齐齐哈尔市初中数学四边形基础测试题附解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齐齐哈尔市初中数学四边形基础测试题附解析
一、选择题
1.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()
A.6
5
B.
8
5
C.
12
5
D.
24
5
【答案】D
【解析】
【分析】
连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.
【详解】
解:连接AD
∵AB=AC,D为BC的中点,BC=12,
∴AD⊥BC,BD=DC=6,
在Rt△ADB中,由勾股定理得:2222
1068
AB BD=+=,
∵S△ADB=1
2
×AD×BD=
1
2
×AB×DE,
∴DE=
8624
105 AD BD
AB
⨯⨯
==,
故选D.
【点睛】
本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.
2.如图,已知AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A与点D重合,给出下列判断:
①EF 是ABC V 的中位线;
②DEF V 的周长等于ABC V 周长的一半:
③若四边形AEDF 是菱形,则AB AC =;
④若BAC ∠是直角,则四边形AEDF 是矩形.
其中正确的是( )
A .①②③
B .①②④
C .②④
D .①③④ 【答案】A
【解析】
【分析】
根据折叠可得EF 是AD 的垂直平分线,再加上条件AD 是三角形纸片ABC 的高可以证明EF ∥BC ,进而可得△AEF ∽△ABC ,从而得12AE AF AO AB AC AD ===,进而得到EF 是△ABC 的中位线;再根据三角形的中位线定理可判断出△AEF 的周长是△ABC 的一半,进而得到△DEF 的周长等于△ABC 周长的一半;根据三角形中位线定理可得AE=
12AB ,AF=12
AC ,若四边形AEDF 是菱形则AE=AF ,即可得到AB=AC .
【详解】
解:∵AD 是△ABC 的高,
∴AD ⊥BC ,
∴∠ADC=90°,
根据折叠可得:EF 是AD 的垂直平分线,
∴AO=DO=
12
AD ,AD ⊥EF , ∴∠AOF=90°,
∴∠AOF=∠ADC=90°,
∴EF ∥BC ,
∴△AEF ∽△ABC ,
12AE AF AO AB AC AD ===, ∴EF 是△ABC 的中位线, 故①正确;
∵EF 是△ABC 的中位线,
∴△AEF 的周长是△ABC 的一半, 根据折叠可得△AEF ≌△DEF ,
∴△DEF 的周长等于△ABC 周长的一半,
故②正确;
∵EF 是△ABC 的中位线,
∴AE=
12AB ,AF=12
AC , 若四边形AEDF 是菱形,
则AE=AF ,
∴AB=AC ,
故③正确; 根据折叠只能证明∠BAC=∠EDF=90°,
不能确定∠AED 和∠AFD 的度数,故④错误;
故选:A .
【点睛】
此题主要考查了图形的翻折变换,以及三角形中位线的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
3.如图,在菱形ABCD 中,点E 在边AD 上,30BE AD
BCE ⊥∠=︒,.若2AE =,则边BC 的长为( )
A 5
B 6
C 7
D .22【答案】B
【解析】
【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果.
【详解】
∵四边形ABCD 是菱形,
∴AD BC BC AB =,∥.
∵BE AD ⊥.∴BE BC ⊥.
∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.
在Rt ABE △中,由勾股定理得()22223BE BE +=
, 解得2BE =
,∴36BC BE ==.
故选B.
【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.
4.如图,11,,33
AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )
A .60︒
B .80︒
C .90︒
D .100︒
【答案】B
【解析】
【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得
60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.
【详解】
延长BC 、EF 交于点G
∵//AB EF
∴180ABG BGE +=︒∠∠
∵60FCD ∠=︒
∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33
ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠
2236012033
ABG EFC =︒---︒∠∠ ()223606012033
ABG BGE =︒--︒+-︒∠∠
223604012033
ABG BGE =︒--︒--︒∠∠ ()22003
ABG BGE =︒-+∠∠ 22001803
=︒-⨯︒ 80=︒
故答案为:B .
【点睛】
本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.
5.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )
A .3
B .4
C .5
D .6
【答案】D 【解析】
【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.
【详解】
∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,
32184EF ∴==>.
∴PEF V 是等腰三角形,存在三种情况:
①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;
②当EF 为腰,F 为顶角顶点时,
186,Q
在BC上存在一个点P,使PEF
V是等腰三角形;
③当EF为底,P为顶角顶点时,点P一定在EF的垂直平分线上,
∴EF的垂直平分线与矩形的交点,即为点P,存在两个点.
综上所述,满足题意的点P的个数是6.
故选D.
【点睛】
本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.
6.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()
A.B.
C.
D.
【答案】C
【解析】
【分析】
【详解】
图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.
解:设AC与BD交于O点,
当P在BO上时,∵EF∥AC,
∴EF BP
AC BO
=即
43
y x
=,

