九年纪下册数学经典教案 平行线分线段成比例相识三角形(4个课时)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.1 相似三角形的判定
第1课时平行线分线段成比例
1.了解相似比的定义;(重点)
2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)
3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)
一、情境导入
如图,在△ABC中,D为边AB上任一点,作DE∥BC,交边AC于E,用刻度尺和量角器量一量,判断△ADE与△ABC是否相似.
二、合作探究
探究点一:相似三角形的有关概念
如图所示,已知△OAC∽△OBD,且OA=4,AC=2,OB=2,∠C=∠D,求:
(1)△OAC和△OBD的相似比;
(2)BD的长.
解析:(1)由△OAC∽△OBD及∠C=∠D,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD的长.解:(1)∵△OAC∽△OBD,∠C=∠D,∴线段OA与线段OB是对应边,则△
OAC与△OBD的相似比为OA
OB
=
4
2
=
2
1
;
(2)∵△OAC∽△OBD,∴AC
BD
=
OA
OB
,∴BD=
AC·OB
OA
=
2×2
4
=1.
方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
探究点二:平行线分线段成比例定理
【类型一】平行线分线段成比例的基本事实
如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、
E 、
F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.
(1)求CB AB
的值; (2)求AB 的长.
解析:(1)根据l 1∥l 2∥l 3推出CB AB =
EF DE ;(2)根据l 1∥l 2∥l 3,推出EF DF =BC AC =58,代入AC =24求出BC 即可求出AB .
解:(1)∵l 1∥l 2∥l 3,∴CB AB =
EF DE .又∵DF ∶DF =5∶8,∴EF ∶DE =5∶3,∴CB AB =53
; (2)∵l 1∥l 2∥l 3,EF ∶DF =5∶8,AC =24,∴EF DF =BC AC =58
,∴BC =15,∴AB =AC -BC =24-15=9.
方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置.
变式训练:见《学练优》本课时练习“课堂达标训练” 第3题
【类型二】 平行线分线段成比例的基本事实的推论
如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.
解析:根据DE ∥BC 得到AD AB =AE AC
,然后根据比例的性质可计算出AE 的长. 解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5,∴AE =107
. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
探究点三:相似三角形的引理
【类型一】 利用相似三角形的引理判定三角形相似 如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.
解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.
解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.
方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序. 变式训练:见《学练优》本课时练习“课堂达标训练”第5题
【类型二】 利用相似三角形的引理求线段的长
如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O .
(1)如果CE =3,EB =9,DF =2,求AD 的长;
(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.
解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD 推知EF 与CD 之间的数量关系,从而求得CD =10.5.
解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB .又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23
,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;
(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵
EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74
EF =10.5,即CD 的长是10.5.
方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
三、板书设计
1.相似三角形的定义及有关概念;
2.平行线分线段成比例定理及推论;
3.相似三角形的引理.
本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.
第2课时 三边成比例的两个三角形相似
1.理解“三边成比例的两个三角形相似”的判定方法;(重点)
2.会运用“三边成比例的两个三角形相似”的判定方法解决简单问题.
一、情境导入
我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?
在如图所示的方格上任画一个三角形,再画第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?
二、合作探究
探究点:三边对应成比例的两个三角形相似
【类型一】 直接利用定理判定两个三角形相似
在Rt Rt △EDF 中,∠F =90°,DF =3,EF =4,则△ABC 和△EDF 相似吗?为什么?
解析:已知△ABC 和△EDF 都是直角三角形,且已知两条边长,所以可利用勾股定理分别求出第三边的长,看对应边是否对应成比例.
解:△ABC ∽△EDF .在Rt △ABC 中,AB =10,BC =6,∠C =90°,由勾股定理得AC =AB 2-BC 2=102-62=8.在Rt △DEF 中,DF =3,EF =4,∠F =90°,由勾股定理得ED =DF 2+EF 2=32+42
=5.在△ABC 和△EDF 中,BC DF =63=2,AC EF =84=2,AB ED =105=2,所以BC DF =AC EF =AB ED
,所以△ABC ∽△EDF . 方法总结:利用三边对应成比例判定两个三角形相似时,应说明三角形的三
边对应成比例,而不是两边对应成比例.变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型二】网格中的相似三角形
ABC和△DEF的顶点都在格点上,判断△ABC和△DEF是否相似,并说明理由.
