从某个方向看又看不到的棱应用虚线表示.19.【答案】解:(1)根据题意,画树状图:由上图可知,点(x ,y )的坐标共有12种等可能的结果:(1,-1),(1,-13),(1,12)(1,2),(-2,-1),(-2,-13)(-2,12),(-2,2),(3,-1),(3,-13),(3,12),(3,2);其中点(x ,y )落在第二象限的共有2种:(-2,12),(-2,2),所以,P (x ,y )落在第二象限=212=16;1 -23 -1(1,-1) (-2,-1) (3,-1) -13(1,−13) (-2,−13) (3,−13) 12(1,12) (-2,12) (3,12) 2 (1,2) (-2,2) (3,2)由表格知共有12种结果,其中点(x ,y )落在第二象限的共有2种:(-2,12),(-2,2),所以,P (点(x ,y )落在第二象限)=212=16;(2)P (点(x ,y )落在y =-1x 上的概率为312=14.【解析】通过树状图或列表,列举出所有情况,再计算概率即可.此题为一次函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.反比例函数上的点的横纵坐标的积为反比例函数的比例系数.第二象限点的符号为(-,+).20.【答案】证明:∵点E ,F 分别为AB ,AD 的中点∴AE =12AB ,AF =12AD ,又∵四边形ABCD 是菱形,∴AB =AD ,∴AE =AF ,又∵菱形ABCD 的对角线AC 与BD 相交于点O∴O 为BD 的中点,∴OE ,OF 是△ABD 的中位线.∴OE ∥AD ,OF ∥AB ,∴四边形AEOF 是平行四边形,∵AE =AF ,∴四边形AEOF 是菱形.【解析】要证明四边形AEOF 是菱形,可根据“四条边相等的四边形是菱形”或“一组邻边相等的平行四边形是菱形”进行证明.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法: ①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.21.【答案】解:∵AF ∥CE ,∠ABC =60°, ∴∠FAB =60°.∵∠FAD =15°,∴∠DAB =45°.∵∠DBE =60°,∠ABC =60°,∴∠ABD =60°.过点D 作DM ⊥AB 于点M ,则有AM =DM .∵tan ∠ABD =DMBM ,∴tan60°=DM BM, ∴DM =√3BM .设BM =x ,则AM =DM =√3x .∵AB =AM +BM =8,∴√3x +x =8,∴x =8√3+1≈3.0,∴DM =√3x ≈5.∵∠ABD =∠DBE =60°,DE ⊥BE ,DM ⊥AB ,∴DE =DM ≈5(米).答:这棵树约有5米高. 【解析】 利用题中所给的角的度数可得到△ABD 中各角的度数,进而把已知线段AB 整理到直角三角形中,利用相应的三角函数即可求得所求线段的长度.通常把已知长度的线段整理到直角三角形中,利用公共边及相应的三角函数求解;所求的线段的长度也要进行代换,整理到相应的直角三角形中.22.【答案】解:(1)∵抛物线与y 轴交于点(0,3),∴设抛物线解析式为y =ax 2+bx +3(a ≠0)根据题意,得{9a +3b +3=0a−b+3=0,解得{b =2a=−1.∴抛物线的解析式为y =-x 2+2x +3;(2)如图,设该抛物线对称轴是DF ,连接DE 、BD .过点B 作BG ⊥DF 于点G . 由顶点坐标公式得顶点坐标为D (1,4)设对称轴与x 轴的交点为F∴四边形ABDE 的面积=S △ABO +S 梯形BOFD +S △DFE=12AO •BO +12(BO +DF )•OF +12EF •DF=12×1×3+12×(3+4)×1+12×2×4 =9;(3)相似,如图,BD =√BG 2+DG 2=√12+12=√2;∴BE =√BO 2+OE 2=√32+32=3√2DE =√DF 2+EF 2=√22+42=2√5∴BD 2+BE 2=20,DE 2=20即:BD 2+BE 2=DE 2,所以△BDE 是直角三角形∴∠AOB =∠DBE =90°,且AO BD =BO BE =√22, ∴△AOB ∽△DBE .【解析】(1)易得c=3,故设抛物线解析式为y=ax 2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a 、b 的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE 的面积=S△ABO+S梯形BOFD+S△DFE,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.23.【答案】(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=12ME,∴在Rt△MNE中,PN=12ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,{∠MBP=∠ECP BP=CP∠BPM=∠CPE,∴△BPM≌△CPE,∴PM=PE,∴PM=12ME,则Rt△MNE中,PN=12ME∴PM=PN.(3)解:如图4,四边形BMNC是矩形,理由:∵MN∥BC,BM⊥AM,CN⊥MN,∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°,∴∠CBM=∠AMB=∠CNA=90°,∴四边形BMNC是矩形.【解析】(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN;(2)证明方法与②相同;(3)四边形MBCN是矩形,只要证明三个角是直角即可;本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.。

北师大版初三数学九年级上册期末模拟试题(含答案)

北师大版初三数学九年级上册期末模拟试题(含答案)

北师大版初三数学九年级上册期末模拟试题(含答案)一、选择题1.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm2.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2473.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x += B .220x x --=C .2320x xy -=D .240y -=4.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y << B .123y y <<C .213y y <<D .213y y <<5.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1 B .m ≤1 C .m ≥-1 D .m ≤-1 6.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm πB .290cm πC .2130cm πD .2155cm π7.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=8.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB上的一点,43=BMCN,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.83或4 C.83或6 D.4或69.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70°B.65°C.55°D.45°10.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在格点上,点E在AB的延长线上,以A为圆心,AE为半径画弧,交AD的延长线于点F,且弧EF 经过点C,则扇形AEF的面积为()A.5πB.58πC.54πD.5π11.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10 B.10,9 C.8,9 D.9,1012.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定13.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A .∠B =∠D B .∠C =∠E C .AD ABAE AC= D .AC BCAE DE= 14.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47°15.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题16.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.17.一元二次方程290x 的解是__.18.数据2,3,5,5,4的众数是____.19.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)20.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.21.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 22.数据8,8,10,6,7的众数是__________.23.2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 24.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.25.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是____________.26.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.27.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.28.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.29.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.30.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.三、解答题31.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.32.如图,在△ABC中,AB=AC=13,BC=10,求tan B的值.33.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:成绩/分888990919596979899学生人数2132121数据分析:样本数据的平均数、众数和中位数如下表:平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.34.解方程:(1)x2-3x+1=0;(2)x(x+3)-(2x+6)=0.35.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).四、压轴题36.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.37.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).38.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 39.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先过点O 作OD ⊥AB 于点D ,连接OA ,由垂径定理可知AD =12AB ,设OA =r ,则OD =r ﹣2,在Rt △AOD 中,利用勾股定理即可求出r 的值. 【详解】解:如图所示:过点O 作OD ⊥AB 于点D ,连接OA , ∵OD ⊥AB , ∴AD =12AB =4cm , 设OA =r ,则OD =r ﹣2,在Rt △AOD 中,OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+42, 解得r =5cm .