38kHz 红外发射与接收
(整理)红外发射和接收器件示例
图2-2 红外发射和接收器件示例红外一体化接收头内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。
红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。
交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。
注意输出的高低电平和发射端是反相的。
图2-3为红外发射和接收解码的示意图。
在发射部分设计一个38kHz的载波,在发射数据(全码)为高电平时输出载波,发射数据(全码)为低电平时输出低电平,二者实现了逻辑与的关系,得到的信号(红外发射)驱动红外发射二极管向空间发射红外线。
红外一体化接收头接收到红外信号后,解码出与发射数据(全码)逻辑相反的数据。
图2-3 红外发射和接收解码的示意图3系统硬件设计3.2红外遥控单元本设计中作为发射部分使用的遥控器为M5046AP机芯的电视机遥控器。
电视机遥控器应用的是红外收发原理,即遥控器前端侧面的红外发射管发射出红外信号,电路板上红外接收管接收到信号后送到单片机内部,经译码后变成相应的操作指令,以实现定时、遥控风扇的功能。
红外遥控器的内部关键电路和接收管电路如图3-1所示。
图3-13.3单片机控制单元本设计以AT89S51单片机为主控器,单片机控制电路设计如图3-2所示。
单片机的P1.2-P1.4口用于控制风扇的3个档次,设计中用继电器来模拟风扇换挡开关;P1.6和P1.7引脚控制时钟电路;P2口作为液晶显示的8位数据线;P3.0和P3.1口控制风扇工作状态指示灯,分为手动和自动2个状态;P3.2中断0用于接收红外遥控编码信号;P3.4接收温度数据;P3.5-P3.7三个引脚分别控制液晶显示器的控制端。
图3-2为单片机控制电路。
图3-23.4时钟单元3.4.1DS1307简介种低功耗、BCD码的8引脚实时时钟芯片。
38khz红外发射与接收解析
38khz红外发射与接收38khz红外发射与接收红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示.由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的.红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示.常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定.接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高.图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下:工作电压:4.8~5.3V工作电流:1.7~2.7mA接收频率:38kHz峰值波长:980nm静态输出:高电平输出低电平:≤0.4V输出高电平:接近工作电压3.红外线遥控发射电路红外线遥控发射电路框图如图4所示.框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.利用红外线的特点,可以制作多路遥控器.在遥控发射电路中,有两种电路,即编码器和38kHz载波信号发生器.在不需要多路控制的应用电路中,可以使用常规1.频分制编码的遥控发射器在红外发射端利用专用(彩电,VCD,DVD等)的红外编码在实际应用中,遥控发射器是3V 2.遥控接收解调电路图4为红外接收解调控制电路,图4中IC2是LM567.LM567是一种锁相环集成电路,采用8脚双列直插塑封装,工作电压为+4.75~+9V,工作频率从直流到500kHz,静态电流约8mA.⑧脚为输出端,静态时为高电平,是由内部的集电极开路的三极管构成,允许最大灌电流为100mA.鉴于LM567的内部电路较复杂,这里仅介绍该电路的基本功能.LM567的⑤,⑥脚外接的弄清了LM567的基本组成后,再来分析图4电路的工作过程.ICl是红外接收头,它接收图1发出的红外线信号,接收的调制载波频率仍为38kHz,接收信号经ICl解调后,在其输出端OUT输出频率为f1(见图2)的方波信号,只要将LM567的中心频率f01调到(用RP)与发射端f1(见图2)相同,即f01=fl,则当发射端发射时,LM567开始工作,⑧脚由高电平变为低电平,该低电平使三极管8550导通,在A点输出利用图1和图4的电路,可以实现多路遥控器,即在发射端,将ICl组成的低频振荡器,其电路模式不变,只改变电阻R2,即可构成若干种R组成的多个频率不同的低频振荡器(即编码),利用微动开关转接,38kHz的载波电路共用;在接收电路中,一体化红外接收头共用,再设置与接收端编码器相同个数的LM567锁相器和后级锁相驱动控制电路,各锁相环的振荡频率与各编码器的低频编码信号的频率对应相等.这样发射端(图1)按压不同的按钮,载波信号接入不同频率编码的调制信号时,在接收端(图4),各对应的LM567的⑧脚的电平会发生变化,从而形成多路控制信号.上述所述的工作方式,称为频分制的编码方式.这种频分制工作方式,其优点是可实现多路控制,但缺点是电路复杂,对于路数不多的控制电路,因电路工作原理简单,对一般电子技术人员仍然是有用的.。
红外数据传输
红外数据传输一、红外通信原理红外遥控有发送和接收两个组成部分。
发送端采用单片机将待发送的二进制信号编码调制为一系列的脉冲串信号,通过红外发射管发射红外信号。
红外接收完成对红外信号的接收、放大、检波、整形,并解调出遥控编码脉冲。
为了减少干扰,采用的是价格便宜性能可靠的一体化红外接收头(HS0038,它接收红外信号频率为38kHz,周期约26μs) 接收红外信号,它同时对信号进行放大、检波、整形得到TTL 电平的编码信号,再送给单片机,经单片机解码并执行去控制相关对象。
如图1 所示:红外发送部分由51单片机、键盘、红外发光二极管和7段数码管组成。
键盘用于输入指令,51单片机检测键盘上按键的状态,并对红外信号进行调制,发光二极管产生红外线,数码管用来显示发送的键值。
图2红外发射电路红外接收部分由51单片机、一体化红外接收头HS0038和7段数码管组成。
51单片机检测HS0038,并对HS0038接收到的数据解码,通过数码管显示接收到的键值。
图3红外接收电路二、编码、解码(1) 二进制信号的调制二进制信号的调制由单片机来完成,它把编码后的二进制信号调制成频率为38kHz 的间断脉冲串,相当于用二进制信号的编码乘以频率为38kHz 的脉冲信号得到的间断脉冲串,即是调制后用于红外发射二极管发送的信号如图4 二进制码的调制所示(2) 红外接收需先进行解调,解调的过程是通过红外接收管进行接收的。
其基本工作过程为:当接收到调制信号时,输出高电平,否则输出为低电平,是调制的逆过程(图5 解调)。
HS0038是一体化集成的红外接收器件,直接就可以输出解调后的高低电平信号;红外接收器HS0038的应用电路(图6)。
有编码的反码,用来检验编码接收的正确性,防止误操作,增强系统的可靠性。
前导码是一个遥控码的起始部分,由一个9ms 的高电平( 起始码) 和一个4. 5ms 的低电平( 结果码) 组成,作为接受数据的准备脉冲。
红外发射与接收测试报告
红外发射与接收测试报告LLZ一、红外线原理红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。
1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。
由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。
红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。
红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。
电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。
2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。
发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。
常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。