解析:首先由勾股定理,求得△ABC和△DEF的各边的长,即可得AB
DE
=
AC
DF
=
BC
EF
,
然后由三组对应边的比相等的两个三角形相似,即可判定△ABC和△DEF相似.解:△ABC和△DEF相似.由勾股定理,得AB=25,AC=5,BC=5,DE
=4,DF=2,EF=25,∵AB
DE
=
AC
DF
=
BC
EF
=
25
4
=
5
2
,∴△ABC∽△DEF.
方法总结:在网格中计算线段的长,运用勾股定理是常用的方法.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】利用相似三角形证明角相等
如图,已知AB
AD
=
BC
DE
=
AC
AE
,找出图中相等的角,并说明你的理由.
解析:由AB
AD
=
BC
DE
=
AC
AE
,证明△ABC∽△ADE,再利用相似三角形对应角相等求
解.
解:在△ABC和△ADE中,∵AB
AD
=
BC
DE
=
AC
AE
,∴△ABC∽△ADE,∴∠BAC=∠
DAE,∠B=∠D,∠C=∠E.
方法总结:在证明角相等时,可通过证明三角形相似得到.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
【类型四】利用相似三角形的判定证明线段的平行关系
AB=14千米,AD=28千米,BD=21千米,BC=42千米,DC=31.5千米,公路AB与CD平行吗?说出你的理由.
解析:由图中已知线段的长度,可求两个三角形的对应线段的比,证明三角形相似,得出角相等,通过角相等证明线段的平行关系.
解:公路AB与CD平行.∵AB
BD
=
14
21
=
2
3
,
AD
BC
=
28
42
=
2
3
,
BD
DC
=
21
31.5
=
2
3
,∴△ABD
∽△BDC,∴∠ABD=∠BDC,∴AB∥DC.
方法总结:如果在已知条件中边的数量关系较多时,可考虑使用“三边对应成比例,两三角形相似”的判定方法.
【类型五】利用相似三角形的判定解决探究性问题
别为50cm,60cm,80cm,另一个三角形教具的一边长为20cm,请问怎样选料可使这两个三角形教具相似?想想看,有几种解决方案.
解析:要使两个三角形相似,已知一个三角形的三边和另一个三角形的一边,则我们可以采用三边分别对应成比例的两个三角形相似来判定.
解:①当长为20cm的边长的对应边为50cm时,∵50∶20=5∶2,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:20cm,24cm,32cm;②当长为20cm的边长的对应边为60cm时,∵60∶20=3∶1,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三
角形对应的三边分别为:50
3
cm,20cm,
80
3
cm;③当长为20cm的边长的对应边为
80cm时,∵80∶20=4∶1,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:12.5cm,15cm,20cm.∴有三种解决方案.
方法总结:解答此题的关键在于分类讨论,当对应比不确定时,采用分类讨论的方法可避免漏解.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.三角形相似的判定定理:
三边对应成比例的两个三角形相似;
2.利用相似三角形的判定解决问题.
因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.从课后作业情况看出学生对这节课的知识总体掌握得较好.
第3课时两边成比例且夹角相等的两个三角形相似
1.理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)
2.会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)
一、情境导入
利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?
二、合作探究
探究点:两边成比例且夹角相等的两个三角形相似
【类型一】 直接利用判定定理判定两个三角形相似
分别是AB 、CB 延长线上的点,CE =9,AD =15,连接DE .若BC =6,AC =8,求证:△ABC ∽△DBE .
解析:首先利用勾股定理可求出AB 的长,再由已知条件可求出DB ,进而可得到DB ∶AB 的值,再计算出EB ∶BC 的值,继而可判定△ABC ∽△DBE .
证明:∵在Rt △ABC 中,∠C =90°,BC =6,AC =8,∴AB =BC 2+AC 2=10,∴DB =AD -AB =15-10=5,∴DB ∶AB =1∶2.又∵EB =CE -BC =9-6=3,∴EB ∶BC =1∶2,∴EB ∶BC =DB ∶AB ,又∵∠DBE =∠ABC =90°,∴△ABC ∽△DBE .
方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等.
变式训练:见《学练优》本课时练习“课堂达标训练” 第2题
【类型二】 添加条件使三角形相似
如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为________时,△ADP 和△ABC 相似.
解析:当△ADP ∽△ACB 时,AP AB =AD AC ,∴AP 12=68
,解得AP =9.当△ADP ∽△ABC 时,AD AB =AP AC ,∴612=AP 8
,解得AP =4,∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故答案为4或9.
方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条
件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答.