∴该输水管的半径为5cm ; 故选:B .【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.2.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.3.B解析:B 【解析】 【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程. 【详解】 解:A.2210x x +=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程, 故选B 【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.4.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.5.C解析:C 【解析】 【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小. 【详解】解:∵函数的对称轴为x=222b m m a -=-=-, 又∵二次函数开口向上, ∴在对称轴的右侧y 随x 的增大而增大,∵x >1时,y 随x 的增大而增大,∴-m≤1,即m ≥-1故选:C .【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.6.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.8.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB =,解出k值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10, CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽,∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.9.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB ,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°. 故选:C .【点睛】 本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.10.B解析:B【解析】【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.11.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.12.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.13.D解析:D【解析】【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.14.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.15.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题16.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有BC=12AB=12×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.20.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF 的长,易证△BOF∽△AOD,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:解析:9【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:如图所示,∵∠CEB =∠DBF =90°,∠CFE =∠DFB ,CE=DB =1,∴△CEF ≌△DBF ,∴BF =EF =12BE =12, ∵BF ∥AD ,∴△BOF ∽△AOD , ∴11248BO BF AO AD ===, ∴89AO AB =,∵AB =∴AO =故答案为:817 9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.21.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.22.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.23.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.24.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB===PAB PBC∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,3BC =, ∴()22223323AB AC BC =+=+=∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.25.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.26.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.27.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.28.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差: ()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键. 29.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 30.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题31.a<2且a≠1【解析】【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.32.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.33.(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.【解析】【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【详解】(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.【点睛】本题考查了众数、中位数、用样本估计总体等知识;熟练掌握众数、中位数、用样本估计总体是解题的关键.34.(1)x 1x 22)x 1=-3,x 2=2. 【解析】试题分析:(1)直接利用公式法求出x 的值即可;(2)先把原方程进行因式分解,再求出x 的值即可.试题解析:(1)∵一元二次方程x 2-3x+1=0中,a=1,b=-3,c=1,∴△=b 2-4ac=(-3)2-4×1×1=5.∴x=(3)32212b a -±--±±==⨯.即x 1x 2 (2)∵因式分解得 (x+3)(x-2)=0,∴x+3=0或x-2=0,解得 x 1=-3,x 2=2.考点:1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.35.(1)13;(2)23. 【解析】【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A 型矩形纸片的概率为13; (2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为4263=. 【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 四、压轴题36.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4【解析】【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解.【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F∴BE EF =,80BEF ∠=。

【北师大版】九年级数学上期末一模试题(附答案)

【北师大版】九年级数学上期末一模试题(附答案)

一、选择题1.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数2.现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是( )A .19B .16C .23D .133.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为( )A .37B .314C .326D .1124.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是( ) A .点数为3的倍数B .点数为奇数C .点数不小于3D .点数不大于35.如图,AB 是О的直径,,CB CD 是О的弦,且,CB CD CD =与AB 交于点E ,连接OD .若40,AOD ∠=︒则D ∠的度数是( )A .20B .35C .40D .556.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .47.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .2 8.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .69.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A .B .C .D .10.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )A .3种B .4种C .5种D .6种11.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t << 12.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .7二、填空题13.在一个不透明的布袋中,蓝色,黑色,白色的玻璃球共有20个,除颜色外其他完全相同.将布袋中的球摇匀,从中随机摸出一个球,记下它的颜色再放回去,通过多次摸球试验后发现,摸到黑色、白色球的频率分别稳定在10%和35%,则口袋中蓝色球的个数很可能是_____.14.若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字2-,1-,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点()P x,y ,那么点P 落在直线y x 1=-+上的概率是____.15.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.16.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,58AOB ∠=,B 是弧AC 的中点,则BDC ∠的度数为___________.17.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 则当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.18.如图,在Rt ABC 中,∠C =90°,AC =6cm ,BC =8cm .将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连结BB ',则BB '的长度为_________.19.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.20.