一般有透明、黑色和深蓝色等三种。
判断红外发光二极管的好坏与判断普通二极管一样的方法。
单只红外发光二极管的发射功率约100mW。
红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。
接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。
它的工作原理:其实就是一个NB的红外光敏电阻在红外照射下处于超低阻值状态分到的电压超级小当红外光断开以后处于高阻状态有接近6K那么大,完全避光可能还不止,在电路中分到的电压就很大了,一般分到4V以上不成问题。
红外接收二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。
然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。
红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。
所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。
浅谈38K红外发射接受编码(非常好)
浅谈38K红外发射接受编码(非常好)之前做接触过一次红外遥控器,现在有空想用简单的话来聊一聊,下面有错误的地方欢迎改正指出:1:红外的概念不聊,那是一种物理存在。
以下聊38K红外发射接收,主要讲可编程的红外编码。
2:红外遥控红外遥控首先需要用来发“光”的红外发光管,还有一个接收光线的“接收管”(不是那种触发的红外对管),还有一个产生38K的信号源(可以是MCU中断实现还有就是市场上大把的红外编码IC),只需要简单的外围电路即可。
就单片机而言,为了增大红外发光管电流,需要用一个三极管驱动。
红外编码IC也只需要几个外围电路,规格书上都有提供,这里不提。
3:红外接收头(有不理解的地方可以在后面找到你想要的答案或者继续“百度”“谷歌")有必要可以看一下红外接收头内部组成的详细介绍。
接收收头分为电平头还有脉冲头。
电平型的:接收连续的38K信号,可以输出连续的低电平,时间可以无限长。
其内部放大及脉冲整形是直接耦合的,所以能够接收及输出连续的信号。
脉冲型的:只能接收间歇的38K信号,如果接收连续的38K信号,则几百ms后会一直保持高电平,除非距离非常近(二三十厘米以内)。
其内部放大及脉冲整形是电容耦合的,所以不能能够接收及输出连续的信号。
一般遥控用脉冲型的,只有特殊场合,比如串口调制输出,由于串口可能连续输出数据0,所以要用电平型的。
4:红外遥控中的载波到底是什么?(不要影响到你对其它载波的理解)第一次接触红外我看到’载波‘这个词就觉得生涩。
网上很多资料五花八门都描绘得很厉害、我们就从一下几点开始描述,相信的等会就懂:(1)38K怎么来的?这里只谈单片机给出,38K脉冲信号,占空比(脉冲的高电平比周期的值就是占空比)自己决定,既然是38K,那么脉冲的周期就是1/38000 S,记住这个不是高电平的时间长度,这个是一个脉冲的时间长度也就是一个周期,例如我们利用一个中断产生38K脉冲,占空比是1/2,我们的中断时间就要设置为 1/38000/2 S中断一次,然后通过相隔一次中断电平翻转一次就形成了一个频率为38K占空比1/2的脉冲。
单片机红外接受发送实验报告
单片机红外发射与接收实验报告指导老师:报告人:一·实验选题:基于单片机的红外发射与接收设计任务要求:设计一个以单片机为核心控制器件的红外收发系统。
发射载频:38KHz工作温度:-40℃--+85℃接收范围:2m二·系统概述方案设计与论证红外遥控收发系统(以下简称红外遥控系统)是指利用红外光波作为信息传输的媒介以实现远距离控制的装置。
从实际系统的硬件结构看,红外遥控系统包括发射装置和接收装置,其中发射装置包括电源模块、输入模块、红外发射模块和单片机最小系统,接收装置包括电源模块、红外接收模块、输出模块和单片机最小系统。
本设计选题设计任务要求设计一个以单片机为核心控制器件的红外收发系统。
其中,发射载波 38KHz,电源 5V/0.2A 5V/0.1A,工作温度-40℃--+85℃,接收范围 2m,传输速率 27bit/s,反应时间 2ms。
利用单片机的定时功能或使用载波发生器(用于产生载波的芯片)均可产生 38KHz 的发射载波。
单片机系统可以直接由 5V/0.1A 的电源供电,也可以通过三端稳压芯片由 9V/0.2A 电源供电。
采用工业级单片机可以工作在-40℃--+85℃。
为保证接收范围达到 2m,在发射载频恒为 38KHz 的前提下,应采用电流放大电路使红外发射管发射功率足够大。
传输速率和反应时间取决于所使用的编码芯片或程序的执行效率。
通过上述分析可知,为实现设计任务并满足设计指标,应采用工业级单片机,由电流放大电路驱动红外发射管。
将针对设计任务提出两种设计方案。
三·程序功能将程序编译通过并下载成功后,两个板上的红外光电器件都要套上黑色遮光罩,就可以进行实验了。
测距实验:手持1号板和2号板,两管相对,慢慢拉远或移近两管的距离,观察LED的读数变化。
阻断实验:可请另一人协助,将一张纸或其他障碍物放在两管之间再拿开,会看到读数有大幅度的变化。
反射实验:将1号和2号实验板并排拿在手中,并形成一个小夹角,向一张白纸移动观察读数变化。
红外避障传感器工作原理
红外避障传感器工作原理一、引言红外避障传感器是一种常见的电子产品,它通过发射和接收红外信号来检测物体的距离和位置,从而实现避障功能。
本文将详细介绍红外避障传感器的工作原理。
二、红外信号红外信号是指波长在0.75-1000微米之间的电磁波。
人眼无法看到这些波长范围内的光线,但是它们可以被一些电子设备所探测到。
红外信号在工业、医疗、安防等领域有着广泛的应用。
三、红外避障传感器结构红外避障传感器通常由发射模块和接收模块组成。
发射模块负责发射红外信号,接收模块负责接收反射回来的信号,并将其转换为电信号输出。
四、工作原理1. 发射模块发射模块通常由一个红外二极管组成。
当二极管被通电时,会产生一个特定频率和波长的光线。
这个频率和波长通常是38kHz和940nm。
2. 接收模块接收模块通常由一个红外接收头和一个信号处理电路组成。
当发射模块发出红外信号后,如果有物体遮挡在传感器前方,一部分光线会被物体反射回来,并被接收头接收。
接收头将这个信号转换为电信号,并将其送入信号处理电路中。
3. 信号处理信号处理电路通常由一个滤波器和一个比较器组成。
滤波器用于过滤掉杂波和干扰,只保留38kHz的频率。
比较器用于将接收到的信号与一个参考值进行比较,从而判断是否有物体遮挡在传感器前方。
五、应用场景红外避障传感器可以应用于机器人、智能家居、智能车等领域。
它可以检测机器人或车辆前方是否有障碍物,并及时做出反应,从而避免碰撞和损坏。
六、总结红外避障传感器通过发射和接收红外信号来检测物体的距离和位置,从而实现避障功能。
它由发射模块和接收模块组成,其中发射模块负责发射红外信号,接收模块负责接收反射回来的信号,并将其转换为电信号输出。
红外避障传感器在机器人、智能家居、智能车等领域有着广泛的应用。
(整理)红外数据传输
红外数据传输一、红外通信原理红外遥控有发送和接收两个组成部分。
发送端采用单片机将待发送的二进制信号编码调制为一系列的脉冲串信号,通过红外发射管发射红外信号。
红外接收完成对红外信号的接收、放大、检波、整形,并解调出遥控编码脉冲。
为了减少干扰,采用的是价格便宜性能可靠的一体化红外接收头(HS0038,它接收红外信号频率为38kHz,周期约26μs) 接收红外信号,它同时对信号进行放大、检波、整形得到TTL 电平的编码信号,再送给单片机,经单片机解码并执行去控制相关对象。
如图1 所示:红外发送部分由51单片机、键盘、红外发光二极管和7段数码管组成。
键盘用于输入指令,51单片机检测键盘上按键的状态,并对红外信号进行调制,发光二极管产生红外线,数码管用来显示发送的键值。
图2红外发射电路红外接收部分由51单片机、一体化红外接收头HS0038和7段数码管组成。
51单片机检测HS0038,并对HS0038接收到的数据解码,通过数码管显示接收到的键值。
图3红外接收电路二、编码、解码(1) 二进制信号的调制二进制信号的调制由单片机来完成,它把编码后的二进制信号调制成频率为38kHz 的间断脉冲串,相当于用二进制信号的编码乘以频率为38kHz 的脉冲信号得到的间断脉冲串,即是调制后用于红外发射二极管发送的信号如图4 二进制码的调制所示(2) 红外接收需先进行解调,解调的过程是通过红外接收管进行接收的。