4
3
y x =;
当P在OD上时,有
6
43 DP EF y x DO AC
-
==
即,
∴y=
4
8 3
x
-+.
故选C.
7.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()
A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 【答案】A
【解析】
根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥即可:
∵AD=DE,DO∥AB,∴OD为△ABE的中位线.∴OD=OC.
∵在Rt△AOD和Rt△EOD中,AD=DE,OD=OD,∴△AOD≌△EOD(HL).
∵在Rt△AOD和Rt△BOC中,AD=BC,OD=OC,∴△AOD≌△BOC(HL).
∴△BOC≌△EOD.
综上所述,B、C、D均正确.故选A.
8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()
A.8 B.9 C.10 D.12
【答案】A
【解析】
试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.
解:设这个多边形的外角为x°,则内角为3x°,
由题意得:x+3x=180,
解得x=45,
这个多边形的边数:360°÷45°=8,
故选A .
考点:多边形内角与外角.
9.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )
A .11
B .10
C .9
D .8 【答案】B
【解析】
【分析】
根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.
【详解】
∵6AC =,
∴AO=3,
∵AB ⊥AC ,
∴BO=2234+=5
∴BD=2BO=10,
故选B.
【点睛】
此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.
10.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )
A .183π-
B .183π
C .32316π
D .1839π-
【答案】C
【解析】
【分析】
由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.
【详解】
解:∵四边形ABCD 是菱形,∠DAB=60°,
∴AD=AB=8,∠ADC=180°-60°=120°,
∵DF 是菱形的高,
∴DF ⊥AB ,
∴DF=AD •sin60°=38432⨯=, ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2
120(43)84332316360
ππ⨯⨯-=-. 故选:C.
【点睛】
本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.
11.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )
A .2
B .2.5
C .3
D 5【答案】B
【解析】
【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.
【详解】
解:∵5AB AC ==,AE 平分BAC ∠,
∴AE⊥BC,
又∵点D为AB的中点,

