化州市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化州市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知平面向量(12)=,
a ,(32)=-,
b ,若k +a b 与a 垂直,则实数k 值为( ) A .1
5
- B .119 C .11 D .19
【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 2. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的
1
2
,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的
16
3. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )
4. 函数f (x )=1﹣xlnx 的零点所在区间是( ) A .(0
,) B
.(,1) C .(1,2) D .(2,3)
5. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,
N ,P 的关系( )
A .M P N =⊆
B .N P M =⊆
C .M N P =⊆
D .M P N ==
6. 复数i i
i
z (21+=
是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 7. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则7
4
S a =( ) A .
74 B .14
5
C .7
D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.
8. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x
B x x R =≤∈,则集合U A
C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.
9. 定义运算:,,a a b
a b b a b
≤⎧*=⎨
>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )
A .⎡⎢⎣⎦
B .[]1,1-
C .,12⎤⎥⎣⎦
D .1,2⎡-⎢⎣⎦ 10.记集合{}
2
2
(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x
y =+3?表示的平面区域分别为Ω1,Ω2,
若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .
12p B .1p C .2
p
D .13p
【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 11.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则
实数的取值范围是( )111] A .)2
2,
0( B .)33,0( C .)55,0( D .)66
,0(
12.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =
-++-+-在02π⎡⎤
-⎢⎥⎣⎦
,上单调递增,则实数的取值范围为( ) A .117⎡⎤
⎢⎥⎣⎦
, B .117⎡
⎤-⎢⎥⎣
⎦,
C.1
(][1)7
-∞-+∞,,
D .[1)+∞,
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .
14.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分
别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
15.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,则
+
+…+= .
16.若log 2(2m ﹣3)=0,则e lnm ﹣1= .
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.
(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;
(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.
18.(本题满分15分)
正项数列}{n a 满足12
1223+++=+n n n n a a a a ,11=a .
(1)证明:对任意的*
N n ∈,12+≤n n a a ;
(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*
N n ∈,32121
<≤-
-n n S .
【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解
决问题的能力.
19.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.
20.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.
(1)证明://MN 平面PAB ;
(2)求直线AN 与平面PMN 所成角的正弦值;
21.如图,四边形ABEF 是等腰梯形,,2,AB EF AF BE EF AB ====
ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.
(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .
22.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;
(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]
化州市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】A
2. 【答案】A 【解析】
试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2
113
V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为2
22111(2)326V r h r h ππ=⨯=,所以12
2V V =,故选A.
考点:圆锥的体积公式.1 3. 【答案】B
【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题, 可推出¬p 为假命题,q 为假命题, 故为真命题的是p ∨q , 故选:B .
【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真.
4. 【答案】C
【解析】解:∵f (1)=1>0,f (2)=1﹣2ln2=ln <0, ∴函数f (x )=1﹣xlnx 的零点所在区间是(1,2). 故选:C .
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
5. 【答案】A 【解析】
试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.
考点:两个集合相等、子集.1 6. 【答案】A 【解析】()12(i)
122(i)
i i z i i i +-+=
==--,所以虚部为-1,故选A.
7. 【答案】C.
【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d
=+⇒+=+++,化简得1a d =-,∴17
4
176
7142732a d
S d a a d d
⋅+
===+,故选C.
8. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
9. 【答案】D 【解析】
考
点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
10.【答案】A
【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D
及其内部,由几何概型得点M 落在区域Ω2内的概率为1
1
2P ==p 2p
,故选A.
11.【答案】B 【解析】
试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,
()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,
()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,
()x g 在()+∞,0上单调递减,则⎩⎨
⎧-><<23log 10a
a ,解得:33
0<<a 故选A .
考点:根的存在性及根的个数判断.
【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的
图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.
12.【答案】D 【
解
析
】
考
点:1、导数;2、单调性;3、函数与不等式.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】9
8
【
解
析
】
【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有
时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 14.【答案】512
【
解
析
】
15.【答案】 .
【解析】解:点An (n ,
)(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,
=
,
=
,…, =,
∴
+
+…+
=
+…+
=1﹣
=
,
故答案为:.
【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
16.【答案】.
【解析】解:∵log2(2m﹣3)=0,
∴2m﹣3=1,解得m=2,
∴e lnm﹣1=e ln2÷e=.
故答案为:.
【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.【答案】
【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.
18.【答案】(1)详见解析;(2)详见解析.
19.【答案】16
y x =-. 【解析】
试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线
12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1
考点:直线方程的求解.
20.【答案】(1)证明见解析;(2.
【解析】
试题解析:
(2)在三角形AMC 中,由2
2,3,cos 3
AM AC MAC ==∠=
,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,
∴平面ABCD ⊥平面PAD ,且平面ABCD
平面PAD AD =,
∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,
在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。
在Rt PAM ∆中,由PA AM PM AF =,得AF =sin ANF ∠=
所以直线AN 与平面PMN .1
考点:立体几何证明垂直与平行.
21.【答案】(1)证明见解析;(2)证明见解析. 【解析】
考
点:直线与平面平行的判定;直线与平面垂直的判定. 22.【答案】(1)13|{<<-x x 或}3>x ;(2). 【
解
析
】
试
题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)
(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m
∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1。