成都石室联合中学蜀华分校七年级上册数学期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都石室联合中学蜀华分校七年级上册数学期末试卷及答案-百度文库
一、选择题
1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )
A .3a+b
B .3a-b
C .a+3b
D .2a+2b
2.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )
A .1
212∠-∠
B .132122
∠-∠
C .1
2()12
∠-∠
D .21∠-∠
3.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )
A .3∠和5∠
B .3∠和4∠
C .1∠和5∠
D .1∠和4∠
4.下列方程是一元一次方程的是( ) A .
2
1
3+x =5x B .x 2+1=3x C .3
2y
=y+2 D .2x ﹣3y =1
5.计算32a a ⋅的结果是( ) A .5a ;
B .4a ;
C .6a ;
D .8a .
6.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .100500
62x x += B .1005006x 2x += C .
10040062x x
+=
D .
100400
6x 2x
+= 7.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:
①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
8.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm
B .3cm
C .3cm 或6cm
D .4cm
9.﹣2020的倒数是( ) A .﹣2020
B .﹣
1
2020
C .2020
D .
1
2020
10.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)
B .(3,3)
C .(2,3)
D .(3,2)
11.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )
A .2
B .1
C .0
D .-1
12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为
( )
A .8
B .12
C .18
D .20
二、填空题
13.5535______. 14.写出一个比4大的无理数:____________.
15.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.
16.﹣30×(
1223-+4
5
)=_____. 17.分解因式: 2
2xy xy +=_ ___________
18.若1
2
x y =⎧⎨
=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.
19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.
20.计算:3+2×(﹣4)=_____.
21.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.
22.已知代数式
235x -与2
33
x -互为相反数,则x 的值是_______. 23.已知7635a ∠=︒',则a ∠的补角为______°______′.
24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.
三、解答题
25.数学问题:计算231111
n m m m
m
++++
(其中m ,n 都是正整数,且m ≥2,n ≥1).
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算
23
11112222n
++++
. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为
12
; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为
12+2
12; 第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为
1 2+
2
1
2
+
3
1
2
+…+
1
2n
,最后空白部分的面积是
1
2n

根据第n次分割图可得等式:1
2
+
2
1
2
+
3
1
2
+…+
1
2n
=1﹣
1
2n

探究二:计算1
3
+
2
1
3
+
3
1
3
+…+
1
3n

第1次分割,把正方形的面积三等分,其中阴影部分的面积为2
3

第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为
2 3+
2
2
3

第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为
2 3+
2
2
3
+
3
2
3
+…+
2
3n
,最后空白部分的面积是
1
3n

根据第n次分割图可得等式:2
3
+
2
2
3
+
3
2
3
+…+
2
3n
=1﹣
1
3n

两边同除以2,得1
3
+
2
1
3
+
3
1
3
+…+
1
3n
=
1
2

1
23n

探究三:计算
14+214+314+…+14
n . (仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)
解决问题:计算
1m +21m +31m +…+1
n m
. (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式:_________, 所以,
1m +21m +31m +…+1
n m
=________. 拓广应用:计算515- +22515-+33515-+…+51
5
n n -. 26.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示: 时段
8:00~9:00
10:00~11:00
12:00~13:00
14:00~15:00
16:00~17:00
客流量(人)
-21 +33 -12 +21 +54
(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)
(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?
(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?
27.计算与解方程:
(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|; (2)12°24′17″×4﹣30°27′8″;
(3)
421123
x x -+-=. 28.已知线段m 、n .
(1)尺规作图:作线段AB ,满足AB =m+n (保留作图痕迹,不用写作法);
(2)在(1)的条件下,点O 是AB 的中点,点C 在线段AB 上,且满足AC =m ,当m =5,n =3时,求线段OC 的长.
29.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.
(1)写出a 、b 的值;
(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;
(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度? 30.计算:﹣0.52+
1
4
﹣|22﹣4| 四、压轴题
31.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.
(1)求a 、b 、c 的值;
(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;
(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.
32.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;
(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.
33.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.
【详解】
∵线段AB长度为a,
∴AB=AC+CD+DB=a,
又∵CD长度为b,
∴AD+CB=a+b,
∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,
故选A.
【点睛】
本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.
2.C
解析:C
【解析】
【分析】
由图知:∠1和∠2互补,可得∠1+∠2=180°,即1
2
(∠1+∠2)=90°①;而∠1的余角
为90°-∠1②,可将①中的90°所表示的1
2
(∠1+∠2)代入②中,即可求得结果.
【详解】
解:由图知:∠1+∠2=180°,