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x ,根据题意,可得方程_______三、解答题21.已知一个不透明布袋中装有形状、大小、材质完全相同的红球和白球共5个,小明进行多次摸球实验,并将数据记录如下表: 摸球次数10 20 40 60 100 150 200 红球出现次数 5 9 18 26 41 61 81红球出现的频率 0.5 0.45 0.45 0.433 0.41 0.407 0.405)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为 ;(2)从这个布袋中随机摸出两个球,请用树形图或列表法求摸出的两个球恰好“一红一白”的概率.22.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).23.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率. 24.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 绕着点A 顺时针旋转90︒,画出旋转后得到的△AB 1C 1;直接写出点B 1的坐标;(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点B 2的坐标. 25.已知二次函数2(2)1y x =--,(1)确定抛物线开口方向、对称轴、顶点坐标;(2)如图,观察图象确定,x 取什么值时,①y >0,②y <0,③y =0.26.解答下列各题.(1)解方程:2(1)90x --=.(2)已知21x =+,求225x x -+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A 、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B 、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C 、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D 、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误; 故选C .【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键. 2.A解析:A【分析】列举出所有情况,看转盘停止后指针指向同种颜色区域的情况数占总情况数的多少即可.【详解】解:如图共9种情况,转盘停止后指针指向同种颜色区域的情况数是1,所以概率为19. 故选A .【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的易错点.3.B解析:B【分析】两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,根据概率公式即可求解.【详解】解:两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,所以“9”这个数字在这两辆车牌号中出现的概率为3 14.故选B.【点睛】本题考查了概率的计算,掌握概率计算公式是解题关键.4.C解析:C【分析】总共有六种情况,分别计算出所求情况的个数,比较即可得出可能性最大的.【详解】解:掷一枚普通的正六面体骰子共6种情况,A.掷一枚骰子,点数为3的倍数有2种,概率1 3 ;B.点数为奇数有3种,概率1 2 ;C.点数不小于3有四种,概率2 3 ;D.点数不大于3有3种,概率12,故可能性最大的是点数不小于3,选C.【点睛】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.5.B解析:B【分析】连接BD,得到∠DOB=140°,求出∠CDB,∠ODB即可;【详解】如图:连接BD,∵∠AOD=40°,∴∠DOB=180°-40°=140°,∴ ∠DCB=12∠DOB=70°, ∵ CB=CD ,∴ ∠CBD=∠CDB=55°,∵DO=BO ,∴∠ODB=∠OBD=20°,∴∠CDO=∠CBO ,∴∠CDO=∠CDB-∠ODB=35°,故选:B .【点睛】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识; 6.A解析:A【分析】如图,连接OD ,设半径为r ,则OM=6-r;再由垂径定理求出MD 的长,然后根据勾股定理解答即可.【详解】解:如图,连接OD ,设半径为r ,则OM=6-r∵EM CD ⊥∴MD=12CD=2 在Rt △MOD 中,OD=r ,OM=6-r ,MD=2 ∴222OM MD OD +=,即()22262r r -+=,解得r=103. 故答案为A .【点睛】本题考查了圆的垂径定理和勾股定理,根据垂径定理求得MD 的长是解答本题的关键.7.A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222BD OB OD=-=-=,.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.C解析:C【分析】过点P作PD⊥MN,连接PM,由垂径定理得DM=3,在Rt△PMD中,由勾股定理可求得PM为5即可.【详解】解:过点P作PD⊥MN,连接PM,如图所示:∵⊙P与y轴交于M(0,−4),N(0,−10)两点,∴OM=4,ON=10,∴MN=6,∵PD ⊥MN ,∴DM =DN =12MN =3, ∴OD =7,∵点P 的横坐标为−4,即PD =4,∴PM =22PD DM +=2243+=5,即⊙P 的半径为5,故选:C .【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键. 9.A解析:A【分析】根据中心对称图形的定义逐一判断即可.【详解】A 是中心对称图形,故A 正确;B 是轴对称图形,故B 错误;C 不是中心对称图形,故C 错误;D 不是中心对称图形,故D 错误;故选A .【点睛】本题考查了中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称. 10.C解析:C【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【详解】如图所示:,共5种,故选C .【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.11.C解析:C【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b ⨯=1, 解得b=-2,所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键. 12.B解析:B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0,解得x 1=5,x 2=-4(舍去),∴参加此次比赛的球队数是5队.故选:B .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.二、填空题13.【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数【详解】解:∵摸到黑色白色球的频率分别稳定在10和35∴摸到蓝色球的频率稳定在1-10-35=55∴蓝色球的个数为:20×55=11个故答解析:11【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数.【详解】解:∵摸到黑色、白色球的频率分别稳定在10%和35%,∴摸到蓝色球的频率稳定在1-10%-35%=55%,∴蓝色球的个数为:20×55%=11个,故答案为:11.【点睛】考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.14.【分析】画出树状图再求出在直线上的点的坐标的个数然后根据概率公式列式计算即可得解【详解】解:画树状图如下:由树状图可知共有12种等可能结果其中点P落在直线y=-x+1上的有(-23)(-12)(2-解析:1 3【分析】画出树状图,再求出在直线上的点的坐标的个数,然后根据概率公式列式计算即可得解.【详解】解:画树状图如下:由树状图可知共有12种等可能结果,其中点P落在直线y=-x+1上的有(-2,3)、(-1,2)、(2,-1)、(3,-2),所以点P落在直线y=-x+1上的概率是41=123,故答案为13.【点睛】本题考查了列表法与树状图法,以及一次函数图象上点的坐标特征.15.【分析】用白球的个数除以球的总个数即可确定摸到白球的概率【详解】解:盒子中装有9个大小相同的乒乓球其中3个是黄球6个是白球则摸到白球的概率是:故答案为【点睛】本题考查概率的求法与运用正确应用概率公式解析:2 3【分析】用白球的个数除以球的总个数,即可确定摸到白球的概率.【详解】解:盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球, 则摸到白球的概率是:6293=. 故答案为23. 【点睛】本题考查概率的求法与运用,正确应用概率公式是解答本题的关键. 16.29°【分析】先由是弧的中点可得再根据圆周角定理可得结果【详解】解:连接OC ∵是弧的中点∴∴∠BOC=∠AOB=58°∴∠BDC==29°故答案为29°【点睛】本题考查了圆周角定理掌握圆周角定理是解解析:29°【分析】先由B 是弧AC 的中点,可得AB BC = ,再根据圆周角定理可得结果. 【详解】解:连接OC ,∵B 是弧AC 的中点,∴AB BC =.∴∠BOC=∠AOB=58° ∴∠BDC=1582⨯︒=29°. 故答案为29°.【点睛】 本题考查了圆周角定理,掌握圆周角定理是解题的关键.17.【分析】首先根据题意可知当点与点重合时最长的最大值为;再证明点的运动轨迹为以为直径的通过添加辅助线连接交于点连接由线段公理可知当点与点重合时最短的最小值为即可得解【详解】解:∵由题意可知当点与点重合 512AF ≤≤【分析】首先根据题意可知,当点F 与点B 重合时AF 最长,AF 的最大值为2;再证明点F 的运动轨迹为以BC 为直径的'O ,通过添加辅助线连接'AO 交'O 于点M ,连接'O F ,由线段公理可知,当点F 与点M 重合时AF 最短,AF 的最小值为51-.即可得解.【详解】解:∵由题意可知,当点F 与点B 重合时AF 最长∴此时2AF AB ==,即AF 的最大值为2∵CF BE ⊥ ∴90CFB ∠=︒∴点F 的运动轨迹为以BC 为直径的'O ,连接'AO 交'O 于点M ,连接'O F ,如图:∵2AB =∴11'122BO BC AB === ∴在'Rt ABO 中,22''5AO AB BO =+=∴''51AM AO O M =-=∴由两点之间,线段最短可知,当点F 与点M 重合时AF 最短∴AF 51∴512AF ≤≤.【点睛】本题考查了正多边形和圆的动点问题、90︒的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定AF 取最大值和最小值时点F 的位置,属于中考常考题型,难度中等.18.4【分析】由勾股定理得到AB=10然后根据旋转的性质求出△BB′C′的边长最后根据勾股定理求出BB′即可【详解】∵在Rt △ABC 中∠C=90°AC =6cmBC =8cm ∴又由旋转的性质知AC′=AC=解析:5【分析】由勾股定理得到AB=10,然后根据旋转的性质求出△BB′C′的边长,最后根据勾股定理求出BB′即可.【详解】∵在Rt △ABC 中,∠C=90°,AC =6cm ,BC =8cm ,∴10AB =.又由旋转的性质知,AC′=AC=6,B′C′=BC=8∴BC′= AB -AC′=4∵B′C′⊥AB ,∴在Rt △BB′C′中,BB =='.故答案为【点睛】本题主要考查了旋转的性质和勾股定理,此题实际上是利用直角三角形的性质和旋转的性质将所求线段BB'与已知线段AC 、BC 的长度联系起来求解的. 19.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案 解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.