其基本工作过程为:当接收到调制信号时,输出解调后的高低电平信号;红外接收器HS0038的应用电路(图6)。
(3)红外遥控发射芯片采用PPM 编码方式,当发射器按键按下后,将发射一组108ms 的编码脉冲。
遥控编码脉冲由前导码、16位地址码(8 位地址码、8 位地址码的反码)和16位操作码(8 位操作码、8 位操作码的反码)组成。
通过对用户码的检验,每个遥控器只能控制一个设备动作,这样可以有效地防止多个设备之间的干扰。
编码后面还要有编码的反码,用来检验编码接收的正确性,防止误操作,增强系统的可靠性。
电视机红外遥控和接收的制作(完整的电路、程序、照片)
程序:
#include<reg52.h> #include<intrins.h> #include<stdio.h>
#define uint unsigned int #define uchar unsigned char
sbit ir=P3^2 ; //红外端口 sbit P2_0=P2^0 ; //LED1 端口
} }
红外发射原理图:
晶振用的是 22.1184M
三级管驱动红外发射电路: 红外发射程序如下:(参考网上程序)
R16 另一边接 P1.0
#include <reg52.h> #define uint unsigned int #define uchar unsigned char bit irout;//红外管状态 sbit ir=P1^7;//红外发射管控制脚 uint count, set_count;//中断计数,设定中断次数 bit flag,keyflag;//红外发送标志,按键标志位 uchar irsys[4]={0x1a,0xa1,0xdc,0x03};//26 位系统码,最后一个字节只用 2 位 uchar ircode,irdata; /********************************************** 延时 1ms ***********************************************/
} } } }
/************************************* 主程序
*************************************/ void main() {
38k载波及红外发射原理
本帖最后由Randy 于2012-10-28 21:12 编辑转自Doctor_A 坛友的笔记!之前做接触过一次红外遥控器,现在有空想用简单的话来聊一聊,下面有错误的地方欢迎改正指出:1:红外的概念不聊,那是一种物理存在。
以下聊38K红外发射接收,主要讲可编程的红外编码。
2:红外遥控红外遥控首先需要用来发“光”的红外发光管,还有一个接收光线的“接收管”(不是那种触发的红外对管),还有一个产生38K的信号源(可以是MCU中断实现还有就是市场上大把的红外编码IC),只需要简单的外围电路即可。
就单片机而言,为了增大红外发光管电流,需要用一个三极管驱动。
红外编码IC也只需要几个外围电路,规格书上都有提供,这里不提。
3:红外接收头(有不理解的地方可以在后面找到你想要的答案或者继续“百度”“谷歌")有必要可以看一下红外接收头内部组成的详细介绍。
接收收头分为电平头还有脉冲头。
电平型的:接收连续的38K信号,可以输出连续的低电平,时间可以无限长。
其内部放大及脉冲整形是直接耦合的,所以能够接收及输出连续的信号。
脉冲型的:只能接收间歇的38K信号,如果接收连续的38K信号,则几百ms后会一直保持高电平,除非距离非常近(二三十厘米以内)。
其内部放大及脉冲整形是电容耦合的,所以不能能够接收及输出连续的信号。
一般遥控用脉冲型的,只有特殊场合,比如串口调制输出,由于串口可能连续输出数据0,所以要用电平型的。
4:红外遥控中的载波到底是什么?(不要影响到你对其它载波的理解)第一次接触红外我看到’载波‘这个词就觉得生涩。
网上很多资料五花八门都描绘得很厉害、我们就从一下几点开始描述,相信的等会就懂:(1)38K怎么来的?这里只谈单片机给出,38K脉冲信号,占空比(脉冲的高电平比周期的值就是占空比)自己决定,既然是38K,那么脉冲的周期就是1/38000 S,记住这个不是高电平的时间长度,这个是一个脉冲的时间长度也就是一个周期,例如我们利用一个中断产生38K脉冲,占空比是1/2,我们的中断时间就要设置为1/38000/2 S中断一次,然后通过相隔一次中断电平翻转一次就形成了一个频率为38K占空比1/2的脉冲。
红外信号接收
长按脉冲详情
当按键长按时,每隔108ms输出一帧9ms载波+2.25ms关断 +0.56ms载波的信号,直至释放
VS1838解调后的波形
.
VS1838与单片机的连接方法
实验 红外遥控器解码
实验目的: 掌握红外遥控信号的解调、解码原理 实验内容: 找任意一个遥控器,编写红外信号接收程序,将接收到的 键数据编码在数码管上显示出来。 实验原理: 见课件
UPD6121G编码标准简介
UPD6121G输出波形
若有键按下,每108ms输出一帧数据,每帧数据的长度根据 0和1的个数由58.5ms~76.5ms。
一帧数据详情
每帧数据由引导码开始,随后共32位数据,分别位16位用户编 码,8位键数据码和8位键数据反码。
一帧数据详情
引导码由9ms载波波形和4.5ms关断时间构成,作为随后发射 码的引导,编码采用脉冲位置调制方式Байду номын сангаасPPM)。利用脉冲之 间的时间间隔来区分0和1。
Vo u t
R1 200
R2 200k
解决方法:1、加载波 2、使用丏用编码芯片
图3 红外信号直接传输
调制后的红外发射信号波形
载波频率:38KHz
有信号,对应图3 k1闭合
.
无信号,对应图3 k1断开
接收端的解调——VS1838
.
VS1838解调后波形
需传输信息量较大时的解决方法
采用丏用编码芯片或自己设 计编码电路
按键识别程序的编写
主程序 smd=0?
调用INFKEY子程序
主程序其他任务
注:定义sm0038输出引脚位smd
INFKEY
SMD=0?
持续9ms?
红外线发射与接收电路图学习资料
红外线发射与接收电路图红外线发射与接收电路图由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生4 55KHZ的方波信号。
经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。
再经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。
由单片机的异步串行口TX输出的串行数据信号,送到与非门74HC00的输入端。
与非门的另一输入端接38KHZ的载波信号。
与非门的输出信号用来控制三极管的开通或关断,从而控制红外发射管发送信息。
这样就达到了用串行口TX输出的串行数据信号直接调制载波,进行红外数据传输的目的。
发射电路的调制采用的是时分制幅度键控调制方式。
因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。
所以单片机TXD发送的编码应是反码。
据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于1200 b设计中采用一种高效能的红外接收器——德律风根TFMS5380。
德律风根所开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。
同一组件内已装上了接收二级管和前置放大器。
TFMS5380特点:(1)单一的接收器和前置放大器的组合。
(2)超敏感度和传送距离。
(3)内置PCM频率过滤器。
(4)无外置组件需要。
(5)特强光及电场干扰屏蔽。
(6)TTL及CMOS兼容,适用于微处理器操作控制。
(7)可选频率由30KHZ至56KHZ。
(8)低功耗。
(9) ISO9000认可。
TFMS5380适用于数据传送、电视机、录像机、组合音响及卫星接收器等。
TFMS5380的内部框图及构成的接收电路。
如图3所示。
红外二极管就和普通的发光二极管原理一样,就是在半导体PN结区域电子和空穴复合发光。
发光的波长和半导体的禁带宽度有关。
光敏红外二极管和普通的光敏二极管也是一样的。
在PN结附近由于光照产生的激子被结电场拉开成为电子-空穴对,分别流向不同的电极。
遥控器的原理
咱们此刻利用的遥控器利用的频率都是38KHZ,它是用必然方式对不同的按键进行编码,通过专用的集成电路产生调制波,通过红外线二极管发射出去。
电视机接收以后进行解码再执行相应的动作。