变式训练:见《学练优》本课时练习“课堂达标训练” 第5题
【类型三】 利用三角形相似证明等积式
如图,E 为BC 的中点,ED 的延长线交CA 的延长线于F .求证:AC ·CF =BC ·DF .
解析:先证明△ADC ∽△CDB 可得AD CD =AC BC
,再结合条件证明△FDC ∽△FAD ,可得AD CD =DF CF
,则可证得结论. 证明:∵∠ACB =90°,CD ⊥AB ,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠
DAC =∠DCB ,且∠ADC =∠CDB ,∴△ADC ∽△CDB ,∴AD CD =AC BC
.∵E 为BC 的中点,CD ⊥AB ,∴DE =CE ,∴∠EDC =∠DCE ,∵∠EDC +∠FDA =∠ECD +∠ACD ,∴∠FCD =∠FDA ,又∠F =∠F ,∴△FDC ∽△FAD ,∴DF CF =AD DC ,∴AC BC =DF CF
,∴AC ·CF =BC ·DF . 方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式.
【类型四】 利用相似三角形的判定进行计算
,BE 与CD 相交于点A ,若AC =3,BC =4,AE =2,求CD 的长.
解析:因为AC =3,所以只需求出AD 即可求出CD .可证明△ABC 与△ADE 相似,再利用相似三角形对应边成比例即可求出AD .
解:在Rt △ABC 中,由勾股定理可得AB =BC 2+AC 2=42+32=5.∵BC ⊥CD ,BE ⊥DE ,∴∠C =∠E ,又∵∠CAB =∠EAD ,∴△ABC ∽△ADE ,∴AB AD =AC AE ,即5AD
=32,解得AD =103,∴CD =AD +AC =103+3=193.
方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
【类型五】 利用相似三角形的判定解决动点问题
-3AB =0,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,与此同时点Q 从C 出发,沿CA 方向以1cm/s 的速度移动,经过多长时间△ABC 和△PQC 相似?
解析:由AC 与AB 的关系,设出AC =3x cm ,AB =5x cm ,在直角三角形ABC 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,进而得到AB 与AC 的长.然后设出动点运动的时间为t s ,根据相应的速度分别表示出PC 与CQ 的长,由△ABC 和△PQC 相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t 的方程,求出方程的解即可得到t 的值,从而得到所有满足题意的时间t 的值.
解:由5AC -3AB =0,得到5AC =3AB ,设AB 为5x cm ,则AC =3x cm ,在Rt △ABC 中,由BC =8cm ,根据勾股定理得25x 2=9x 2+64,解得x =2或x =-2(舍去),∴AB =5x =10cm ,AC =3x =6cm.设经过t 秒△ABC 和△PQC 相似,则有BP =2t cm ,PC =(8-2t )cm ,CQ =t cm ,分两种情况:①当△ABC ∽△PQC 时,有BC QC =AC PC ,即8t =68-2t ,解得t =3211;②当△ABC ∽△QPC 时,有AC QC =BC PC ,即6t =88-2t ,解得t =125.综上可知,经过125或3211
秒△ABC 和△PQC 相似. 方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC ∽△PQC 与△ABC ∽△QPC 分别列出比例式来解决问题.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
三、板书设计
1.三角形相似的判定定理:
两边成比例且夹角相等的两个三角形相似;
2.应用判定定理解决简单的问题.
本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态.采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程.在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等
数学思想.
第4课时两角分别相等的两个三角形相似
1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)
2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)
一、情境导入
与同伴合作,一人画△ABC,另一人画△A′B′C′,使得∠A和∠A′都等于给定的∠α,∠B和∠B′都等于给定的∠β,比较你们画的两个三角形,∠C
与∠C′相等吗?对应边的比
AB
A′B′
,
AC
A′C′
,
BC
B′C′
相等吗?这样的两个三角
形相似吗?和同学们交流.
二、合作探究
探究点:两角分别相等的两个三角形相似
【类型一】利用判定定理证明两个三角形相似
如图,在等边△ABC中,D为BC边上一点,E为AB边上一点,且∠ADE =60°.
(1)求证:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的边长.
解析:(1)由题有∠B=∠C=60°,利用三角形外角的知识得出∠BAD=∠CDE,即可证明△ABD∽△DCE;(2)根据△ABD∽△DCE,列出比例式,即可求出△ABC 的边长.