1
2
(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=1
2
(∠2-∠1). 故选:C . 【点睛】
此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.
3.A
解析:A 【解析】 【分析】
两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】
A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,
B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,
C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,
D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】
本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.
4.A
解析:A 【解析】 【分析】
只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、
2
1
3+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、
3
2y
=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】
解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格
按照定义解题.
5.A
解析:A 【解析】
此题考查同底数幂的乘法运算,即(0)m
n
m n
a a a a +⋅=>,所以此题结果等于325a a +=,
选A ;
6.D
解析:D 【解析】 【分析】
根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程. 【详解】
设该厂原来每天加工x 个零件, 根据题意得:100400
6x 2x
+= 故选:D . 【点睛】
此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
7.C
解析:C 【解析】
①∵AD 平分△ABC 的外角∠EAC , ∴∠EAD=∠DAC ,
∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB , ∴∠EAD=∠ABC , ∴AD ∥BC , 故①正确. ②由(1)可知AD ∥BC , ∴∠ADB=∠DBC , ∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABC=2∠ADB , ∵∠ABC=∠ACB , ∴∠ACB=2∠ADB , 故②正确.
③在△ADC 中,∠ADC+∠CAD+∠ACD=180°, ∵CD 平分△ABC 的外角∠ACF ,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°
∴∠ADC=90°−∠ABD,
故③正确;
④∵∠BAC+∠ABC=∠ACF,
∴1
2
∠BAC+
1
2
∠ABC=
1
2
∠ACF,
∵∠BDC+∠DBC=1
2
∠ACF,
∴1
2
∠BAC+
1
2
∠ABC=∠BDC+∠DBC,
∵∠DBC=1
2
∠ABC,
∴1
2
∠BAC=∠BDC,即∠BDC=
1
2
∠BAC.
故④错误.
故选C.
点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.
8.D
解析:D
【解析】
【分析】
根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.
【详解】
当点C在AB的延长线上时,如图1,则MB=MC-BC,
∵M是AC的中点,N是BC的中点,AB=8cm,
∴MC=11
()
22
AC AB BC
=+,BN=
1
2
BC,
∴MN=MB+BN,=MC-BC+BN,
=1
()
2
AB BC
+-BC+
1
2
BC,
=1
2 AB,
=4,
同理,当点C在线段AB上时,如图2,
则MN=MC+NC=1
2
AC+
1
2
BC=
1
2
AB=4,

故选:D.
【点睛】
本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.9.B
解析:B
【解析】
【分析】
根据倒数的概念即可解答.
【详解】
解:根据倒数的概念可得,﹣2020的倒数是
1 2020 ,
故选:B.
【点睛】
本题考查了倒数的概念,熟练掌握是解题的关键.
10.C
解析:C
【解析】
【分析】
根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.
【详解】
∵(1,2)表示教室里第1列第2排的位置,
∴教室里第2列第3排的位置表示为(2,3),
故选C.
【点睛】
本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 11.A
解析:A
【解析】
【分析】
根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.
【详解】
解:如图:
∵|AD|=|6-(-5)|=11,2AB=BC=3CD,
∴AB=1.5CD,
∴1.5CD+3CD+CD=11,
∴CD=2,
∴AB=3,
∴BD=8,
∴ED=1
2
BD=4,
∴|6-E|=4,
∴点E所表示的数是:6-4=2.
∴离线段BD的中点最近的整数是2.
故选:A.
【点睛】
本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
12.A
解析:A
【解析】
【分析】
根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.
【详解】
解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,
长方体的容积是4×2×1=8,
故选:A.
【点睛】
本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.
二、填空题
13.【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:,5,都大于0,
则,

故答案为:.
【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进
5<<
【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:50,
则62636555=<=<,
5<<,
5<
<.
【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 14.答案不唯一,如:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4大的无理数如.
故答案为.
【点睛】
本题考查了估算无理数的大小,实数的
解析:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4

【点睛】
本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.
15.-3
【解析】
【分析】
根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.
【详解】
解:将代入方程得到,变形得到,所以=
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方
解析:-3
【解析】
【分析】
根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.
【详解】
解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以
241a b -+=2(2)1 3.a b -+=-
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.
16.﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.
【详解】
解:﹣30×(+)
=﹣30×+(﹣30)×()+(﹣30)×
=﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛
解析:﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.
【详解】
解:﹣30×(1223-+45

=﹣30×1
2
+(﹣30)×(
2
3
-)+(﹣30)×
4
5
=﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 17.【解析】
【分析】
原式提取公因式xy,即可得到结果.
【详解】
解:原式=xy(2y+1),
故答案为:xy(2y+1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本
解析:xy(2y1)
+
【解析】
【分析】
原式提取公因式xy,即可得到结果.
【详解】
解:原式=xy(2y+1),
故答案为:xy(2y+1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.
18.3
【解析】
【分析】
把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.
【详解】
解:把代入方程组得:,
①+②得:3(a+b)=9,
则a+b=3,
故答案为:3.