遥控器里确实是几个部件:电源输入电路;键盘输入电路;CPU;起振电路;输出电路。
电源输入电路:电池电压(+3V)通过电池架到电路板,再经电解电容滤波后给CPU和红外二极管供电。
键盘输入电路:胶皮键接触的电路板脸部份,输出按键相应指令信号送到CPU。
CPU:确实是集成块或外围电路元件组成,确实是受到按键相应指令信号后输出相应的信号送给输出电路(给三极管的b极)。
起振电路:2个瓷片电容和1个晶振(445M)组成,它形成一个CPU正常工作的频率供给CPU。
输出电路:由1个三极管和红外二极管组成,三极管的b极收到CPU的指令信号后,按指令信号的不同来操纵红外二极管的导通状态,红外二极管在三极管的操纵下发出不同的红外线信号。
故障检修:1.遥控距离变短:改换红外二极管;2.有的按键不行使:清除面板赃物,改换按键碳面;3.没有动静:测三极管的b极电压,按按键时有电压转变,假设无转变,改换晶振;假设有,测红外二极管的电压,按按键时有电压转变,改换红外二极管;4.以上都正常,CPU损坏,判死刑。
很多电器都采纳红外遥控,那么红外遥控的工作原理是什么呢?第一咱们来看看什么是红外线。
人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
其中红光的波长范围为~μm;紫光的波长范围为~μm。
比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。
红外线遥控确实是利用波长为~μm之间的近红外线来传送操纵信号的。
、经常使用的红外遥控系统一样分发射和接收两个部份。
发射部份的要紧元件为红外发光二极管。
它事实上是一只特殊的发光二极管,由于其内部材料不同于一般发光二极管,因此在其两头施加必然电压时,它便发出的是红外线而不是可见光。
目前大量利用的红外发光二极管发出的红外线波长为940nm左右,外形与一般发光二极管相同,只是颜色不同。
38kHz红外发射与接收
38kHz 红外发射与接收红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。
1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。
由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。
红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。
红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。
电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。
2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。
发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。
常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。
一般有透明、黑色和深蓝色等三种。
判断红外发光二极管的好坏与判断普通二极管一样的方法。
单只红外发光二极管的发射功率约100mW。
红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。
接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。
红外接收二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。
然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。
红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。
所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。
图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。
接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。
单片机红外接受发送实验报告(可编辑)
单片机红外接受发送实验报告单片机红外发射与接收实验报告指导老师报告人一·实验选题基于单片机的设计任务要求设计一个以单片机为核心控制器件的红外收发系统发射载频38KHz 工作温度-40--85℃接收范围2m系统概述方案设计与论证红外遥控收发系统以下简称红外遥控系统是指利用红外光波作为信息传输的媒介以实现远距离控制的装置从实际系统的硬件结构看红外遥控系统包括发射装置和接收装置其中发射装置包括电源模块输入模块红外发射模块和单片机最小系统接收装置包括电源模块红外接收模块输出模块和单片机最小系统本设计选题设计任务要求设计一个以单片机为核心控制器件的红外收发系统其中发射载波 38KHz电源 V02A 5V01A工作温度-40--85℃接收范围 2m传输速率 27bits反应时间 2ms 利用单片机的定时功能或使用载波发生器用于产生载波的芯片均可产生 38KHz 的发射载波单片机系统可以直接由 5V01A 的电源供电也可以通过三端稳压芯片由 9V02A 电源供电采用工业级单片机可以工作在-40--85℃为保证接收范围达到 2m在发射载频恒为 38KHz 的前提下应采用电流放大电路使红外发射管发射功率足够大传输速率和反应时间取决于所使用的编码芯片或程序的执行效率通过上述分析可知为实现设计任务并满足设计指标应采用工业级单片机由电流放大电路驱动红外发射管针对设计任务提出设计方案程序功能将程序编译通过并下载成功后两个板上的红外光电器件都要套上黑色遮光罩就可以进行实验了测距实验手持号板和号板两管相对慢慢拉远或移近两管的距离观察LED的读数变化阻断实验可请另一人协助将一张纸或其他障碍物放在两管之间再拿开会看到读数有大幅度的变化反射实验将号和号实验板并排拿在手中并形成一个小夹角向一张白纸移动观察读数变化寻迹实验将白纸的部分区域涂黑让你手中的这对红外发射与接收器件在黑色区域与白色区域之间来回移动观察读数变化另外我们选用的红外接收管灵敏很高对室内散射光计算机显示器的辐射日光灯管甚至冬天的暖气等都有感应实验时要注意这些因素的干扰注意实验场地要适当遮光不要有直射光或在窗前进行实验红外线接收模块的原理如下以小型红外接收解调模块SFH506-38超小型红外接收解调模块RPM-638CBR为例来介绍分析一般的红外接收模块主要由CX2016APC1373等集成电路外加阻容元件红外线接收管及滤波光片等组成因而体积较大而新一代一体化红外遥控接收头SFH506-38与RPM-638CBR将红外接收管前置放大解调等电路集成在同一基片上内电路框图如图1所示具有体积小无外部元件抗干扰性能好接收角度宽价格低等优点1小型红外接收解调模块SFH506-38该接收模块采用黑色环氧树脂封装灵敏度较高用小功率红外发射管发射信号接收距离达35米其外型及管脚如图2所示主要电参数如下电源电压VCC为5V 接收峰值波长为095um接收角度为-55度接受距离为35米最大静态电流05mA接收频率为38KHz另有派为3033364056KHz系列供选用2超小型红外接收解调模块RPM-638CBR次模块采用树脂封装有直立与卧式两种封装形式其主要电参数VCC为45--55V静态电流无光照及信号输入Icc为3MA峰值波长为094uM接收最大距离为8--15M水平接收角为33度上下接收角为14度接收频率为38KHz工作温度为-25度----75度由于SFH506-38和RPM-638CBR能直接与红外遥控专用解码电路配合使用因此完全可以取代电视音响等设备中的常规红外接收头且实践证明效果很好红外线接收模块的技术参数1工作电压DC5-20V 可订做范围DC3V-DC24V2静态功耗lt50微安3集电极开路输出负载电流 500mA 其它电流值需订做4延时时间可订做零点几秒几十分钟5封锁时间可订做零点几秒几十秒6触发方式L不可重复触发H可重复触发7感应范围 140度距离5-7米以内 25时8尺寸直径 23mm 默认另有127mm8mm可选9工作温度-20-70℃10外形尺寸2638mm螺丝孔距325mm 注可按客户的各种要求生产模块11感光度可按要求订做 21 红外接收电路一体化的红外接收装置将遥控信号的接收放大检波整形集于一身并且输出可以让单片机识别的TTL 