初中数学最新版《怎样判定三角形相似3》精品导学案(2022年版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30365445F E B A §怎样判定三角形相似〔3〕
学习目标
1、知识目标:通过鼓励—引导—类比—讨论,使学生自己发现、总结相似三角形判定的第二预备定理和三角形相似的判定定理1.
2、能力目标:在课堂教学过程中,培养学生深入思考,适当变式和思维发散的能力,使学生感受数学对称美,开展学生创造性.
3、情感、态度与价值观:培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值.
重难点、关键
1.重点:会应用相似三角形的两个判定方法.
2.难点:怎样选择合格的判定方法来判定两个三角形相似.
3.关键:抓住判定方法的条件,通过条件的分析,•把握图形的结构特点.
学习过程
一、自主探究
1、阅读教材14页观察与思考,总结相似三角形的判定方法二:
______________________________________________________________________________________________________________________________ .
2、证明图中△AEB 和△FEC 相似.
二、自我训练
在△ABC 中,E 是AB 上一点,D 是AC 上一点,AE=6cm,AC=15cm ,AD=8cm,AB=20cm.求证:△AED ∽△ACB. 三、合作互动 阅读教材16页观察与思考,总结相似三角形的判定方法三:。

四、精讲例题
自学17页例3,写出解题过程.
五、拓展延伸
如图,Q 是正方形ABCD 中CD 边的中点,P 是BC 边上一点,且BP=3PC ,•请问∠DAQ 是否与∠PQC 相似?说明理由.
当堂达标训练
一、填空题
1、 如图,在△ABC 中,点D 、E 分别在边AB 、AC DE= .
2、一个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 相似.(填“一定〞、“不一定〞或“一
定不〞).
二、选择题
1、相同时刻的物高与影长成比例.如果一电线杆在地面上的影长为50m ,同时,高为1m 的测杆的影长为
2m ,那么电线杆的高度为〔 〕
2、在△ABC 中,BC=5cm,CA=45cm,AB=46cm,另一个与它相似的三角形的最短边是15cm ,那么最长边是( )
A.138cm
B.3
46 3、△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么以下各式正确的选项是( ) A.DB AD =EC BF B.AC AB =FC EF C.DB AD =FC BF D.EC AE =BF
AD 4、在△ABC 中,AB=AC,∠A=36°,∠ABC 的平分线交AC 于D ,那么构成的三个三角形中,相似的是( )
A.△ABD ∽△BCD
B.△ABC ∽△BDC
C.△ABC ∽△
5、以下判断中,正确的选项是( )
°的两个等腰三角形相似
°的两个等腰梯形相似
°的两个等腰三角形相似
三、解答题
1、:∠ABC=∠CDB=90°,AC=a ,BC=b ,当BD 与a 、b 之间满足怎样的关系时,△ABC ∽△CDB ?〔10分〕
2、以各小正方形的顶点为顶点的三角形称为格点三角形,如图中的△ABC,请在图中画出与△ABC 相似但不全等的三角形. 课堂总结,提高认识
1.教师提问:
〔1〕相似三角形的判定有几种方法?如何选择这些方法? 〔2〕相似三角形具有哪些性质?通常可以用来证明哪些问题?
〔3〕你通过这两节课内容的学习,在推理方面是否有提高? 2.归纳:判定三角形相似的主要思路: 〔1〕有两对边成比例的,一般有两个途径:一是夹角相等;•二是找第三边成比例.
〔2〕有一对等角的,一般有两个途径:一是找另一对等角;•二是找到夹边成比例.
教后感:
第2课时 代数式的值
【知识与技能】
能熟练地求代数式的值,感受代数式求值可以理解为一个转换过程或一个算法.
【过程与方法】
通过感受字母取值的变化与代数式值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律,提高应用知识的能力.
【情感态度】
在与他人交流过程中,感受数学活动的生动魅力,激发学生学习数学的兴趣.
【教学重点】
会求代数式的值并解释代数式值的实际意义.
【教学难点】
利用代数式求值推断代数式所反映的规律.
一、情境导入,初步认识
一位医生研究得出由父母身高预测子女成年后身高的公式:儿子身高是由父母身高的和的一半,再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2.
〔1〕父亲身高a 米,母亲身高b 米,试用代数式表示儿子和女儿的身高;
〔2〕女生小红父亲身高1.75米,母亲身高1.62米;男生小明的父亲身高1.70米,母亲身高1.60米.预测成年以后小红和小明谁个子高?
B A C
【教学说明】利用学生十分关注的身高问题,调动起学生的兴趣,由此也告知学生数学来源于生活.
二、思考探究,获取新知
1.求代数式的值
问题1 教材第81页的“做一做〞.
【教学说明】学生先了解身体质量指数的计算方法,然后列出代数式,再根据给出的数值求出代数式的值,体会求代数式值的方法.
【归纳结论】求代数式的值分两步完成;〔1〕代入;〔2〕计算.
问题2 教材第81页“议一议〞上面的内容.
【教学说明】学生通过计算,掌握求代数式值的方法.
【归纳结论】用具体数值代替代数式里的字母,按照代数式指明的运算计算出的结果叫代数式的值.代数式的值随着代数式中字母取值的变化而变化.
2.认识数值转换机
下面是一对“数值转换机〞写出图①的输出结果;写出图②的运算过程及输出结果.
【教学说明】使学生感受代数式求值可以理解为一个转换过程或某种算法.
三、运用新知,深化理解
1.填空:〔1〕a,b互为相反数,c,d互为倒数,那么2(a+b)-3cd的值为________.
〔2〕当a=3,b=1时,代数式2
2
a b
的值为________.
2.如图是一数值转换机,假设输入的x为-5,那么输出的结果为________.
3.教材第84页的“随堂练习〞第1题.
4.教材第84页下方的“随堂练习〞第2题.
答案:
1.-3 〔2〕5 2 .
3.〔1〕在6%akg到7.5%akg之间;
〔2〕在2.1kg到2.6kg之间;〔3〕略.
4.〔1〕
〔2〕物体在地球上下落得快;
〔3〕把h=20m分别代入ht2和ht2,得t〔地球〕≈2〔s〕,t(月球)=5(s).
四、师生互动,课堂小结
1.让学生充分发表自己的感受,相互补充.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?
【板书设计】
1.布置作业:教材“〞第1、2、5题.
2.完成练习册中本课时的相应作业.
这节课学生进一步理解了代数式和代数式值的概念,锻炼学生的计算能力,激发学生的兴趣.。

相关文档
最新文档