人教版八年级初二数学下学期勾股定理单元测试提优卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级初二数学下学期勾股定理单元测试提优卷
一、选择题
1.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )
A .254cm
B .152cm
C .7cm
D .132
cm 2.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++
B .2d S d --
C .22d S d ++
D .()
22d S d ++ 3.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )
A .3cm
B .14cm
C .5cm
D .4cm
4.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )
A .3
B .3.3
C .4
D .4.5 5.已知x ,y 为正数,且224(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角
三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )
A .5
B .25
C .7
D .15
6.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )
A .4
B .16
C .34
D .4或34
7.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )
A .3
B .5
C .4或5
D .3或51
8.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( )
A .6
B .8
C .10
D .12 9.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠B=∠C
B .∠A :∠B :∠C=1:3:2
C .a=2,b=3,c=4
D .(b+c)(b-c)=a²
10.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( )
A .0.6米
B .0.7米
C .0.8米
D .0.9米
二、填空题
11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.
12.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .
13.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)
①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).
14.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.
15.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.
16.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.
17.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.
18.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)
①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°
19.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.
20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.
三、解答题
21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .
()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;
()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12
BE CF AB +=.
()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.
22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
23.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
24.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?
分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.
感悟与应用:
(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;
(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,
①求证:180B D ∠+∠=︒;
②求AB 的长.
25.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .
(1)判断AE 与BD 的数量关系和位置关系;并说明理由.
(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.
26.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°
(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF
①求证:△AED ≌△AFD ;
②当BE =3,CE =7时,求DE 的长;
(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.
27.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).
(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;
(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;
(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.
28.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.
(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);
(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.
29.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…
(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;
(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.
30.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .
(1)如图1,求∠BGD 的度数;
(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;
(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =3ABCD 的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.
【详解】
∵四边形ABCD 是长方形,
∴∠B=∠D=900,BC=AD,
由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD
又∵∠CFE=∠AFD
∴△CFE≌△AFD
∴EF=DF
设AF=xcm ,则DF=(8-x )cm
在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm ,
222(8)6x x =-+
254
x cm = 故选择A.
【点睛】
此题是翻折问题,利用勾股定理求线段的长度.
2.D
解析:D
【解析】
【分析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
【详解】
解:设直角三角形的两条直角边分别为x 、y ,
∵斜边上的中线为d ,
∴斜边长为2d ,由勾股定理得,x 2+y 2=4d 2,
∵直角三角形的面积为S , ∴12
S xy =,则2xy=4S ,即(x+y )2=4d 2+4S ,
∴x y +=
∴这个三角形周长为:)
2
d ,故选:D. 【点睛】
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 3.B
解析:B
【解析】
【分析】
先求出S A 、S B 、S C 的值,再根据勾股定理的几何意义求出D 的面积,从而求出正方形D 的边长.
【详解】
解∵S A =6×6=36cm 2,S B =5×5=25cm 2,Sc=5×5=25cm 2,
又∵1010A B C D S S S S +++=⨯ ,
∴36+25+25+S D =100,
∴S D =14,
∴正方形D
故选:B.
【点睛】
本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.
4.A
解析:A
【分析】
根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.
【详解】
解:∵点D 在线段AB 的垂直平分线上,
∴DA =DB ,
在Rt △BCD 中,BC 2+CD 2=BD 2,即42+(8﹣BD )2=BD 2,
解得,BD =5,
∴CD =8﹣5=3,
∴△BCD 的面积=12×CD ×BC =12
×3×4=6, ∵P 是BD 的中点,
∴S △PBC =12
S △BCD =3, 故选:A .
【点睛】
本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
5.C
解析:C
【分析】
本题可根据两个非负数相加和为0,则这两个非负数的值均为0解出x 、y 的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.
【详解】
依题意得:2240,30x y -=-=, ∴2,x y ==,
斜边长==
所以正方形的面积27==.
故选C .
考点:本题综合考查了勾股定理与非负数的性质
点评:解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.
6.D
解析:D
【解析】
试题解析:当3和5
当5.
故选D .
7.C
解析:C
【分析】
设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.