信号这样大大简化了接收电路的复杂程度和电路的设计工作方便使用在本系统中我们采用红外一体化接收头HS0038外观图如图 3 所示HS0038 黑色环氧树脂封装不受日光荧光灯等光源干扰内附磁屏蔽功耗低灵敏度高在用小功率发射管发射信号情况下其接收距离可达35m它能与TTLCOMS 电路兼容HS0038 为直立侧面收光型它接收红外信号频率为38 kHz周期约26 μs同时能对信号进行放大检波整形得到TTL 电平的编码信号三个管脚分别是地+5 V 电源解调信号输出端红外一体化接收头的测试可以利用图4 所示的电路进行在HS0038 的电源端与信号输出端之间接上一只二极管及一只发光二极管后再配上规定的工作电源为+5V当手拿遥控器对着接收头按任意键时发光二极管会闪烁说明红外接收头和遥控器工作都正常如果发光二极管不闪烁发光说明红外接收头和遥控器至少有一个损坏只要确保遥控器工作正常很容易判断红外接收头的优劣HS0038的内部结构1PINPIN光敏二极管光敏二极管工作时加有反向电压没有光照时其反向电阻很大只有很微弱的反向饱和电流暗电池当有光照时就会产生很大的反向电流亮电流光照越强该亮电流就越大光敏二极管是一种光电转换二极管所以又叫光电二极管PN结光敏二极管由于相应速度慢不能再通信系统中得到应用PIN光敏二极管就是在PN结中间夹入一层轻掺杂本征半导体PIN光敏二极管特点响应时间短暗电流小入射光量与输出电流的直线性良好PIN光敏二极管的主要用途遥控传真机光通信短距离2AGC Automatic Gain Control 自动增益控制放大器增益表示放大器功率放大倍数以输出功率同输入功率比值的常用对数表示单位为分贝它是输出限幅装置的一种是利用线性放大和压缩放大的有效组合对输出信号进行调整当输入信号较弱时线性放大电路工作保证输出信号的强度当输入信号强度达到一定程度时启动压缩放大线路使输出幅度降低满足了对输入信号进行衰减的需要也就是说AGC功能可以通过改变输入输出压缩比例自动控制增益的幅度它能够在输入信号幅度变化很大的情况下使输出信号幅度保持恒定或仅在较小范围内变化不至于因为输入信号太小而无法正常工作也不至于因为输入信号太大而使接收机发生饱和或堵塞3Band Passband-pass filter 带通滤波器带通滤波器是指能通过某一频率范围内的频率分量但将其他范围的频率分量衰减到极低水平的滤波器4Demodulator解调器解调是将模拟信号- 数字信号HS0038参考电路在实际的应用中可以参考以下电路进行电路原理图的设计TSAL62是指红外发射头TSAL6200uc是指微控制器HS0038对数据格式的要求 The data signal should fullfill the following condition载波频率接近38kHz1要求脉冲的长度不小于10个周期2脉冲之间的时间距离不小于14个周期3如果每个脉冲的长度超过18ms那么需要在数据流中添加一些空隙空隙的长度要在脉冲长度的4倍以上4每秒钟可以连续接收800个短脉冲符合数据格式的列子有 Some examples for suitable data format areNEC CodeToshiba Micom Format Sharp Code RC6 Code R–2000 Code等红外通信解调功能从图中我们可以看出HS0038接收到的信号正好与发射信号是不对应的当输出脉冲为高时对应HS0038的低电平也就是说发送的红外信号与接收到的红外信号互为相反hs0038 应用 C51编程五·外围器件一.电阻器简介11 电阻器的含义在电路中对电流有阻碍作用并且造成能量消耗的部分叫电阻12 电阻器的英文缩写RResistor 及排阻RN13 电阻器在电路符号 R14 电阻器的常见单位千欧姆KΩ兆欧姆MΩ15 电阻器的单位换算 1兆欧 103千欧 106欧16 电阻器的特性电阻为线性原件即电阻两端电压与流过电阻的电流成正比通过这段导体的电流强度与这段导体的电阻成反比即欧姆定律I UR 表 17 电阻的作用为分流限流分压偏置滤波与电容器组合使用和阻抗匹配等18 电阻器在电路中用R加数字表示如R15表示编号为15的电阻器19 电阻器的在电路中的参数标注方法有3种即直标法色标法和数标法a直标法是将电阻器的标称值用数字和文字符号直接标在电阻体上其允许偏差则用百分数表示未标偏差值的即为±20b数码标示法主要用于贴片等小体积的电路在三为数码中从左至右第一二位数表示有效数字第三位表示10的倍幂或者用R表示 R表示0 如472 表示 47×102Ω即47KΩ 104则表示100KΩR22表示022Ω 122 1200Ω 12KΩ 1402 14000Ω 14KΩ R22 022Ω 50C 324100 324KΩ17R8 178Ω000 0Ω 0 0Ωc色环标注法使用最多普通的色环电阻器用4环表示精密电阻器用5环表示紧靠电阻体一端头的色环为第一环露着电阻体本色较多的另一端头为末环现举例如下如果色环电阻器用四环表示前面两位数字是有效数字第三位是10的倍幂第四环是色环电阻器的误差范围见图一四色环电阻器普通电阻标称值第一位有效数字标称值第二位有效数字标称值有效数字后0的个数 10的倍幂允许误差颜色第一位有效值第二位有效值倍率允许偏差黑0 0 棕 1 1 ±1 红 2 2 ±2 橙3 3 黄4 4 绿5 5 ±05 蓝6 6 ±025 紫7 7 ±01 灰8 8白9 9 ―20 50 金 5 银10无色20 图1-1 两位有效数字阻值的色环表示法如果色环电阻器用五环表示前面三位数字是有效数字第四位是10的倍幂第五环是色环电阻器的误差范围见图二五色环电阻器精密电阻标称值第一位有效数字标称值第二位有效数字标称值第三位有效数字标称值有效数字后0的个数10的倍幂允许误差颜色第一位有效值第二位有效值第三位有效值倍率允许偏差黑0 0 0 棕 1 1 1 1 红 2 2 22 橙3 3 3 黄4 4 4 绿55 5 05 蓝6 6 6 025 紫7 7 7 01灰8 8 8 白9 9 9 -20~50 金±5 银±10图1-2 三位有效数字阻值的色环表示法110 SMT电阻的尺寸表示用长和宽表示如0201060308051206等具体如02表com111 一般情况下电阻在电路中有两种接法串联接法和并联接法电阻的计算R1 R1 R2R2串连并联R R1R2 R 1R11R2112 多个电阻的串并联的计算方法串联R总串 R1R2R3Rn并联1R总并 1R2R3R1Rn二.电容器1 电容器的含义衡量导体储存电荷能力的物理量2 电容器的英文缩写C capacitor3 电容器在电路中的表示符号 C 或CN 排容4 电容器常见的单位毫法mF微法uF纳法nF皮法pF5 电容器的单位换算 1法拉 103毫法 106微法 109纳法 1012皮法1pf 10-3nf 10-6uf 10-9mf 10-12f6 电容的作用隔直流旁路耦合滤波补偿充放电储能等7 电容器的特性电容器容量的大小就是表示能贮存电能的大小电容对交流信号的阻碍作用称为容抗它与交流信号的频率和电容量有关电容的特性主要是隔直流通交流通低频阻高频8 电容器在电路中一般用C加数字表示如C25表示编号为25的电容9 电容器的识别方法与电阻的识别方法基本相同分直标法色标法和数标法3种a 直标法是将电容的标称值用数字和单位在电容的本体上表示出来如220MF表示220UF01UF表示001UFR56UF表示056UF6n8表示6800PFb 不标单位的数码表示法其中用一位到四位数表示有效数字一般为PF而电解电容其容量则为UF如3表示3PF2200表示2200PFcomFc 数字表示法一般用三为数字表示容量的大小前两位表示有效数字第三位表示10的倍幂如102表示10102 1000PF224表示22104 02UFd 用色环或色点表示电容器的主要参数电容器的色标法与电阻相同电容器偏差标志符号100-0--H100-10--R50-10--T30-10--Q50-20--S80-20--Z10 电容的分类根据极性可分为有极性电容和无极性电容我们常见到的电解电容就是有极性的是有正负极之分11 电容器的主要性能指标是电容的容量即储存电荷的容量耐压值指在额定温度范围内电容能长时间可靠工作的最大直流电压或最大交流电压的有效值耐温值表示电容所能承受的最高工作温度稳压二极管发光二极管光电二极管变容二极管3 半导体二极管在电路中常用加数字表示如D5表示编号为5的B锗二极管在两极加上电压并且电压大于02V时才能导通导通后电压保持在02-03V之间5 半导体二极管主要特性是单向导电性也就是在正向电压的作用下导通电阻很小而在反向电压作用下导通电阻极大或无穷大 7 