(1)证明:在△ABD中,∠ADC=∠B+∠BAD,又∠ADC=∠ADE+∠EDC,而∠B=∠ADE=60°,∴∠BAD=∠CDE.在△ABD和△DCE中,∠BAD=∠CDE,∠B =∠C=60°,∴△ABD∽△DCE;
(2)解:设AB=x,则DC=x-3,由△ABD∽△DCE,∴AB
DC
=
BD
DE
,∴
x
x-3
=
3
2
,
∴x=9.即等边△ABC的边长为9.
方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.
变式训练:见《学练优》本课时练习“课堂达标训练” 第5题
【类型二】 添加条件证明三角形相似
如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ∽△AED 成立,还需要添加一个条件为____________.
解析:∵∠ABC =∠AED ,∠A =∠A ,∴△ABC ∽△AED ,故添加条件∠ABC =
∠AED 即可求得△ABC ∽△AED .同理可得∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB
可以得出△ABC ∽△AED .故答案为∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB
. 方法总结:熟练掌握相似三角形的各种判定方法是解题关键.
变式训练:见《学练优》本课时练习“课堂达标训练” 第3题
【类型三】 相似三角形与圆的综合应用
如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D ,交AE 于点G ,
弦CE 交AB 于点F ,求证:AC 2=AG ·AE .
解析:延长CG ,交⊙O 于点M ,连接AM ,根据圆周角定理,可证明∠ACG =∠E ,根据相似三角形的判定定理,可证明△CAG ∽△EAC ,根据相似三角形对应边成比例,可得出结论.
证明:延长CG ,交⊙O 于点M ,连接AM ,∵AB ⊥CM ,∴AC ︵=AM ︵,∴∠ACG =
∠E ,又∵∠CAG =∠EAC ,∴△CAG ∽△EAC ,∴AC AE =AG AC
,∴AC 2=AG ·AE . 方法总结:相似三角形与圆的知识综合时,往往要用到圆的一些性质寻找角的等量关系证明三角形相似.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题
【类型四】 相似三角形与四边形知识的综合
如图,在▱ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连接AE ,F 为AE 上一点,且∠BFE =∠C .若AB =8,BE =6,AD =7,求BF 的长.
解析:可通过证明∠BAF =∠AED ,∠AFB =∠D ,证得△ABF ∽△EAD ,可得出关于AB ,AE ,AD ,BF 的比例关系.已知AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,进而求出BF 的长.
解:在平行四边形ABCD 中,∵AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .∵BE ⊥CD ,AB ∥CD ,∴BE ⊥AB ,∴∠ABE =90°,∴AE =AB 2+BE 2=82+62=10.∵△ABF ∽△EAD ,∴BF AD =AB AE ,∴BF 7=810
,∴BF =5.6. 方法总结:相似三角形与四边形知识综合时,往往要用到平行四边形的一些性质寻找角的等量关系证明三角形相似.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
【类型五】 相似三角形与二次函数的综合
如图,在△ABC 中,∠C =90°,BC =5m ,AB =10m.M 点在线段CA 上,从C 向A 运动,速度为1m/s ;同时N 点在线段AB 上,从A 向B 运动,速度为2m/s.运动时间为t s.
(1)当t 为何值时,△AMN 的面积为6m 2?
(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.
解析:(1)作NH ⊥AC 于H ,证得△ANH ∽△ABC ,从而得到比例式,然后用t 表示出NH ,根据△AMN 的面积为6m 2,得到关于t 的方程求得t 值即可;(2)根据三角形的面积计算得到有关t 的二次函数求最值即可.
解:(1)在Rt △ABC 中,∵AB 2=BC 2+AC 2,∴AC =53m.如图,作NH ⊥AC 于H ,∴∠NHA =∠C =90°,∵∠A 是公共角,∴△NHA ∽△BCA ,∴AN AB =NH BC ,即2t 10
=NH 5,∴NH =t ,∴S △AMN = 12
t (53-t )=6,解得t 1=3,t 2=43(舍去),故当t 为3秒时,△AMN 的面积为6m 2.
(2)S△AMN=1
2
t(53-t)=-
1
2
(t2-53t+
75
4
)+
75
2
=-
1
2
(t-
53
2
)2+
75
2
,∴
当t=53
2
时,S最大值=
75
2
m2.
方法总结:解题的关键是根据证得的相似三角形得到比例式,从而解决问题.
三、板书设计
1.三角形相似的判定定理:
两角分别相等的两个三角形相似;
2.应用判定定理解决简单的问题.
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,教学过程中鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.备课时应多考虑学生学法的突破,教学时只在关键处点拨,在不足时补充.与学生平等地交流,创设民主、和谐的学习氛围.。