【详解】
解:∵在△ABC 中,AC =AM =3,
设AB =x ,BC =9-x ,
由三角形两边之和大于第三边得:
3939x x x x +-⎧⎨+-⎩
>>, 解得3<x <6,
①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,
②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,
③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,
∴x =5或x =4;
故选C .
【点睛】
本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.
8.D
解析:D
【分析】
此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.
【详解】
当5和13
当13
12=;
故这个三角形的第三条边可以是12.
故选:D .
【点睛】
本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
9.C
解析:C
【分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.
【详解】
A 、∠A+∠
B =∠
C ,可得∠C =90°,是直角三角形,错误;
B 、∠A :∠B :∠
C =1:3:2,可得∠B =90°,是直角三角形,错误;
C 、∵22+32≠42,故不能判定是直角三角形,正确;
D 、∵(b+c )(b ﹣c )=a 2,∴b 2﹣c 2=a 2,即a 2+c 2=b 2,故是直角三角形,错误; 故选C .
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
10.B
解析:B
【解析】
试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理得:梯脚与墙角距离:222.5 2.4 =0.7(米). 故选B .
二、填空题
11.8
【解析】
如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于
的最小值
作交于,则为所求; 设,,
由,,
h+5=8,即BM+MN 的最小值是8.
点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M 点与N 点的位置是解题的关键. 12.
【解析】 试题分析:作点B 关于AC 的对称点B′,过B′点作B′D ⊥AB 于D ,交AC 于E ,
连接AB′、BE ,则BE+ED=B′E+ED=B′D 的值最小.∵点B 关于AC 的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt △ABC 中,∠ACB=90°,AC=12,BC=5,∴22AC BC +,∵S △ABB′=12•AB•B′D=12•BB′•AC ,∴B′D=B 10121201313B AC AB '⋅⨯==,∴BE+ED= B′D=12013. 考点:轴对称-最短路线问题.
13.①③
【分析】
①由已知条件证明DAB ≌EAC 即可;
②由①可得∠ABD=∠ACE<45°,∠DCB>45°;
③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.
【详解】
解:∵∠DAE =∠BAC =90°,
∴∠DAB =∠EAC ,
∵AD =AE ,AB =AC ,
∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,
AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩
===, ∴DAB ≌EAC ,
∴BD =CE ,∠ABD =∠ECA ,故①正确;
由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;
∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,
∴∠CEB =90°,即CE ⊥BD ,故③正确;
∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.
故答案为:①③.
【点睛】
本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.
14.(21009,0).
【分析】
根据等腰直角三角形的性质得到OA 1=1,OA 2=
1,OA 3=2,
OA 4=3,…OA 2019=2018
,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的
正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.
【详解】
∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,
∴OA 1=1,OA 2,OA 3=)2,…,OA 2019=)2018,
∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,
∴2019÷8=252…3,
∴点A 2019在x 轴正半轴上.
∵OA 2019=)2018,
∴点A 2019的坐标为(2018,0)即(21009,0).
故答案为:(21009,0).
【点睛】
本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征.
15.
【分析】
延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直
角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ∆中
求出2CE CD ==12DE ==,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.
【详解】
解:如图,延长CA 、DB 交于点E ,
∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,
∴60C ∠=°,
∴30E ∠=︒,
在Rt ABE ∆中,4AB =,30E ∠=︒,
∴28BE AB ==,
AE ∴=.
在Rt DEC ∆中,30E ∠=︒,CD =
2CE CD ∴==
12DE ∴=,
∴1443832ABE S ∆=⨯⨯=, 143122432
CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.
故答案为:163.
【点睛】
本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.
16.23或2
【分析】
先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.
【详解】
在Rt ABC 中,90,30,2C A BC ∠=∠==,
∴AB=2BC=4,
∴22224223AC AB BC =-=-=,
当AC 为腰时,则该三角形的腰长为23;
当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,
设DE=x ,则AD=2x ,
∵222AE DE AD +=,
∴222(3)(2)x x +=
∴x=1(负值舍去),
∴腰长AD=2x=2,
故答案为:2
3或2
【点睛】
此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.
17.21
【分析】
在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.
【详解】
如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,
∵AC 平分∠BAD ,
∴∠DAC=∠EAC .