【详解】二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 20.54(1-x )2=42【分析】根据题意经过两次的钢量减少最后的结果应该是原来的(1-x )2倍列出方程即可【详解】解:根据题意有:54(1-x )2=42故答案为:54(1-x )2=42【点睛】本题考查解析:5.4(1-x )2=4.2【分析】根据题意,经过两次的钢量减少,最后的结果应该是原来的(1-x )2倍,列出方程即可.【详解】解:根据题意有:5.4(1-x)2=4.2故答案为:5.4(1-x)2=4.2【点睛】本题考查一元二次方程的实际应用问题,属于基础题.三、解答题21.(1)0.4;(2)35.【分析】(1)通过表格中的数据,随着次数的增多,摸到白球的频率越稳定在0.40左右,进而得出答案;利用频率估计概率,摸到白球的概率0.40,(2)先利用概率的计算公式即可得出红球与白的个数;根据题意画出树状图,然后由树状图求得所有等可能的结果与摸到一个白球一个红球的情况,再利用概率公式即可求得答案.【详解】(1)随着摸球次数的越来越多,频率越来越靠近0.40,因此接近的常数就是0.4,从这个布袋中随机摸出一个球,这个球恰好是红球的概率为0.4;(2)红球有0.4×5=2个,白球有5-2=3个,摸出一红一白的情况有3+3+2+2+2=12种,所有的等可能情况有5×4=20种,P一红一白=123= 205.【点睛】本题考查了利用频率估计概率的方法,理解频率、概率的意义以及频率估计概率的方法是解决问题的关键;还考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,然后根据概率公式求出事件A的概率.22.2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.【详解】解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点睛】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.23.()1见解析;()124. 【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x ,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】 ()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果,∴点()M x,y 在函数y x 1=+的图象上的概率为31124=. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.(1)作图见解析;B1(4,-2);(2)作图见解析;B2(-4,-4)【分析】(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,从而得到△AB1C1,再写出点B1的坐标;(2)分别作出A,B,C的对应点A2,B2,C2即可.【详解】(1)如图,B1(4,-2);(2)如图,B2(-4,-4).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.x<或25.(1)开口方向:向上,对称轴:直线x=2,顶点坐标:(2,-1);(2)①1<<时,y<0;③x=1或x=3时,y=0.x3x>时y>0,②13【分析】(1)根据顶点式可直接推出抛物线开口方向、对称轴、顶点坐标;(2)令y=0,求出关于x的方程的解,结合图象即可解答.【详解】解:(1)由于二次项系数为正数,则抛物线开口向上;根据顶点式可知,对称轴为x=2,顶点坐标为(2,-1).(2)令y=0,则原式可化为(x-2)2-1=0,移项得,(x-2)2=1,开方得,x-2=±1,解得x1=1,x2=3.则与x轴的交点坐标为(1,0),(3,0).如图:①当x<1或x>3时,y>0;②当x=1或x=3时,y=0;③当1<x<3时,y<0.【点睛】本题考查了二次函数的性质,熟悉顶点式及正确画出图象,利用数形结合是解题的关键. 26.(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=, ∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+, 将21x =代入得: 原式)22114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.。

【北师大版】九年级数学上期末模拟试题(附答案)(1)

【北师大版】九年级数学上期末模拟试题(附答案)(1)

一、选择题1.如图,在平面直角坐标系中,正方形OABC 的顶点О在原点,A ,C 分别在x 轴和y 轴的正半轴上,反比例函数()0k y k x =>图象交AB 边于点D ,交BC 边于点E ,连接EO 并延长,交()0k y k x=>的图象于点F ,连接DE ,DO ,DF ,若:1:2CE BE =,8DOF S =△,则k 的值等于( )A .3B .4.6C .6D .8 【答案】C【分析】由反比例函数()0k y k x=>图象的中心对称性质,则OE=OF ,由四边形OABC 为正方形,可得OA=OC ,∠OCA=∠OAB=90°由点E ,D 在反比例函数图像上,可证CE=AD ,可证△OCE ≌△OAD (SAS )可得OE=OD=OF ,由中线性质S △ODE =S △ODF =8,由:1:2CE BE =,可知CE 13BC =,BE=23BC 设正方形的边长为m ,利用正方形面积构造方程,求出2=18m 进而求 211=633k m m m ⋅==即可. 【详解】解:由反比例函数()0k y k x=>图象的中心对称性质, 则OE=OF ,∵四边形OABC 为正方形, ∴OA=OC ,∠OCA=∠OAB=90°,由点E ,D 在反比例函数图像上,∴CE=AD==k k OA OC, 在△OCE 和△OAD 中,OC OA OCE OAD CE AD =⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△OAD (SAS ),∴OE=OD=OF ,∴S △ODE =S △ODF =8,∵:1:2CE BE =,∴CE=()11+33CEBE BC =,BE=23BC , 设正方形的边长为m ,S 正方形OABC =2S △OCE +S △BED +S △OED , 即m 2=2×21112·82323m m m ⎛⎫⨯++⨯ ⎪⎝⎭, ∴2=18m ,∵点E 在反比例函数图像上E (1,3m m ), ∴211633k xy m m m ==⋅==. 故选择:C .【点睛】本题考查反比例函数性质,正方形性质,三角形中线性质,掌握反比例函数性质,正方形性质,三角形中线性质,掌握关键是抓住正方形面积构造方程.2.函数5y x =的图象位于() . A .第三象限B .第一、三象限C .第二、四象限D .第二象限【答案】B【分析】根据直角坐标系、反比例函数的性质分析,即可得到答案.【详解】∵5y x = ∴5xy =,即x 和y 符号相同 ∴5y x=的图象位于第一、三象限 故选:B .【点睛】 本题考查了反比例函数、直角坐标系的知识;解题的关键是熟练掌握反比例函数、直角坐标系的性质,从而完成求解.3.关于反比例函数2y x=-,下列说法中错误的是( ) A .当0x <时,y 随x 的增大而增大 B .图象位于第二、四象限C .点(2,1)-在函数图象上D .当1x <-时,2y > 【答案】D【分析】根据反比例函数的图像性质判断即可;【详解】∵2k =-<0,∴当0x <时,y 随x 的增大而增大,故A 不符合题意;∵2k =-,∴图象位于第二、四象限,故B 不符合题意;当2x =时,212y =-=-,故C 不符合题意; 当1x <-时,y <2,故D 错误,符合题意;故答案选D .【点睛】本题主要考查了反比例函数的图像性质,准确分析判断是解题的关键.4.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为( )A .上午12时B .上午10时C .上午9时30分D .上午8时 5.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .136.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )A .B .C .D . 7.已知ABC 的三边长是2,6,2,则与ABC 相似的三角形的三边长可能是( )A .1,2,3B .1,3, 22C .1,3,6D .1,3,3 8.下列说法中,正确的说法有( )①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③两个相似三角形的周长的比为23,则它们的面积的比为49; ④对角线互相垂直的平行四边形为正方形;⑤对角线垂直的四边形各边中点得到的四边形是矩形. A .1个 B .2个 C .3个 D .4个9.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①2BE AE =;②DFP BPH ∽△△;③PFD PDB ∽△△;④2DP PH PC =⋅.其中正确的是( )A .①②③B .①③④C .②③④D .①②④ 10.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是( )A .掷一枚普通正六面体骰子,出现点数不超过2B .掷一枚硬币,出现正面朝上C .从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D .从分别标有数字l ,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于711.关于x 的一元二次方程220x x m +-=有两个不相等的实数根,则m 的取值范围是( )A .1m >-B .1mC .1m ≥-D .1m >-且0m ≠ 12.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则DE 的长为( )A .12B .53C .25D .13二、填空题13.如图,矩形ABCD 的顶点C ,D 在x 轴的正半轴上,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上,则矩形ABCD 的面积为__14.如图,在ABC 中,AB AC =,点A 在反比例函数(0,0)k y k x x=>>的图象上,点,B C 在x 轴上,且15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD △的面积等于2,则k 的值为______.15.一个长方体从正面和左面看到的图形如图所示(单位cm ),则从其上面看到的图形的面积是_____.16.用一些大小相同的小正方体搭成一个几何体,使得从正面和上面看到的这个几何体的形状如图所示,那么,组成这个几何体的小正方体的块数至少为____________.17.如图,在平行四边形ABCD 中,点E 在BC 边上,且:2:1CE BE =,AC 与DE 相交于点F ;若9AFD S =,则CFE S =___________.18.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.19.已知关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的取值范是__________________.20.如图,在矩形ABCD 中,4AB =,6BC =,E 是边AD 上的一个动点,将ABE △沿BE 对折成BFE △,则线段DF 长度的最小值为_______.三、解答题21.已知函数23(2)k k y k x --=-是反比例函数,求k 的值.22.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒. (1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)【答案】(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,所以甲型盒的容积为24540⨯⨯=(立方分米).乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,容积为2228⨯⨯=(立方分米),故答案为40,8.(2)甲型盒的底面积为248⨯=(平方分米),两个乙型盒中的水的体积为8216⨯=(立方分米),所以甲型盒内水的高度为1682÷=(分米).