半导体二极管的识别方法a目视法判断半导体二极管的极性一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极在实物中如果看到一端有颜色标示的是负极另外一端是正极b用万用表指针表判断半导体二极管的极性通常选用万用表的欧姆档 R*100或R*1K 然后分别用万用表的两表笔分别出接到二极管的两个极上出当二极管导通测的阻值较小一般几十欧姆至几千欧姆之间这时黑表笔接的是二极管的正极红表笔接的是二极管的负极当测的阻值很大一般为几百至几千欧姆这时黑表笔接的是二极管的负极红表笔接的是二极管的正极 c测试注意事项用数字式万用表去测二极管时红表笔接二极管的正极黑表笔接二极管的负极此时测得的阻值才是二极管的正向导通阻值这与指针式万用表的表笔接法刚好相反变容二极管是根据普通二极管内部 PN结的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上实现低频信号调制到高频信号上并发射出去在工作状态变容二极管调制电压一般加到负极上使变容二极管的内部结电容容量随调制电压的变化而变化变容二极管发生故障主要表现为漏电或性能变差1发生漏电现象时高频调制电路将不工作或调制性能变差2变容性能变差时高频调制电路的工作不稳定使调制后的高频信号发送到对方被对方接收后产生失真三极管在电路中常用Q加数字表示如Q17表示编号为17的三极管特点三极管简称管是内部含有2个PN结并且具有放大能力的特殊器件它分NPN型和PNP型两种类型这两种类型的三极管从工性上可互相弥补所谓OTL电路中的对管就是由PNP型和NPN型配对使用按材料来分可分硅和锗管我国目前生产的硅管多为NPN型锗管多为PNP型E 发射极 C 集电极 E 发射极 C 集电极B 基极B 基极NPN型三极管 PNP 型三极管4 半导体三极管放大的条件要实现放大作用必须给三极管加合适的电压即管子发射结必须具备正向偏压而集电极必须反向偏压这也是三极管的放大必须具备的外部条件5 半导体三极管的主要参数a 电流放大系数对于三极管的电流分配规律Ie IbIc由于基极电流Ib的变化使集电极电流Ic发生更大的变化即基极电流Ib的微小变化控制了集电极电流较大这就是三极管的电流放大原理即βΔIcΔIbb极间反向电流集电极与基极的反向饱和电流c极限参数反向击穿电压集电极最大允许电流集电极最大允许功率损耗6半导体三极管具有三种工作状态放大饱和截止在模拟电路中一般使用放大作用饱和和截止状态一般合用在数字电路中a半导体三极管的三种基本的放大电路共射极放大电路共集电极放大电路共基极放大电路电路形式直流通道静态工作点交流通道微变等效电路ri Rbrbe ro RC RC 用途多级放大电路的中间级输入输出级或缓冲级高频电路或恒流源电路b三极管三种放大电路的区别及判断可以从放大电路中通过交流信号的传输路径来判断没有交流信号通过的极就叫此极为公共极注交流信号从基极输入集电极输出那发射极就叫公共极交流信号从基极输入发射极输出那集电极就叫公共极交流信号从发射极输入集电极输出那基极就叫公共极7 用万用表判断半导体三极管的极性和类型用指针式万用表a先选量程R*100或R*1K档位b判别半导体三极管基极用万用表黑表笔固定三极管的某一个电极红表笔分别接半导体三极管另外两各电极观察指针偏转若两次的测量阻值都大或是都小则改脚所接就是基极两次阻值都小的为NPN型管两次阻值都大的为PNP型管若两次测量阻值一大一小则用黑笔重新固定半导体三极管一个引脚极继续测量直到找到基极c判别半导体三极管的c极和e极确定基极后对于NPN管用万用表两表笔接三极管另外两极交替测量两次若两次测量的结果不相等则其中测得阻值较小得一次黑笔接的是e极红笔接得是c 极若是PNP型管则黑红表笔所接得电极相反d 判别半导体三极管的类型如果已知某个半导体三极管的基极可以用红表笔接基极黑表笔分别测量其另外两个电极引脚如果测得的电阻值很大则该三极管是NPN型半导体三极管如果测量的电阻值都很小则该三极管是PNP型半导体三极管五.PCB的简介1 PCB的英文缩写PCB Printed Circuit Board2 PCB的作用PCB作为一块基板他是装载其它电子元器件的载体所以一块PCB设计的好坏将直接影响到产品质量的好坏3 PCB的分类和常见的规格根据层数可分为单面板双面板和多层板我们主机板常用的是4层板或者6层板而显示卡用的是8层板而主机板的尺寸为AT规格的主机板尺寸一般为13X12 单位为英寸 ATX主机板的尺寸一般为12X96 单位为英寸 Micro Atx主机板尺寸com 单位为英寸注明1英寸 254CM六.晶振1晶振在线路中的符号是”X”Y2晶振的名词解释能产生具有一定幅度及频率波形的振荡器3晶振在线路图中的表示符号4晶振的测量方法测量电阻方法用万用表RX10K档测量石英晶体振荡器的正反com英晶体振荡器有一定的阻值或为零则说明该石英晶体振荡器已漏电或击穿损坏动态测量方法用是波器在电路工作时测量它的实际振荡频是否符合该晶体的额定振荡频率如果是说明该晶振是正常的如果该晶体的额定振荡频率偏低偏高或根本不起振表明该晶振已漏电或击穿损坏七·555定时器555集成时基电路称为集成定时器是一种数字模拟混合型的中规模集成电路其应用十分广泛该电路使用灵活方便只需外接少量的阻容元件就可以构成单稳多谐和施密特触发器因而广泛用于信号的产生变换控制与检测它的内部电压标准使用了三个5K的电阻故取名555电路其电路类型有双极型和CMOS型两大类两者的工作原理和结构相似几乎所有的双极型产品型号最后的三位数码都是555或556所有的CMOS产品型号最后四位数码都是7555或7556两者的逻辑功能和引脚排列完全相同易于互换555和7555是单定时器556和7556是双定时器双极型的电压是5V15V输出的最大电流可达200mACMOS型的电源电压是3V18V 图8-1 555定时器内部框图555电路的工作原理555电路的内部电路方框图如图8-1所示它含有两个电压比较器一个基本RS 触发器一个放电开关T比较器的参考电压由三只5KΩ的电阻器构成分压它们分别使高电平比较器A1同相比较端和低电平比较器A2的反相输入端的参考电平为和A1和A2的输出端控制RS触发器状态和放电管开关状态当输入信号输入并超过时触发器复位555的输出端3脚输出低电平同时放电开关管导通当输入信号自2脚输入并低于时触发器置位555的3脚输出高电平同时放电开关管截止是复位端当其为0时555输出低电平平时该端开路或接VCCVc是控制电压端5脚平时输出作为比较器A1的参考电平当5脚外接一个输入电压即改变了比较器的参考电平从而实现对输出的另一种控制在不接外加电压时通常接一个001uf的电容器到地起滤波作用以消除外来的干扰以确保参考电平的稳定T为放电管当T导通时将给接于脚7的电容器提供低阻放电电路555定时器的典型应用图8-2 555构成单稳态触发器上图8-2为由555定时器和外接定时元件RC 构成的单稳态触发器D为钳位二极管稳态时555电路输入端处于电源电平内部放电开关管T导通输出端Vo输出低电平当有一个外部负脉冲触发信号加到Vi端并使2端电位瞬时低于低电平比较器动作单稳态电路即开始一个稳态过程电容C 开始充电Vc按指数规律增长当Vc充电到时高电平比较器动作比较器A1翻转输出Vo从高电平返回低电平放电开关管T重新导通电容C上的电荷很快经放电开关管放电暂态结束恢复稳定为下个触发脉冲的来到作好准备波形图见图8-3 图8-3 单稳态触发器波形图暂稳态的持续时间Tw即为延时时间决定于外接元件RC的大小Tw 11RC通过改变RC的大小可使延时时间在几个微秒和几十分钟之间变化当这种单稳态电路作为计时器时可直接驱动小型继电器并可采用复位端接地的方法来终止暂态重新计时此外需用一个续流二极管与继电器线圈并接以防继电器线圈反电势损坏内部功率管如图8-4由555定时器和外接元件R1R2C构成多谐振荡器脚2与脚6直接相连电路没有稳态仅存在两个暂稳态电路亦不需要外接触发信号利用电源通过R1R2向C充电以及C通过R2向放电端放电使电路产生振荡电容C在和之间充电和放电从而在输出端得到一系列的矩形波对应的波形如图8-5所示图8-4 555构成多谐振荡器图8-5 多谐振荡器的波形图输出信号的时间参数是 T07R1R2C07R2C其中为VC由上升到所需的时间为电容C放电所需的时间555电路要求R1与R2均应不小于1KΩ但两者之和应不大于33MΩ外部元件的稳定性决定了多谐振荡器的稳定性555定时器配以少量的元件即可获得较高精度的振荡频率和具有较强的功率输出能力因此这种形式的多谐振荡器应用很广3组成占空比可调的多谐振荡器电路如图8-6它比图8-4电路增加了一个电位器和两个引导二极管D1D2用来决定电容充放电电流流经电阻的途径充电时D1导通D2截止放电时D2导通D1截止图8-6 555构成占空比可调的多谐振荡器可见若取电路即可输出占空比为50℅的方波信号图8-7 555构成施密特触发器图8-8 555构成施密特触发器的波形图实现基本和常用逻辑运算的电子电路叫逻辑门电路实现与运算的叫与门实现或运算的叫或门实现非运算的叫非门也叫做反相器等等用逻辑1表示高电平用逻辑0表示低电平2 与门逻辑表达式F=A B。