在△AEC 和△ADC 中,
AE AD DAC EAC
AC AC ⎧⎪∠∠⎨⎪⎩===
∴△ADC ≌△AEC (SAS ),
∴AE=AD=9,CE=CD=BC =10,
又∵CF ⊥AB ,
∴EF=BF ,
设EF=BF=x .
∵在Rt △CFB 中,∠CFB=90°,
∴CF 2=CB 2-BF 2=102-x 2,
∵在Rt △CFA 中,∠CFA=90°,
∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,
∴x=6,
∴AB=AE+EF+FB=9+6+6=21,
∴AB 的长为21.
故答案是:21.
【点睛】
考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.
【解析】
【详解】
解:∵△ABC 是等边三角形,
60ABC ∴∠=,
∵△BQC ≌△BPA ,
∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,
60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,
∴△BPQ 是等边三角形,①正确.
∴PQ =BP =4,
2222224325,525PQ QC PC +=+===,
222PQ QC PC ∴+=,
90PQC ∴∠=,即△PQC 是直角三角形,②正确.
∵△BPQ 是等边三角形,
60PBQ BQP ∴∠=∠=,
∵△BQC ≌△BPA ,
∴∠APB =∠B QC ,
6090150BPA BQC ∴∠=∠=+=,③正确.
36015060150APC QPC QPC ∴∠=---∠=-∠,
90PQC PQ QC ∠=≠,,
45QPC ∴∠≠,
即135APC ∠≠,④错误.
故答案为①②③.
19.169
【解析】
解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;
∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即
∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.
点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.
20.3315
根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可.
【详解】
解:如图
∵∠B=90°,∠A=30°,
∴BC=12AC=12
×8=4, 由勾股定理得,22228443AC BC -=-=
43333AD ∴==
当点P 在AC 上时,∠A=30°,AP=2PD ,
∴∠ADP=90°,
则AD 2+PD 2=AP 2,即(32=(2PD )2-PD 2,
解得,PD=3,
当点P 在AB 上时,AP=2PD ,3
∴3
当点P 在BC 上时,AP=2PD ,
设PD=x ,则AP=2x ,
由勾股定理得,BP 2=PD 2-BD 2=x 2-3,
()(22223
3x x ∴-=-
解得,15 故答案为:3315
【点睛】
本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.
三、解答题
21.(1)BE =1;(2)见解析;(3)(23y x =
【分析】
(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得
∠BDE=30°,然后根据30°角的直角三角形的性质即可求出结果;
(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,根据AAS易证△MBD≌△NCD,则有BM=CN,DM=DN,进而可根据ASA证明△EMD≌△FND,可得EM=FN,再根据线段的和差即可推出结论;
(3)过点D作DM⊥AB于M,如图3,同(2)的方法和已知条件可得DM=DN=FN=EM,然后根据线段的和差关系可得BE+CF=2DM,BE﹣CF=2BM,在Rt△BMD中,根据30°角的直角三角形的性质可得DM=3BM,进而可得BE+CF=3(BE﹣CF),代入x、y后整理即得结果.
【详解】
解:(1)如图1,∵△ABC是等边三角形,
∴∠B=∠C=60°,BC=AC=AB=4.
∵点D是线段BC的中点,
∴BD=DC=1
2
BC=2.
∵DF⊥AC,即∠AFD=90°,
∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,
∴BE=1
2
BD=1;
(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.
∵∠A=60°,
∴∠MDN=360°﹣60°﹣90°﹣90°=120°.
∵∠EDF=120°,
∴∠MDE=∠NDF.
在△MBD和△NCD中,
∵∠BMD=∠CND,∠B=∠C,BD=CD,
∴△MBD≌△NCD(AAS),
∴BM=CN,DM=DN.
在△EMD和△FND中,
∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,
∴△EMD≌△FND(ASA),
∴EM=FN,
∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12
AB ;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .
∵DN =FN ,
∴DM =DN =FN =EM ,
∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,
BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,
在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,
∴DM =22=3BD BM BM -,
∴()3x y x y +=-,整理,得()
23y x =-.
【点睛】
本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.
22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米
【解析】
试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;
(2)构建直角三角形,然后根据购股定理列方程求解即可.
试题解析:(1)如图,∵AB=25米,BE=7米,
梯子距离地面的高度22257-米.