答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.23.如图,小军、小丽、小华利用晚间放学时间完成一个综合实践活动,活动内容是测量人行路上的路灯高度.小军和小丽分别站在路灯的两侧,小军站在水平地面上的点A 处,小丽站在点C 处,这时小军的身高AB 形成的影子为AE ,小丽身高CD 形成的影子为CF .(1)请画图确定灯泡P 的位置(2)已知小军和小丽的身高分别为1.8米和1.6米,小华测得小军和小丽在路灯下的影子AE 和CF 分别为1米和2米,小军和小丽之间的距离AC 为10米,点E ,A ,C ,F 在同一条直线上,请帮助他们3人求出路灯的高度.24.甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率.25.已知关于x 的一元二次方程2(3)890a x x --+=.(1)若方程的一个根为1x =-,求a 的值;(2)若方程有实数根,求满足条件的正整数a 的值:(3)请为a 选取一个合适的整数,使方程有两个整数根,并求这两个根.26.在正方形ABCD 中,点E 、F 分别在BC 边和CD 上,且满足AEF 是等边三角形,连接AC 交EF 于点G .(1)求证:CE CF =;(2)若等边AEF 边长为2,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.5.C解析:C【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.7.A解析:A【分析】根据相似三角形的判定定理即可得到结论.【详解】解:∵△ABC ,2,∴△ABC:2=1∴△ABC 相似的三角形三边长可能是1,故选:A .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键. 8.C解析:C【分析】根据矩形的判定定理、一元二次方程的解法、【详解】解:①对角线互相平分且相等的四边形是矩形,故①错误;②一元二次方程x 2-3x -4=0(x -4)(x +1)=0x -4=0或x =1=0x 1=4,x 2=-1,故②正确;③两个相似三角形的周长的比为23,则它们的面积的比为22()349=,故③正确; ④对角线相等且互相垂直的平行四边形为正方形,故④错误;⑤对角线垂直的四边形各边中点得到的四边形是矩形,说法正确.故选:C【点睛】 本题考查的是命题的真假判断,掌握矩形的判定定理、一元二次方程的解法、中点四边形的性质、矩形、菱形和正方形的判断是解题的关键.9.D解析:D【分析】由正方形ABCD ,与BPC △是等边三角形的性质求解,求解30,EBA ∠=︒ 从而可判断①;证明60,PFE BPC ∠=∠=︒ =15,PBH PDF ∠=∠︒ 可判断②;由15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒ 可判断③; 证明30,PDH PCD ∠=︒=∠ 再证明,PDH PCD ∽ 可得,DP PH PC PD =从而可判断 ④.【详解】 解: 正方形ABCD ,90,,ABC A BCD ADC CB CD AB ∴∠=∠=∠=∠=︒==BPC △是等边三角形,60,PBC PCB BPC ∴∠=︒=∠=∠906030,EBA ∴∠=︒-︒=︒2,BE AE ∴= 故①符合题意;正方形ABCD ,//,45,AD BC CBD ∴∠=︒60,PFE PCB ∴∠=∠=︒60,PFE BPC ∴∠=∠=︒BPC △是等边三角形,,PC BC CD ∴==而906030,PCD ∠=︒-︒=︒()11803075,2CDP ∴∠=︒-︒=︒ 907515,PDF ∴∠=︒-︒=︒由60,45,PBC CBD ∠=︒∠=︒15,PBH ∴∠=︒,PBH PDF ∴∠=∠,BPH DFP ∴∽ 故②符合题意;15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒,PFD BPD ∴不相似,故③不符合题意;正方形ABCD ,45CDB ∴∠=︒,90451530,PDH PCD ∴∠=︒-︒-︒=︒=∠,DPH CPD ∠=∠,PDH PCD ∴∽,DP PH PC PD∴= ∴ 2DP PH PC =⋅,故④符合题意,综上:符合题意的有:①②④.故选:.D【点睛】本题考查的是等边三角形的性质,含30的直角三角形的性质,正方形的性质,相似三角形的判定与性质,掌握以上知识是解题的关键.10.B解析:B【分析】首先根据折线统计图可得出该事件的概率在30%以上,分别计算各选项概率,即可得出答案.【详解】解:A . 掷一枚普通正六面体骰子,出现点数不超过2的概率为13,符合该图; B . 掷一枚硬币,出现正面朝上的概率为12,不符合该图; C . 从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球的概率为13,符合该图;D . 从分别标有数字l ,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于7概率为13,符合该图. 故选:B .【点睛】本题考查的知识点是用频率估计概率,解题的关键是从折线统计图中得出事件的概率值. 11.A解析:A【分析】根据一元二次方程220x x m +-=有两个不相等的实数根,得到440m +>,求解即可.【详解】∵一元二次方程220x x m +-=有两个不相等的实数根,∴0∆>,∴440m +>,∴1m >-,故选:A .【点睛】此题考查一元二次方程根的判别式,掌握一元二次方程根的三种情况是解题的关键. 12.B解析:B【分析】先根据矩形的性质得AD =BC =5,AB =CD =3,再根据折叠的性质得AF =AD =5,EF =DE ,在Rt △ABF 中,利用勾股定理计算出BF =4,则CF =BC ﹣BF =1,设CE =x ,则DE =EF =3﹣x ,然后在Rt △ECF 中根据勾股定理得到x 2+12=(3﹣x )2,解方程即可得到DE 的长.【详解】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF 4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x ,在Rt △ECF 中,CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43, ∴DE =3﹣x =53, 故选:B .【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.二、填空题13.【分析】利用反比例函数k 的几何意义求解即可【详解】∵延长BA 交y 轴于点E 顶点AB 分别在反比例函数y=和y=的图象上∴=4=16∴矩形ABCD 的面积为:-=16-4=12;故答案为:12【点睛】本题考解析:【分析】利用反比例函数k 的几何意义求解即可.【详解】∵延长BA 交y 轴于点E ,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上, ∴ADOE S 矩形=4,OE S 矩形BC =16,∴矩形ABCD 的面积为: OE S 矩形BC -ADOE S 矩形=16-4=12;故答案为:12.【点睛】本题考查了反比例函数的k的几何意义,熟练将k的几何意义与图形的面积有机结合,灵活解题是解题的关键.14.6【分析】作AE⊥BC于E连接OA根据等腰三角形的性质得出OC=CE根据相似三角形的性质求得S△CEA进而根据题意求得S△AOE根据反比例函数系数k的几何意义即可求得k的值【详解】解:作AE⊥BC于解析:6【分析】作AE⊥BC于E,连接OA,根据等腰三角形的性质得出OC=12CE,根据相似三角形的性质求得S△CEA,进而根据题意求得S△AOE,根据反比例函数系数k的几何意义即可求得k的值.【详解】解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=15 OB,∴OC=12CE , ∵AE ∥OD ,∴△COD ∽△CEA , ∴2CEA COD 4S CE SOC ⎛⎫== ⎪⎝⎭, ∵2BCD S=,OC=15OB , ∴COD 1142BCD S S ==, ∴CEA 1422S =⨯=, ∵OC=12CE , ∴AOC 112CEA SS ==, ∴AOE 213S=+=, ∵AOE 12S k =(0k >), ∴6k =, 故答案为:6.【点睛】本题考查了反比例函数系数k 的几何意义,三角形的面积,等腰三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.15.6cm2【分析】先根据从左面从正面看到的形状图的相关数据可得从上面看到的形状图是长为3宽为2的长方形再根据长方形的面积公式计算即可【详解】根据从左面从正面看到的形状图的相关数据可得:从上面看到的形状 解析:6cm 2【分析】先根据从左面、从正面看到的形状图的相关数据可得,从上面看到的形状图是长为3宽为2的长方形,再根据长方形的面积公式计算即可.【详解】根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为3宽为2的长方形,则从上面看到的形状图的面积是2×3=6cm 2;故答案为6cm 2.【点睛】此题考查了由三视图判断几何体,关键是根据从左面、从正面看到的形状图的相关数据得出从上面看到的形状图是长为3宽为2的长方形.16.8【解析】试题分析:从俯视图中可以看出最底层小正方体的个数及形状从主视图可以看出每一层小正方体的层数和个数从而算出总的个数解:∵俯视图有5个正方形∴最底层有5个正方体由主视图可得第2层最少有2个正方解析:8【解析】试题分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解:∵俯视图有5个正方形,∴最底层有5个正方体,由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;∴该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,故答案为8.考点:由三视图判断几何体.17.4【分析】由于四边形ABCD是平行四边形所以得到BC//ADBC=AD而CE:BE=2:1由此即可得到△AFD∽△CFE它们的相似比为3:2最后利用相似三角形的性质即可求解【详解】解:∵四边形ABC解析:4【分析】由于四边形ABCD是平行四边形,所以得到BC//AD、BC=AD,而CE:BE=2:1,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【详解】解:∵四边形ABCD是平行四边形,∴BC//AD、BC=AD,∴△AFD∽△CFE,∵CE:BE=2:1,∴CE:BC=2:3,∴AD:CE =3:2,∴S△AFD:S△EFC=(32)2=94,∵S△AFD=9,∴S△EFC=4.故答案为:4.【点睛】此题主要考查了平行四边形的性质,相似三角形的判定与性质,解题是证明△AFD∽△CFE,然后利用其性质即可求解.18.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4 解析:16【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21126=, 故答案为:16. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件. 19.且【分析】方程有两不等的实数根得到判别式大于零求出a 的取值范围同时方程是一元二次方程二次项系数不为零【详解】根据题意得a-1≠0且△=(﹣2)2﹣4(a-1)>0解得a <2且a≠1故答案为a <2且a解析:2a <且1a ≠【分析】方程有两不等的实数根,得到判别式大于零,求出a 的取值范围,同时方程是一元二次方程,二次项系数不为零.【详解】根据题意得a -1≠0且△=(﹣2)2﹣4(a -1)>0,解得a <2且a ≠1.故答案为a <2且a ≠1.【点睛】本题主要考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.解答这类题目时一定要注意方程的定义,其最高次项系数是否可以为0.20.