红外收发对管电路
红外收发对管1、红外收发对管是一种利用红外线的开关管,接受管在接受和不接受红外线时电阻发生明显的变化,利用外围电路可以时输出产生明显的高低电平的变化,高低电平的变化输入单片机就可使之识别,从而实现智能控制。
我们使用的单片机是凌阳61板,经过我们试验,在输入电压小于1.5伏时单片机识别为低电平,在输入电压大于1.85 伏时单片机识别为高电平。
2、用途:蔽障、计数(记液体点滴的个数、记玻璃小球的个数、记小车轮子的转数)、寻迹3、红外发射接收电路:3 . 1输入信号采用38KHZ的调制波红外发射电路由电阻R2三极管Q2电阻R3与红外发射二极管D1构成,如图vcc接收电路由红外接收管和放大电路组成,如图2.2。
Q4接收到红外信号后,经过三极管Q1进行第一级放大,放大后的信号送入三极管Q3进行第二级放大,通过Rx就可以得到放大后的红外接收信号。
为了降低干扰,Tx 一般采用调制方式,这里,其波形如图 2.3图2.3 38KHZ调制波对应图2.3的调制波,如果VCC为5V,发射接收对管的有效距离(单片机可检测)大概为20cm如果VCC为3V,发射接收对管的有效距离(单片机可检测)大概为10cm3. 2直接采用直流电源本电路电路简单,性能稳定,安装方便,但距离比较近。
当阻挡了接收管接收红外线的强度时,产生一个低电平的脉冲信号,由于对管的发射口径较小,单光束发射,小球相对红外装置正交落下时,很容易检测处理。
使用此电路寻迹实现小车跟黑色轨道行驶,在行驶过程中不超出该线。
考虑到黑线和白纸组合,我们采用红外对管辨认路面的黑白两种不同状态。
由于红外对管对黑白色的感应比较明显,又不需要很高的精度,适用于简单的寻迹。
但外部影响比较大,所以须将接收头用黑皮套套上以提高信号的接受率。
该小车采用三对红外对管,通过他们送入单片机信号的不同,将其逻辑组合后向小车的各个电机发送启动信号,从而,驱动小车实现寻迹功能。
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。
红外线接收管原理
红外线接收管原理红外线接收管是一种电子元件,它能够接收并转换红外线信号。
红外线接收管的原理是通过红外光电效应来工作。
红外线接收管通常由半导体材料制成,其中最常用的是锗、硅或半导体合金材料。
红外线接收管的结构一般包含有源区、漏电区和阳极区。
有源区是指入射红外线光线的入射端,漏电区是指红外线光电效应产生的电子集中流出的区域,阳极区是指接收到的红外线信号转换成电流的输出端。
红外线接收管工作时,当红外线光线照射到有源区时,有源区内的半导体材料将吸收红外线光子,激发部分电子跃迁到导带中形成自由电子,同时留下些许缺电子的空穴。
这些自由电子和空穴随后组成电流,从漏电区向阳极区流动。
红外线接收管输出的电流大小与入射红外线光线的强弱成正比。
当入射红外线光线强度足够高时,接收到的红外线信号会激发更多的电子跃迁,使输出的电流变大;反之,当入射红外线光线强度较低时,输出的电流较小。
红外线接收管通常与电路配合使用,其中一个常见的电路是红外线遥控接收电路。
在红外线遥控接收电路中,红外线接收管接收到红外线信号后,经过电路放大和滤波处理,最终得到电压信号,这个信号可以根据红外线遥控器发射的红外线信号进行解码,并将解码结果作为控制信号,用于控制其他设备的开关、亮度等。
红外线接收管还具有一些特殊的性质和应用。
首先,红外线接收管对于可见光线是非常不敏感的,因此在有光的环境下也不会被干扰。
其次,红外线接收管的灵敏度和频率范围可以根据应用的需要进行调整。
例如,在红外线遥控领域,常用的红外线接收管工作频率为38kHz左右,以接收遥控器发射的38kHz的脉冲信号。
红外线接收管还有广泛的应用领域,例如安防监控、热成像、红外线温度测量、自动化控制等。
在安防监控领域,红外线接收管被用于感知和跟踪入侵者,可以通过红外线照明系统无视低光照环境下的目标。
在热成像领域,红外线接收管可以接收物体发出的红外线热辐射,并将其转化为电信号,用于图像处理和温度测量。
电视遥控器工作原理
电视遥控器工作原理电视遥控器是现代家庭必备的电子设备之一,它的出现使用户可以方便地在距离电视机较远的地方控制电视节目的切换、音量调节等功能。
在日常生活中,我们使用电视遥控器的频率非常高,但是很少有人关注它的工作原理。
本文将详细介绍电视遥控器的工作原理。
电视遥控器的工作原理可以简单地归纳为:发射端产生红外光,接收端接收红外光,并将其转换为电信号进行解码和处理。
下面将对这一过程进行详细解析。
第一部分:发射端电视遥控器的发射端通常由如下几个部分组成:按键、微控制器、载波发射器、红外发射二极管等。
按键是用户与电视遥控器交互的接口,通过按下不同的按键来实现不同的功能。
微控制器是电视遥控器的核心部件,它负责接收按键的指令,并根据指令控制载波发射器的输出。
在发射端,载波发射器将微控制器输出的数字信号转换为高频载波信号,这个载波信号的频率通常在38kHz左右,而红外发射二极管则将高频载波信号转换为红外光信号。
红外光信号具有不可见性,可以通过空气传输到接收端。
第二部分:接收端电视遥控器的接收端通常由如下几个部分组成:红外接收二极管、红外信号接收电路、解码电路等。
红外接收二极管是接收端的核心组件,它能够接收到发射端发出的红外光信号,将其转换为微弱的电流信号。
红外信号接收电路负责放大和整形接收到的电流信号,以便后续的解码处理。
解码电路是接收端的关键部分,它对接收到的红外信号进行解码和处理,并将其转换为具体的功能指令。
解码电路通常由红外信号解码器、存储器、控制电路等组成。
当接收到红外信号后,解码电路会将其解码成对应的指令信号,并根据指令信号控制电视机的不同功能。
总结:通过对电视遥控器的工作原理进行分析,我们可以了解到发射端和接收端的关键部件以及它们的工作原理。
发射端通过微控制器控制载波发射器的输出,将数字信号转换为红外光信号,并通过红外发射二极管发射出去。
接收端通过红外接收二极管接收红外光信号,并经过红外信号接收电路和解码电路的处理,最终将其转换为具体的功能指令,实现对电视机的远程控制。
红外发射、接收头(红外基础知识)
目前市售红外一体化接收头有两种:电平型和脉冲型,绝大部分的都是脉冲型的,电平型的很少。
电平型的,接收连续的38K信号,可以输出连续的低电平,时间可以无限长。
其内部放大及脉冲整形是直接耦合的,所以能够接收及输出连续的信号。
脉冲型的,只能接收间歇的38K信号,如果接收连续的38K信号,则几百ms后会一直保持高电平,除非距离非常近(二三十厘米以内)。
其内部放大及脉冲整形是电容耦合的,所以不能能够接收及输出连续的信号。
一般遥控用脉冲型的,只有特殊场合,比如串口调制输出,由于串口可能连续输出数据0,所以要用电平型的。
一般遥控器用455K经12分频后输出37917HZ,简称38K,10米接收带宽为38+-2K,3米为35~42K。
在没有环境反射的空旷空间,距离10米以上方向性会比较强。
在室内,如果墙是白色的,则在15米的空间基本没有方向性。
接收头要有滤光片,将白光滤除。
在以下环境条件下会影响接收,甚至很严重:1、强光直射接收头,导致光敏管饱和。
白光中红外成分也很强。
2、有强的红外热源。
3、有频闪的光源,比如日光灯。
4、强的电磁干扰,比如日光灯启动、马达启动等。
38K信号最好用1/3占空比,这个是最常用的,据测试1/10占空比灵敏度更好。
实际调制时间要少于50%。
最好有间歇。
电平型的接收头只要接收到38K红外线就输出持续低电平,用起来非常爽,以前的老式接收头多半是这种类型,但其有个致命弱点:抗干扰性太差,传输距离短(小于1m)。
而脉冲型一体化红外线接收头必须接受一定频率38K的载波的基带信号才有正常输出,如发送500HZ的38K载波,脉冲型一体化红外线接收头输出500HZ方波,而如果发送连续的38K载波就会出项有瞬间低电平其后为高电平的现象。
这种脉冲型一体化红外线接收头克服了传统电平型接收头的不足:传输距离相对更远,稳定性大大增加,抗干扰性更强。