答:此时梯子顶端离地面24米;
(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22
CD CE
-22
2520
-,
∴DE=15﹣7=8(米),即下端滑行了8米.
答:梯子底端将向左滑动了8米.
23.(1)42
3
;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,
6
【分析】
(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;
(2)先根据绝对值,偶次方、算术平方根的非负性求出a、b、c的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.
【详解】
解:(1)
1
31224823
3
⎛
÷
⎝
=
2
(63343)23
3
÷
=
28
(3)(23) 3
÷
=42
3
;
(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,理由是:
∵a、b、c满足2
|a2332b(c30)0
-+-=,
∴a﹣3=0,2﹣b=0,c300,
∴a=3,b=2,c30
∵32303302,3302,
∴以a、b、c为边能组成三角形,
∵a=3,b=2,c30
∴a2+b2=c2,
∴以a、b、c为边能构成直角三角形,直角边是a和b,
则此三角形的面积是1
2332
2
⨯⨯=36.
【点睛】
此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.
24.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14
【分析】
(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;
(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;
②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.
【详解】
解:(1)BC−AC=AD.
理由如下:如图(a),在CB上截取CE=CA,连接DE,
∵CD平分∠ACB,
∴∠ACD=∠ECD,
又CD=CD,
∴△ACD≌△ECD(SAS),
∴DE=DA,∠A=∠CED=60°,
∴∠CED=2∠CBA,
∵∠CED=∠CBA+∠BDE,
∴∠CBA=∠BDE,
∴DE=BE,
∴AD=BE,
∵BE=BC−CE=BC−AC,
∴BC−AC=AD.
(2)①如图(b),在AB上截取AM=AD,连接CM,
∵AC平分∠DAB,
∴∠DAC=∠MAC,
∵AC=AC,
∴△ADC ≌△AMC (SAS ),
∴∠D =∠AMC ,CD =CM =12,
∵CD =BC =12,
∴CM =CB ,
∴∠B =∠CMB ,
∵∠CMB +∠CMA =180°,
∴∠B +∠D =180°;
②设BN =a ,
过点C 作CN ⊥AB 于点N ,
∵CB =CM =12,
∴BN =MN =a ,
在Rt △BCN 中,2222212CN BC BN a --==,
在Rt △ACN 中,2222216(8)CN AC AN a --+==
, 则2222
1216(8)a a --+=
, 解得:a =3,
即BN =MN =3,
则AB =8+3+3=14,
∴AB=14.
【点睛】
本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.
25.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析
【分析】
(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.
【详解】
解:(1)AE=BD ,AE ⊥BD ,
理由如下:∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠EAC=∠DBC=45°,
∴∠EAC+∠CAB=90°,
∴AE ⊥BD ;
(2)∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6;
(3)如图3,若点D 在AB 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6;
如图4,若点D 在BA 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6.
【点睛】
本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.
26.(1)①见解析;②DE =
297
;(2)DE 的值为517 【分析】
(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;
(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.
【详解】
(1)①如图1中,
∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,
∴△BAE ≌△CAF ,
∴AE =AF ,∠BAE =∠CAF ,
∵∠BAC =90°,∠EAD =45°,
∴∠CAD +∠BAE =∠CAD +∠CAF =45°,
∴∠DAE =∠DAF ,
∵DA =DA ,AE =AF ,
∴△AED ≌△AFD (SAS );
②如图1中,设DE =x ,则CD =7﹣x .
∵AB =AC ,∠BAC =90°,
∴∠B =∠ACB =45°,
∵∠ABE =∠ACF =45°,
∴∠DCF=90°,
∵△AED≌△AFD(SAS),
∴DE=DF=x,
∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,
∴x=29
7
,
∴DE=29
7
;
(2)∵BD=3,BC=9,
∴分两种情况如下:
①当点E在线段BC上时,如图2中,连接BE.
∵∠BAC=∠EAD=90°,
∴∠EAB=∠DAC,
∵AE=AD,AB=AC,
∴△EAB≌△DAC(SAS),
∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,
∴∠EBD=90°,
∴DE2=BE2+BD2=62+32=45,
∴DE=35;
②当点D在CB的延长线上时,如图3中,连接BE.