【分析】连接DFBD 由DF >BD-BF 知点F 落在BD 上时DF 取得最小值且最小值为BD-BF 的长再根据矩形和折叠的性质分别求得BDBF 的长即可【详解】如图连接DFBD 由图可知DF >BD-BF 当点F 落在解析:2134-【分析】连接DF 、BD ,由DF >BD-BF 知点F 落在BD 上时,DF 取得最小值,且最小值为BD-BF 的长,再根据矩形和折叠的性质分别求得BD 、BF 的长即可.【详解】如图,连接DF 、BD ,由图可知,DF >BD-BF ,当点F 落在BD 上时,DF 取得最小值,且最小值为BD-BF 的长,∵四边形ABCD 是矩形,∴AB=CD=4、BC=6,∴2222=6+4=213BC CD +由折叠性质知AB=BF=4,∴线段DF 长度的最小值为BD-BF 134=, 故答案为:134..【点睛】本题主要考查矩形和翻折变换的性质,解题的关键是根据三角形两边之差小于第三边得出DF 长度取得最小值时点F 的位置.三、解答题21.1k =-.【分析】根据反比例函数的定义,从x 的指数,比例系数的非零性两个角度思考求解即可.【详解】解:∵23(2)kk y k x --=-是反比例函数, ∴23120k k k --=--≠且,∴10k +=,∴1k =-,故答案为:1k =-.【点睛】本题考查了反比例函数的定义,熟练掌握反比例函数的系数特点,指数特点是解题的关键. 22.无23.(1)见解析;(2)路灯的高度7.2米.【分析】(1)连接EB ,FD ,延长EB 交FD 的延长线于点P ,点P 即为所求作.(2)过点P 作PH ⊥AC 于H .设AH =x 米,则CH =(10−x )米,利用相似三角形的性质构建方程求解即可.【详解】解:(1)作图如下:P ∴点即为所求灯泡的位置.(2)过P 做PH AC ⊥于点H ,设AH x =米,则(10)CH x =-米,PH AC ⊥,AB AC ⊥,E E ∠=∠,EAB EPH ∴△△∽.EA AB EH PH∴=. 1 1.81x PH∴=+. 1.8(1)PH x ∴=+.同理可证:FDC FPH ∽.CF DC FH PH ∴=. 即2 1.6210 1.8(1)x x =+-+. 解得:3x =. 1 1.813PH ∴=+. 解得:7.2PH =.答:路灯的高度7.2米.【点睛】本题考查作图−应用与设计,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(1)见解析 (2)13【分析】(1)画树状图即可得出答案;(2)共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,再由概率公式求解即可. 【详解】解:(1)画树状图如图:(2)由(1)得:共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,∴正好由丙将接力棒交给丁的概率为21=63. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.25.(1)-14;(2)1或2或4;(3)a=2,两根为-9或1【分析】(1)把1x =-代入方程求出a 即可.(2)利用判别式根据不等式即可解决问题.(3)利用(2)中结论,一一判断即可解决问题.【详解】解:(1)方程的一个根为1x =-,3890a ∴-++=,14a ∴=-.(2)由题意△0且3a ≠6436(3)0a ∴--, 解得439a , a 是正整数,1a 或2或4.(3)当2a =时,方程为2890x x +-=,解得9x =-或1.【点睛】本题考查了根的判别式,一元二次方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)见解析 (21【分析】(1)根据正方形和等边三角形的性质,证Rt ABE Rt ADF △≌△即可;(2)由(1)可知,AC 垂直平分EF ,根据勾股定理和斜边中线等于斜边的一半求AG 、CG 即可.【详解】 (1)证明:正方形ABCD ,∴AB AD =,B D ∠=∠=90°,BC CD =.AEF 是等边三角形,AE AF ∴=.(HL)Rt ABE Rt ADF ∴△≌△.BE DF ∴=.CE CF ∴=.(2)由(1)得,CE=CF ,AE=AF=2,AC ∴垂直平分EF .1EG FG ∴==.AG ∴===,∵∠ECF=90°,EG=GF ,∴112CG EF ==,1AC AG CG ∴=+=.【点睛】本题考查了正方形、等边三角形、全等三角形的判定与性质、勾股定理等知识,解题关键是准确把握已知,熟练运用全等三角形、勾股定理等知识进行证明和计算.。

【北师大版】九年级数学上期末模拟试卷附答案

【北师大版】九年级数学上期末模拟试卷附答案

一、选择题1.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)k y k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =( )A .4B .92C .32D .5【答案】B【分析】 设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】 解:在k y x=中,设(,)(0)k B x k x >, 则3k x x +=,(,)k C x x∵AB 经过坐标原点,∴(,)k A x x-- ∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒∴1,22BC AB AB BC == 又∵2AB OB =∴BC OB =∴3k x x =⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.2.关于反比例函数2y x=-,下列说法中错误的是( ) A .当0x <时,y 随x 的增大而增大 B .图象位于第二、四象限C .点(2,1)-在函数图象上D .当1x <-时,2y > 【答案】D【分析】根据反比例函数的图像性质判断即可;【详解】∵2k =-<0,∴当0x <时,y 随x 的增大而增大,故A 不符合题意;∵2k =-,∴图象位于第二、四象限,故B 不符合题意;当2x =时,212y =-=-,故C 不符合题意; 当1x <-时,y <2,故D 错误,符合题意;故答案选D .【点睛】 本题主要考查了反比例函数的图像性质,准确分析判断是解题的关键.3.对于反比例函数1y x=-,下列说法不正确的是( ) A .点()1,1-在它的图象上 B .它的图象在第二、四象限C .当0x >时,y 随x 的增大而减小D .当0x <时,y 随x 的增大而增大 【答案】C【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.∵x=1时,y11=-=-1,∴点(1,﹣1)在它的图象上,说法正确;B.∵k=﹣1<0,∴它的图象在第二、四象限,说法正确;C.∵k=﹣1<0,∴在每一个象限内,y随x的增大而增大,说法不正确;D.∵k=﹣1<0,当x<0时,y随x的增大而增大,说法正确.故选择:C.【点睛】本题考查了反比例函数的性质,对于反比例函数ykx=(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.4.一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几何体的小正方体最少有a个,最多有b个,b a-=()A.3 B.4 C.5 D.65.如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C .D .7.如图,▱ABCD 中,点E 是AD 的中点,EC 交对角线BD 于点F ,则DF BF =( )A .23B .2C .13D .128.如图,在ABC 中,点D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,DF ∥AC .下列比例式中,正确的是( )A .AD DE BD BC= B .DF DE AC BC = C .AD DE AB BC = D .AE BF EC FC= 9.如图,在ABC ∆中,点,D E 分别是,AB AC 的中点,则下列结论不正确的是( )A .2BC DE =B .ADE ABC ∆∆ C .AD AB AE BC = D .4ABC ADE S S ∆∆=10.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )A .14B .12C .34D .111.已知a 是方程2210x x --=的一个根,则代数式2245a a -+的值应在( ) A .4和5之间 B .3和4之间 C .2和3之间 D .1和2之间12.如图,在平行四边形ABCD 中,AD =2AB 、点F 是AD 的中点,作CE ⊥AB 垂足E 在线段AB 上,连接 EF 、CF ,则下列结论:①2BCD DCF ∠=∠;②EF =CF ; ③S △BCE =S △CEF ;④∠DFE =3∠AEF .其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题13.对于函数y =2x,当函数值y >﹣1时,自变量x 的取值范围是_____. 14.如图,线段AB 的两端点分别在x 轴正半轴和y 轴负半轴上,且ABO 的面积为6,若双曲线()0k y k x=<恰好经过线段AB 的中点M ,则k 的值为___________15.身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为___米.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是________.17.如图,在平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,AE 与BD 相交于F ,则S △ADF :S △EBF =_____.18.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.19.如果关于x的一元二次方程220+=的一个根是2-,那么k=_______.k x kx20.如图,在菱形ABCD中,AB=18cm,∠A=60°,点E以2cm/s的速度沿AB边由A向B 匀速运动,同时点F以4cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.当点E运动_______秒时,△DEF为等边三角形.三、解答题21.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?22.一个几何体由大小相同的小立方体搭成,如图是这个几何体从正面和上面看得到的形状图.(1)请问搭建这样的几何体最少需要多少个小立方块?最多需要多少个?(2)请分别画出(1)中两种情况下从左面看到的几何体的形状图.【答案】(1)最少需要11小立方体,最多17个小立方体;(2)见解析【分析】(1)结合主视图,在俯视图中的方格中,写出最多最少时立方体的个数即可解决问题. (2)根据左视图的定义画出图形即可.【详解】解:(1)根据最多情形的俯视图可知:搭建这样的几何体最多要17个小立方体, 根据最少情形的俯视图可知,最少要11个小立方体.(2)最多时的左视图:最少时,左视图:【点睛】本题考查作图-三视图,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.如图,在每个小正方形的边长为1的网格中,ABC 的顶点A ,B ,C 均在格点上,AB 与网格交于点D .(1)线段AD 的长为_______________;(2)在如图所示的网格中,P 是AC 边上任意一点,当A APD BC ∽△△时,请用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)____________________________________.24.一个不透明的袋子中装有三个完全相同的小球,小球上分别标有数字3,4,5,从袋中随机取出一个小球,用小球上的数字作十位,然后放回,搅匀后再取出一个小球,用小球上的数字作个位,这样组成一个两位数;试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为8的两位数的概率是多少?用列表法或画树状图加以说明. 25.阅读材料:若22228160x xy y y -+-+=,求x ,y 的值.