因此已经完全取代了老式的电平型接受头,在电子市场如不说明店主给你的绝对是脉冲性的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
38kHz 红外发射与接收
红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。
1.红外线的特点
人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。
由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。
红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。
红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。
电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。
2.红外线发射和接收
人们见到的红外遥控系统分为发射和接收两部分。
发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。
常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。
一般有透明、黑色和深蓝色等三种。
判断红外发光二极管的好坏与判断普通二极管一样的方法。
单只红外发光二极管的发射功率约100mW。
红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。
接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。
红外接收二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。
然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。
红外线一体化接收头是集红外接收、
放大、滤波和比较器输出等的模块,性能稳定、可靠。
所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。
图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。
接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。
红外接收头的主要参数如下:
工作电压:4.8~5.3V
工作电流:1.7~2.7mA
接收频率:38kHz
峰值波长:980nm
静态输出:高电平
输出低电平:≤0.4V
输出高电平:接近工作电压
3.红外线遥控发射电路
红外线遥控发射电路框图如图4所示。
框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单、也可以很复杂。
例如用于电视机、VCD、DVD和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活。
前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般电子技术人员和电子爱好者的编码。
图4中的38kHz振荡器即载波信号比较简单,但专业用的和业余用的也有区别,专业用的振荡器采用了晶振,而后者一般是RC振荡器。
例如彩电红外遥控器上的发射端用了455kHz的晶振,是经过整数分频的,分频系数为12,即455kHz÷12= 37.9kHz。
当然也有一些工业用的遥控系统,采用36kHz、40kHz或56kHz等的载波信号。
因红外遥控器的控制距离约10米远,要达到这个指标,其发射的载波频率(38kHz)要求十分稳定,而非专业用的RC(38kHz)载波频率稳定性差,往往偏离38kHz甚至很远,这就大大缩短了遥控器的控制距离。
因晶振频率十分稳定,所以专业厂家的遥控器全部采用晶振的38kHz作遥控器的载波发送信号。
图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收、解调输出、再作处理。
利用红外线的特点,可以制作多路遥控器。
在遥控发射电路中,有两种电路,即编码器和38kHz载波信号发生器。
在不需要多路控制的应用电路中,可以使用常规集成电路组成路数不多的红外遥控发射和接收电路,该电路无需使用较复杂的专用编译码器,因此制作容易。
4.频分制编码的遥控发射器
在红外发射端利用专用(彩电、VCD、DVD等)的红外编码通讯协议作编码器,对一般电子技术人员或业余爱好者来说,是难于实现的,但对路数不多的遥控发射电路,可以采用频分制的方法制作编码器,而对一路的遥控电路,还可以不用编码器,直接发射38kHz红外信号,即可达到控制的目的。
图5是一种一路的红外遥控发射电路,在该电路中,使用了一片ICl高速CMOS型4-2输入的“与非”门74HC00集成电路,组成低频振荡器作编码信号(f1),用IC2 555电路作载波振荡器,振荡频率为f0(38kHz)。
f1对f0进行调制,所以IC2的③脚的波形是断续的载波,该载波经红外发光二极管发送到空间。
电路中的关键点A、B、B’波形如图2所示,其中B’是未调制的波形。
在图5中,选用了555电路作载波振荡器,其目的是说明电路的调制工作原理,即利用大家熟悉的555产生38kHz方波信号,再利用555的复位端④脚作调制端,即当④脚为高电平时,555是常规的方波振荡器;当④脚为低电平时,555的③脚处于低电平。
④脚的调制信号是由ICl的与非门的低频振荡器而获得。
在实际应用中,遥控发射器是3V电池供电,为此只需把555电路ICl剩余的两个与非门组成的38kHz取而代之,如图7所示。
注意:这里未引用CMOS 4-2输入的“与非”门CD4011作图5电路中的编码器和载波发生器,是因为CD4011作振荡产生方波信号时,属于模拟信号的应用。
为了保证电路可靠起振,其工作电压需4.5V以上,而74HC00的CMOS集成电路的最低工作电压为2V,所以使用3V电源,完全可以可靠的工作。
5.遥控接收解调电路
图8为红外接收解调控制电路,图8中IC2是LM567。
LM567是一种锁相环集成电路,采用8脚双列直插塑封装,工作电压为+4.75~+9V,工作频率从直流到500kHz,静态电流约8mA。
⑧脚为输出端,静态时为高电平,是由内部的集电极开路的三极管构成,允许最大灌电流为100mA。
鉴于LM567的内部电路较复杂,这里仅介绍该电路的基本功能。
LM567的⑤、⑥脚外接的电阻(R3+RP)和电容C4,决定了内部压控振荡器的中心频率f01,f01=1/1.1RC,①、②脚接的电容C3、C4到地,形成滤波网络,其中②脚的电容C2,决定锁相环路的捕捉带宽,电容值越大,环路带宽越窄。
①脚接的电容C3为②脚的2倍以上为好。
弄清了LM567的基本组成后,再来分析图8电路的工作过程。
ICl是红外接收头,它接收图1发出的红外线信号,接收的调制载波频率仍为3 8kHz,接收信号经ICl解调后,在其输出端OUT输出频率为f1(见图2)的方波信号,只要将LM567的中心频率f01调到(用RP)与发射端f1(见图2)相同,即f0 1=fl,则当发射端发射时,LM567开始工作,⑧脚由高电平变为低电平,该低电平使三极管8550导通,在A点输出开关信号驱动D触发锁存器,再由它驱动各种开关电路工作。
这样,只要按一下图1电路的微动开关K,即发射红外线,接收电路图4即可输出开关信号开通控制电路,再按一下开关K,控制开关信号关闭,这就完成了完整的控制功能。
6. 小结
利用图5和图8的电路,可以实现多路遥控器,即在发射端,将ICl组成的低频振荡器,其电路模式不变,只改变电阻R2,即可构成若干种R组成的多个频率不同的低频振荡器(即编码),利用微动开关转接,38kHz的载波电路共用;在接收电路中,一体化红外接收头共用,再设置与接收端编码器相同个数的LM5 67锁相器和后级锁相驱动控制电路,各锁相环的振荡频率与各编码器的低频编码信号的频率对应相等。
这样发射端(图5)按压不同的按钮,载波信号接入不同频率编码的调制信号时,在接收端(图8),各对应的LM567的⑧脚的电平会发生变化,从而形成多路控制信号。
上述所述的工作方式,称为频分制的编码方式。
这种频分制工作方式,其优点是可实现多路控制,但缺点是电路复杂,对于路数不多的控制电路,因电路工作原理简单,对一般电子技术人员仍然是有用的。
系统分类: 接口电路 | 用户分类: 硬件电路与通讯接口 | 来源: 整
理 | 【推荐给朋友】 | 【添加到收藏夹】。