同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,
∴DE2=EB2+BD2=144+9=153,
∴DE=317,
综上所述,DE的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.
27.(1)25
16
;(2)
8
3
t=或6;(3)当
153
,5,
210
t=或
19
4
时,△BCP为等腰三角形.
【分析】
(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;
(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC
上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作
PE BC ⊥于E ,求得194
t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程
2234352
t --=
⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,
4AC cm ∴=,
(1)设存在点P ,使得PA PB =,
此时2PA PB t ==,42PC t =-,
在Rt PCB 中,222PC CB PB +=,
即:222(42)3(2)t t -+=,
解得:2516
t =, ∴当2516
t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,
此时72BP t =-,24PE PC t ==-,541BE =-=,
在Rt BEP 中,222PE BE BP +=,
即:222(24)1(72)t t -+=-,
解得:83
t =,
当6t =时,点P 与A 重合,也符合条件,
∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,
当P 在AC 上时,BCP 为等腰三角形,
PC BC ∴=,即423t -=,
12
t ∴=, 当P 在AB 上时,BCP 为等腰三角形,
CP PB =①,点P 在BC 的垂直平分线上,
如图2,过P 作PE BC ⊥于E ,
1322BE BC ∴=
=, 12PB AB ∴=,即52342t --=,解得:194
t =, PB BC =②,即2343t --=,
解得:5t =,
PC BC =③,如图3,过C 作CF AB ⊥于F ,
12
BF BP ∴=, 90ACB ∠=︒,
由射影定理得;2BC BF AB =⋅,
即2234352
t --=⨯,
解得:5310
t =, ∴当15319,5,2104
t =或时,BCP 为等腰三角形. 【点睛】
本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.
28.(1
2)见解析;(3
)2
【分析】
(1)分两种分割法利用勾股定理即可解决问题;
(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.
【详解】
解:(1)当MN 最长时,
,
当BN 最长时,
(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,
在△ADC 和△BNC 中,
AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩
,
∴△ADC ≌△BNC (SAS ),
∴CD=CN ,∠ACD=∠BCN ,
∵∠MCN=45°,
∴∠DCA+∠ACM=∠ACM+∠BCN=45°,
∴∠MCD=∠MCN ,
在△MDC 和△MNC 中,
CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩
,
∴△MDC ≌△MNC (SAS ),
∴MD=MN
在Rt △MDA 中,AD 2+AM 2=DM 2,
∴BN 2+AM 2=MN 2,
∴点M ,N 是线段AB 的勾股分割点;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,
根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,
∴∠AMC=∠BPC=120°,AM=PB=1,
∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,
∴∠BPN=120°-60°=60°,
∴∠BNP=30°,
∴NP=2BP=2=MN ,
∴BN=22213-=,
∴BM=MN+BN=23+.
【点睛】
本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
29.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.
【分析】
(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;
(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.
【详解】
(1)不存在一组数,既符合上述规律,且其中一个数为71.
理由如下:
根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;
若271m =,则35.5,m =,此时m 不符合题意;
若2171m +=,则270m =,此时m 不符合题意,
所以不存在一组数,既符合上述规律,且其中一个数为71.
(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该
直角三角形的另两条边的长都是正整数.
理由如下:
对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).
因为2224222
(1)(2)21(1)m m m m m -+=++=+
所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.
因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,
所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.
【点睛】
考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用
30.(1)∠BGD =120°;(2)见解析;(3)S 四边形ABCD =263.
【解析】
【分析】
(1)只要证明△DAE ≌△BDF ,推出∠ADE=∠DBF ,由
∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE 到M ,使得GM=GB ,连接BD 、CG .由△MBD ≌△GBC ,推出DM=GC ,∠M=∠CGB=60°,由CH ⊥BG ,推出∠GCH=30°,推出CG=2GH ,由
CG=DM=DG+GM=DG+GB ,即可证明2GH=DG+GB ;
(3)解直角三角形求出BC 即可解决问题;
【详解】
(1)解:如图1﹣1中,
∵四边形ABCD 是菱形,
∴AD =AB ,
∵∠A =60°,
∴△ABD 是等边三角形,
∴AB =DB ,∠A =∠FDB =60°,
在△DAE 和△BDF 中,。