解:∵22228160x xy y y -+-+=∴()()22228160x xy yy y -++-+= ∴()()2240x y y -+-=∴()20x y -=,()240y -= ∴4,4y x ==根据上述材料,解答下列问题:(1)2222210m mn n n -+-+=,求2m n +的值;(2)6a b -=,24130ab c c +-+=,求a b c ++的值.26.如图1.在平面直角坐标系中,一次函数323y x =-+的图象与x 轴,y 轴分别交于点A 和点C ,过点A 作AB x ⊥轴,垂足为点A ;过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AC 的长为______,ACO ∠=______度.(2)将图2中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图②,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC △与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.C解析:C【分析】由主视图、俯视图可知,俯视图最多可能为2×3的长方形,再在俯视图上各个位置,摆放小立方体,即可得到a和b的值.【详解】由主视图、左视图可知,俯视图最多可能为2×3的长方形,在相应位置摆放小立方体,直至最少,如图所示:a=,∴5在相应位置摆放小立方体,直至最多,如图所示:b=,∴10b a-=-=.∴1055故选:C.【点睛】本题考查了简单几何体的三视图的意义和画法,主视图反映的是几何体长与高的关系、左视图反映宽与高的关系,画三视图时还要注意“长对正、宽相等、高平齐”.5.B解析:B【分析】根据三视图解答即可.【详解】解:图1的三视图为:图2的三视图为:故选:B.【点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.D解析:D【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.7.D解析:D【分析】根据四边形ABCD是平行四边形,得到AD∥BC,AD=BC,证得△DEF∽△BCF,由点E是AD的中点,得到1122DE AD BC==,由此得到12DF DEBF BC==.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∵点E是AD的中点,∴1122DE AD BC ==, ∴12DF DE BF BC ==, 故选:D .【点睛】此题考查平行四边形的性质,相似三角形的判定及性质,熟记平行四边形的性质证得△DEF ∽△BCF 是解题的关键.8.C解析:C【分析】利用平行线分线段成比例以及相似三角形的性质一一判断即可.【详解】解: ∵DE ∥BC ,∴ADE ABC △△∽, ∴AD DE AB BC=,故选项A 错误,选项C 正确, ∵DF ∥AC , ∴BDF BAC △∽△, ∴BD DF AB AC =, ∴DF DE AC BC≠,故选项B 错误, ∵DE ∥BC ,DF ∥AC , ∴AD AE BD EC =,AD FC BD BF =, ∴AE FC EC BF=,故选项D 错误, ∴故选:C .【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是掌握相关知识点并能准确判断对应的比例线段.9.C解析:C【分析】根据三角形中位线的性质求解.【详解】解:由题意BC 是△ABC 的中位线,∴由中位线的性质可得:BC=2DE ,BC ∥DE ,∴A 正确,且∠ADE=∠B ,∠AED=∠C ,∴ΔADE ∼ΔABC ,且相似比=DE:BC=1:2,∴B 正确,S ΔABC =4S ΔADE ,且AD:AE=AB:AC ,∴D 正确,C 错误,故选C .【点睛】本题考查三角形中位线和三角形相似的综合应用,熟练掌握三角形中位线的性质及三角形相似的判定与性质是解题关键.10.C解析:C【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案.【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34. 故选:C .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.也考查了中心对称图形的定义. 11.A解析:A【分析】先依据一元二次方程的定义得到a 式的取值范围.【详解】解:∵a 是方程2210x x --=的一个根,∴2210a a --=,即221a a -=,∴原式=22(2)2a a -=+∵459, ∴23<<,∴425<+<,即224a a -+的值在4和5之间,故选:A .【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.12.C解析:C【分析】由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,证明AF=FD=CD ,继而证得①2BCD DCF ∠=∠;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),可得EF MF =,再证明90ECM ∠=︒,从而可判断②;由,CBE CEF S S =可得:13CBE ABCD S S =,可得:2,3BE AB =与已知不符,从而可判断③;设∠FEC=x ,则∠FCE=x ,再分别表示∠EFD=9018022703x x x ︒-+︒-=︒-,∠AEF=90,M FCM x ∠=∠=︒-从而可判断④.【详解】解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠BCD 2DCF =∠,故①正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故②正确;③∵EF=FM ,EFC CFM S S ∴=,若,CBE CEF SS = 则13CBE ABCD S S = 11,23BE EC AB EC ∴= 32,BE AB ∴=2,3BE AB ∴= 与已知条件不符, 故CBE CEFS S =不一定成立,故③错误; ④设∠FEC=x ,,EF CF =∴∠FCE=x ,∴∠DCF=∠DFC=90x ︒-,∠EFC=1802x ︒-,∴∠EFD=9018022703x x x ︒-+︒-=︒-,∵∠AEF=90,M FCM x ∠=∠=︒-∴∠DFE=3∠AEF ,故④正确.故选:C .【点睛】本题考查的是平行四边形的性质,三角形全等的判定与性质,平行线的性质,三角形的内角和定理,直角三角形斜边上的中线的性质,等腰三角形的性质,掌握以上知识是解题关键.二、填空题13.x <﹣2或x >0【分析】先求出y =﹣1时x 的值再由反比例函数的性质即可得出结论【详解】解:如图∵当y =﹣1时x =﹣2∴当函数值y >﹣1时x <﹣2或x >0故答案为:x <﹣2或x >0【点睛】本题考查的是解析:x <﹣2或x >0【分析】先求出y =﹣1时x 的值,再由反比例函数的性质即可得出结论.解:如图,∵当y =﹣1时,x =﹣2,∴当函数值y >﹣1时,x <﹣2或x >0.故答案为:x <﹣2或x >0.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 14.-3【分析】设点A(a0)点B(0b)由三角形面积公式可求ab=-12由中点坐标公式可求点M()代入解析式可求k 的值【详解】设点A(a0)点B(0b)∴OA=aOB=-b ∵△ABO 的面积为6∴a•(解析:-3【分析】设点A(a ,0),点B(0,b),由三角形面积公式可求ab=-12,由中点坐标公式可求点M(2a ,2b ),代入解析式可求k 的值. 【详解】设点A(a ,0),点B(0,b),∴OA=a ,OB=-b ,∵△ABO 的面积为6, ∴12a•(-b)=6, ∴ab=-12,∵点M 是AB 中点,∴点M(2a ,2b ), ∵点M 在双曲线()0k y k x=<上, ∴k=2a •2b =-3, 故答案为:-3.本题考查反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,掌握点在图象上,点的坐标满足图象解析式是本题的关键.15.12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可【详解】设旗杆高度为x米根据题意得:解得:x=12故答案为:12【点睛】考核知识点:相似三角形的应用理解相似三角形性质是关键解析:12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可.【详解】设旗杆高度为x米,根据题意得:1.5 162 x解得:x=12,故答案为:12.【点睛】考核知识点: 相似三角形的应用.理解相似三角形性质是关键.16.5【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】结合主视图和俯视图可知左边上层最多有2个左边下层最多有2个右边只有一层且只有解析:5【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17.【分析】根据相似三角形面积比等于相似比的平方即可求【详解】解:在平行四边形ABCD中AD∥BCAD=BC∵BE:EC=1:2∴BE:AD=1:3∵AD∥BC∴△BEF∽△DAF∴S△ADF:S△EB解析:【分析】根据相似三角形面积比等于相似比的平方即可求.【详解】解:在平行四边形ABCD 中,AD ∥BC,AD=BC ,∵BE :EC =1:2,∴BE:AD=1:3,∵AD ∥BC,∴△BEF ∽△DAF ,∴S △ADF :S △EBF =9,故答案为:9.【点睛】本题考查相似三角形的判定与性质,解题关键是熟练运用平行线可得三角形相似,面积比是相似比的平方等知识.18.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几 解析:15【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=, ∴它停在黑色区域的概率是15. 故答案为:15. 【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率. 19.【分析】把x=-2代入一元二次方程得到k 的一元二次方程解出k 的值即可【详解】一元二次方程的一个根是x=-2解得k=0或k≠0故答案为【点睛】本题考查的是一元二次方程的根即方程的解的定义逆用一元二次方 解析:12【分析】把x=-2代入一元二次方程220k x kx +=,得到k 的一元二次方程解出k 的值即可【详解】一元二次方程220k x kx +=的一个根是x=-2,∴ 2420k k -=解得k=0或12k= , k≠0∴12k = 故答案为12k =. 【点睛】本题考查的是一元二次方程的根即方程的解的定义,逆用一元二次方程解的定义易得出k 的值.20.3s 【分析】连接BD 易证△ADE ≌△BDF 即可推出AE =BF 列出方程即可解决问题【详解】连接BD 如图:∵四边形ABCD 是菱形∠A =60°∴AD =CD =BC =AB =18△ADB △BDC 都是等边三角形∴解析:3s【分析】连接BD .易证△ADE ≌△BDF ,即可推出AE =BF ,列出方程即可解决问题.【详解】连接BD .如图:∵四边形ABCD 是菱形,∠A =60°,∴AD =CD =BC =AB =18,△ADB ,△BDC 都是等边三角形,∴AD =BD ,∠ADB =∠DBF =60°,∵△DEF 是等边三角形,∴∠EDF =60°,∴∠ADB =∠EDF ,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,60A DBF AD BDADE BDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△BDF (ASA ),∴AE =BF ,∴2t =18−4t ,∴t =3,故答案为:3s .【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定与性质、一元一次方程等知识,解题的关键是利用全等三角形解决问题,属于中考常考题型.三、解答题21.(1)100y x=(05x <<,且x 为整数),1030y x =-(5x >且x 为整数);(2)第13个月;(3)5个月.【分析】(1)结合图像利用待定系数法求函数解析式;(2)把y=100代入y=10x-30即可得到结论; (3)对于100y x=,y=50时,得到x=2,得到x <2时,y <50,对于y=10x-30,当y=50时,得到x=8,于是得到结论.