1
2.5
2
DE AB
==,
故选:B.
【点睛】
本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.
12.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
13.如图,菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(0,3
DOB=60°,点P是对角线OC上的一个动点,已知A(﹣1,0),则AP+BP的最小值为()
A.4 B.5 C.33D.19
【答案】D
【解析】
【分析】
点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】
解:连接AD,如图,
∵点B的对称点是点D,
∴AD即为AP+BP的最小值,
∵四边形OBCD是菱形,顶点B(0,23),∠DOB=60°,
∴点D的坐标为(3,3),
∵点A的坐标为(﹣1,0),
∴AD=22
+=,
(3)419
故选:D.
【点睛】
此题考查菱形的性质,关键是根据两点坐标得出距离.
14.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()
A.40 B.24 C.20 D.15
【答案】B
【解析】
【分析】
根据等腰三角形的性质得到AC ⊥BD ,∠BAO=∠DAO ,得到AD=CD ,推出四边形ABCD 是菱形,根据勾股定理得到AO=3,于是得到结论.
【详解】
∵AB =AD ,点O 是BD 的中点,
∴AC ⊥BD ,∠BAO =∠DAO ,
∵∠ABD =∠CDB ,
∴AB ∥CD ,
∴∠BAC =∠ACD ,
∴∠DAC =∠ACD ,
∴AD =CD ,
∴AB =CD ,
∴四边形ABCD 是菱形,
∵AB =5,BO 12=
BD =4, ∴AO =3,
∴AC =2AO =6,
∴四边形ABCD 的面积12
=
⨯6×8=24, 故选:B .
【点睛】
本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.
15.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE =,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )
A .A
B A
C =
B .A
C BC = C .C
D AB ⊥ D .AC BC ⊥
【答案】D
【解析】
【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.
【详解】
解:∵点E 是AC 中点,
∴AE =CE ,
∵AE =CE ,EF =DE ,
∴四边形ADCF为平行四边形,
∵点D、E是AB、AC中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∴∠AED=∠ACB,
∵AC⊥BC,
∴∠ACB=90°,
∴∠AED=90°,
∴AC⊥DF,
∴平行四边形ADCF为菱形
故选:D.
【点睛】
本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.
16.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()
A.∠BCA=45°B.AC=BD
C.BD的长度变小D.AC⊥BD
【答案】B
【解析】
【分析】
根据矩形的性质即可判断;
【详解】
解:∵四边形ABCD是平行四边形,
又∵AB⊥BC,
∴∠ABC=90°,
∴四边形ABCD是矩形,
∴AC=BD.
故选B.
【点睛】
本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连结BF,交AC于点M,连结DE,BO.若∠BOC=60°,FO=FC,则下列结论:①AE=CF;②BF 垂直平分线段OC;③△EOB≌△CMB;④四边形是BFDE菱形.其中正确结论的个数是()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
利用ASA定理证明△AOE≌△COF,从而判断①;利用线段垂直平分线的性质的逆定理可得结论②;在△EOB和△CMB中,对应直角边不相等,则两三角形不全等,从而判断③;连接BD,先证得BO=DO, OE=OF,进而证得OB⊥EF,因为BD、EF互相垂直平分,即可证得四边形EBFD是菱形,从而判断④.
【详解】
解:∵矩形ABCD中,O为AC中点
∴∠DCA=∠BAC,OA=OC,∠AOE=∠COF
∴△AOE≌△COF
∴AE=CF,故①正确
∵矩形ABCD中,O为AC中点,
∴OB=OC,
∵∠COB=60°,
∴△OBC是等边三角形,
∴OB=BC,
∵FO=FC,
∴FB垂直平分OC,故②正确;
∵△BOC为等边三角形,FO=FC,
∴BO⊥EF,BF⊥OC,
∴∠CMB=∠EOB=90°,
∴BO≠BM,
∴△EOB与△CMB不全等;故③错误;
连接BD,
∵四边形ABCD是矩形,
∴AC=BD,AC、BD互相平分,
∵O为AC中点,
∴BD也过O点,且BO=DO
由①可知△AOE≌△COF,∴OE=OF
∴四边形EBFD是平行四边形
由②可知,OB=CB,OF=FC
又∵BF=BF
∴△OBF≌△OCF
∴BD⊥EF
∴平行四边形EBFD是菱形,故④正确
所以其中正确结论的个数为3个;
故选:C.
【点睛】
本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.
18.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有().
A.1个B.2个C.3个D.4个
【答案】D
【解析】
分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;
详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.
∵CD=2AD,DF=FC,
∴CF=CB,
∴∠CFB=∠CBF,
∵CD∥AB,
∴∠CFB=∠FBH,
∴∠CBF=∠FBH,
∴∠ABC=2∠ABF.故①正确,
∵DE∥CG,
∴∠D=∠FCG,
∵DF=FC,∠DFE=∠CFG,
∴△DFE≌△FCG,
∴FE=FG,
∵BE⊥AD,
∴∠AEB=90°,
∵AD∥BC,
∴∠AEB=∠EBG=90°,
∴BF=EF=FG,故②正确,
∵S△DFE=S△CFG,
∴S四边形DEBC=S△EBG=2S△BEF,故③正确,
∵AH=HB,DF=CF,AB=CD,
∴CF=BH,∵CF∥BH,
∴四边形BCFH是平行四边形,
∵CF=BC,
∴四边形BCFH是菱形,
∴∠BFC=∠BFH,
∵FE=FB,FH∥AD,BE⊥AD,
∴FH⊥BE,
∴∠BFH=∠EFH=∠DEF,
∴∠EFC=3∠DEF,故④正确,
故选D.
点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.
19.如图,在□A BCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,即AB∥CE,
∴∠ABF=∠E,
∵DE=CD,
∴AB=DE,
在△ABF和△DEF中,

=
=
=
ABF E
AFB DFE AB DE
∠∠


∠∠




∴△ABF≌△DEF(AAS),
∴AF=DF,BF=EF;
可得③⑤正确,
故选:B.
【点睛】
此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
20.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交
于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=4
3
,⑤S△DOC=S四
边形EOFB
中,正确的有()
A.1个B.2个C.3个D.4个
【答案】D
【解析】
分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.
详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.
∵AE=BF=1,∴BE=CF=4﹣1=3.
在△EBC和△FCD中,
BC CD
B DCF
BE CF
=


∠=∠

⎪=


∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;
连接DE,如图所示,若OC=OE.
∵DF⊥EC,∴CD=DE.
∵CD=AD<DE(矛盾),故②错误;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠
DFC=
DC
FC
=
4
3
,故④正确;
∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;
故正确的有:①③④⑤.
故选D.
点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.。

相关文档
最新文档