【详解】 解:(1)由题意得,设前5个月中y=k x , 把x=1,y=100代入得,k=100,∴y 与x 之间的函数关系式为y=100x(05x <<,且x 为整数), 把x=5代入,得y=20,由题意设5月份以后y 与x 的函数关系式为y=10x+b ,把x=5,y=20代入得,20=10×5+b ,解得:b=-30,∴y 与x 之间的函数关系式为y=10x-30(5x >且x 为整数);(2)在函数1030y x =-中,令100y =,得1030100x -=解得:13x =答:到第13个月时,该化工厂月利润再次达到100万元. (3)在函数100y x=中,当50y =时,2x =, ∵1000>,y 随x 的增大而减小, ∴当50y <时,2x >在函数1030y x =-中,当50y <时,得103050x -<解得:8x <∴28x <<且x 为整数;∴x 可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.【点睛】本题考查了反比例函数的应用,一次函数的应用,正确的理解题意是解题的关键.22.无23.(1)35;(2)图见解析,取格点M ,N ,连接MN ,与AC 相交于点P ,则点P 即为所求【分析】(1)根据勾股定理求出AB 的长,在利用平行线分线段成比例进行计算即可. (2)如图,取格点M ,N ,连接MN ,与AC 相交于点P ,则点P 即为所求.【详解】(1)如图:根据勾股定理得AB 22222425AE BE =+=+=//DF AE BF BD BE AB∴= 1425∴= 52BD ∴= AD AB BD =- 535522AD ∴== (2)ABC △APD ∽△,A A ∠=∠ AD AP AC AB∴= 223535,25AC AD AB ==== 352525∴= 3AP ∴=点P 在AC 上,5AC = 35AP AC ∴= 32AP PC ∴= 如图,取格点M 、N ,连接MN ,与AC 相交于点P ,则//,3,2AM CN AM CN ==32AM AP CN PC ∴== 故点P 即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、相似三角形的性质,平行线分线段成比例等知识,解题的关键是灵活运用所学知识解决问题.24.组成的两位数有:33,34,35,43,44,45,53,54,55;概率为13;树状图见解析.【分析】先利用树状图展示所有9种等可能的结果数,即组成的两位数为33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为8的两位数有35、44、53,然后根据概率的概念计算即可.【详解】解:画树状图如下:共有9种等可能的结果数,∴按这种方法能组成的两位数有33,34,35,43,44,45,53,54,55;∴十位上的数字与个位上的数字之和为8的两位数有35、44、53,∴P (十位与个位数字之和为8)=3193=. 【点睛】本题考查用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)23m n +=;(2)2a b c ++=.【分析】(1)将方程2222210m mn n n -+-+=的左边分组配方,再根据偶次方的非负性,可求得mn 、的值,最后代入2m n +即可解题; (2)由6a b -=整理得,6+a b =,代入已知等式中,利用完全平方公式化简,最后由偶次方的非负性解题即可【详解】解:(1)∵2222210m mn n n -+-+=∴()()2222210m mn nn n -++-+= ∴()()2210m n n -+-=∴()20m n -=,()210n -= ∴1n =,1m n ==∴22113m n +=⨯+=;(2)∵6a b -=,∴6a b =+∵24130ab c c +-+=2(6)4130b b c c ∴++-+=∴22(69)(44)0b b c c +++-+=∴()()22320b c ++-= ∴()230b +=,()220c -= ∴3b =-,2c =∴()633a =+-=∴()3322a b c ++=+-+=.【点睛】本题考查配方法的应用,涉及完全平方公式化简、偶次方的非负性,是重要考点,难度较易,掌握相关知识是解题关键.26.(1)4;30.(2)AD ;(3)M 点的坐标为(-2,,−【分析】(1)先确定出OA =2,OC AC =4,可得出答案;(2)利用折叠的性质得出BD =23-AD ,最后用勾股定理即可得出结论; (3)分不同的情况画出图形,根据全等三角形的性质可求出点M 的坐标. 【详解】解:(1)∵一次函数323y x =-+的图象与x 轴,y 轴分别交于点A ,点C , ∴令0x =,则23y =;0y =,则2x =,∴A (2,0),C (0,23),∴OA =2,OC =23,∵AB ⊥x 轴,CB ⊥y 轴,∠AOC =90°,∴四边形OABC 是矩形,∴AB =OC =8,BC =OA =4,在Rt △ABC 中,根据勾股定理得,22222(23)4AC OA OC =+=+=, ∴∠ACO =30°.故答案为:4;30.(2)由(1)知,BC =2,AB =23,由折叠知,CD =AD ,在Rt △BCD 中,BD =AB -AD =23-AD ,根据勾股定理得,CD 2=BC 2+BD 2,即:AD 2=4+(23-AD )2,∴AD =43; (3)①如图1,MN ⊥y 轴,若△AOC ≌△MNC ,则CN =CO ,∴M 点的纵坐标为3y 33x =-2,∴M (−2,3.②如图2,MN ⊥AC ,MP ⊥y 轴,∵23232MCN AOC S S ∆∆=== ∴CN =AC =4, ∴2323PM ⨯== ∴M 33y 3x 3得,y 3或y 3 ∴M 3−333).综合以上可得M 点的坐标为(-2,33−333【点睛】此题是一次函数综合题,主要考查了矩形的性质和判定,全等三角形的判定和性质,勾股定理,折叠的性质,解题的关键是利用分类讨论的思想解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省滕州市鲍沟中学2015年九年级数学上册期末模拟试题(一)
第I卷(选择题)
一、选择题
1.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()
A., B., C., D.
2.如图,正方形ABOC的边长为2,反比例函数y=的图象经过点A,则k 的值是()
A.2, B.-2, C.4, D.-4
3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()
A.2和3, B.3和2 , C.4和1, D.1和4
4.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是().
A、x<-1
B、x>2
C、-1<x<0或x>2
D、x<-1或0<x<2
5.已知二次函数的图象如图所示,则直线与反比例函数
,在同一坐标系内的大致图象为()
6.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为,则下列方程正确的是()
A.
B.
C.
D.
7.如图,直线和双曲线y=()交于A、B两点,P是线段AB上的点(不与A、B 重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC 的面积为、△BOD的面积为、△POE的面积为,则()
A.S1<s2<s3 B.S1>s2>s3
C.S1=s2<s3 D.S1=s2>s3
8.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是().
A., B.
C., D.
9.如图所示的几何体的三种视图是().
10.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()
A.P4, B.P3, C.P2, D.P1
11.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是().
A.45°, B.35°, C.22.5°, D.15.5°
12.二次函数的图像上有两点P1(x1,y1),P2(x2,y2),当0<x1 <x2 时, 则y1 ,y2 的大小关系是()
A.y1 >y2, B.y1<y2 <0, C.y1>y2>0,, D.y1<y2
第II卷(非选择题)
二、填空题
13.小明身高1. 8 m ,王鹏身高1.50 m ,他们在同一时刻站在阳光下,小明影子长为1.20 m ,
则王鹏的影长为 m.
14.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是.
15.如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么cos∠EFC值是.
16.如图,点B1在反比例函数y=(x>0)的图象上,过点B1分别作x轴和y轴的垂线,
垂足为C1和A,得到第一个矩形AOC1B1,点C1的坐标为(1,0);取x轴上一点C2(,0),过点C2作x轴的垂线交反比例函数图象于点B2,过B2作线段B2 A1⊥B1C1,,交B1C1于点A1,
得到第二个矩形A1C1C2B2;依次在x轴上取点C3(2,0),C4(,0)按此规律作矩形,则第10个矩形A9C9C10B10的面积为.
17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.
18.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.
三、解答题
19.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图,根据题中相关信息回答下列问题:
(1)求爆炸前与爆炸后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
20.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出与之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
21.(本小题满分6分)
如图,九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆
的水平距离,人的眼睛与地面的高度,人与标杆的水平距离
,人的
眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆的高度.
22.(本小题满分6分)如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B 处有一艘渔船遇
险,在原地等待营救.该中心立即把消息告知在其北偏东30°且距离A点20海里的C处救生船,此时,遇险船在救生船的正东方向B处,现救生船沿着航线CB前往B处救援,求救生船到达B处行驶的距离?(参考数据:sin68°≈0.90,cos68°≈0.36,tan68°≈2.50,
≈1.7)
23.(本小题满分8分)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.
(1)判断四边形OCED的形状,并进行证明;
(2)点E是否在AB的垂直平分线上?若在,请进行证明;若不在,请说明理由.
24.(本小题满分12分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M从点C出发,以每秒1cm的速度沿CA向终点A移动,同时动点P从点A出发,以每秒2cm的速度沿AB向终点B移动,连接PM,设移动时间为t(s)(0<t<2.5).
(1)当AP=AM时,求t的值.
(2)设四边形BPMC的面积为(cm²),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使四边形BPMC的面积是Rt△ABC面积的?若存在,求出相应
t的值,若不存在,说明理由;
(4)是否存在某一时刻t,使以M,P,A为顶点的三角形与△ABC相似?若存在,求出相应t的值;若不存在,说明理由.
25.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.。

相关文档
最新文档