解析:3
【解析】
【分析】
把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】
解:把
1
2
x
y
=


=

代入方程组得:
27
22
a b
b a
+=


+=


①+②得:3(a+b)=9,
则a+b=3,
故答案为:3.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
19.26,5,
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;

解析:26,5,4 5
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;
若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;
若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=4
5;
若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−1
25
(负数,
舍去);
故满足条件的正数x值为:
26,5,4
5.
【点睛】
本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.
20.﹣5
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是
解析:﹣5
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.
解析:5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.5.
【点睛】
本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.
22.【解析】
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.
【详解】
∵与互为相反数

解得:
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键
解析:27 8
【解析】
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.【详解】
∵23
5
x-

2
3
3
x-互为相反数
∴232
30 53
-⎛⎫
+-=

⎝⎭
x
x
解得:
27
8 x=
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.23.25
【解析】
【分析】
根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.
【详解】
的补角为
故答案为103;25.
【点睛】
此题主要考查补角的求解,熟练掌握,即可解题
解析:25
【解析】
【分析】
根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.
【详解】
a ∠的补角为180762313550'='︒-︒︒
故答案为103;25.
【点睛】
此题主要考查补角的求解,熟练掌握,即可解题.
24.46°
【解析】
【分析】
根据∠2=180°
-∠COE-∠1,可得出答案. 【详解】
解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.
故答案为:46°
. 【点睛】
解析:46°
【解析】
【分析】
根据∠2=180°-∠COE-∠1,可得出答案.
【详解】
解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.
故答案为:46°.
【点睛】
本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB 是平角且它等于∠1、∠2和∠COE 三个角之和是解题关键.
三、解答题
25.【答题空1】
2333331144444n n ++++=- 【答题空2】
111(1)n
m m m ---⨯ 【解析】
【分析】 探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;
解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m-1)即可得解; 拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.
【详解】
探究三:第1次分割,把正方形的面积四等分,
其中阴影部分的面积为34
; 第2次分割,把上次分割图中空白部分的面积继续四等分, 阴影部分的面积之和为
23344+; 第3次分割,把上次分割图中空白部分的面积继续四等分,
…, 第n 次分割,把上次分割图中空白部分的面积最后四等分, 所有阴影部分的面积之和为:
2333334444n ++++, 最后的空白部分的面积是14n , 根据第n 次分割图可得等式:
2333334444n ++++=1﹣14n , 两边同除以3,得2311114444n ++++=11334n -⨯; 解决问题:231111n m m m m m m m m ----++++=1﹣1n m , 231111n m m m m
++++=()1111n m m m ---⨯; 故答案为2333334444n ++++=1﹣14
n ,()1111n m m m ---⨯;
拓广应用:
23
23
51515151 5555
n
n
----
++++,
=1﹣1
5
+1﹣
2
1
5
+1﹣
3
1
5
+ (1)
1
5n

=n﹣(1
5
+
2
1
5
+
3
1
5
+…+
1
5n
),
=n﹣(1
4
﹣1
45n

),
=n﹣1
4
+
1
45n


【点睛】
本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.
26.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元.
【解析】
【分析】
(1)通过题目和表格中的数据,可以算出各个时间段的客流量,将各个时间段的客流量相加算出平均数,来估算出一天的客流量,从而估算出一周的客流量.
(2)根据问题设出男顾客与女顾客购买服装的套数,再根据一天的客流量可算出问题的答案.
(3)根据第二问提供的信息,可以估算出一周的营业额.
【详解】
(1)根据题目和表格可得
8:00~9:00的客流量为:200-21=179(人)
10:00~11:00的客流量为:200+33=233(人)
12:00~13:00的客流量为:200-12=188(人)
14:00~15:00的客流量为:200+21=221(人)
16:00~17:00的客流量为:200+54=254(人)
这几个时间段的客流量平均数为:
(179+233+188+221+254)÷5
=1075÷5
则一天的客流量为:215×(18-8)=215×10=2150(人)
故一周的客流量为:2150×7=15050≈15100=1.51×104(人)
(2)设这一天卖出女装x套,男装(135-x)套,根据题意得,
15x+20(135-x)=2150,
解得,x=110,
135-x=135-110=25.
故这一天卖出男装25套,女装110套.
(3)因为第二问中某一天出售男装25套,女装110套,每套女装的售价为80元,每套男装的售价为120元
所以此店一周的营业额约为:
[(25×120)+(110×80)]×7
=[3000+8800]×7
=11800×7
=82600(元)
故此店一周的营业额约为82600元.
【点睛】
本题考查正数和负数的加法、解方程组、数据的估算,注意第一问中精确到百位.
27.(1)﹣2;(2)19°10′;(3)x=4
7.
【解析】
【分析】
(1)根据有理数的混合运算法则及运算顺序依次计算即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答求解.
【详解】
解:(1)原式=﹣9+9﹣6+4,
=﹣2;
(2)原式=48°96′68″﹣30°27′8″,
=18°69′60″,
=19°10′;
(3)3(4﹣x)﹣2(2x+1)=6,
12﹣3x﹣4x﹣2=6,
﹣7x=﹣4,
x=4
7.
【点睛】
本题考查了有理数的混合运算、度分秒的计算及解一元一次方程,熟练运用有理数的混合运算法则及运算顺序、度分秒的计算以及一元一次方程的解法是解决问题的关键.
28.(1)见解析;(2)1
2
m﹣
1
2
n
【分析】
(1)依据AB =m+n 进行作图,即可得到线段AB ;
(2)依据中点的定义以及线段的和差关系,即可得到线段OC 的长.
【详解】
解:(1)如图所示,线段AB 即为所求;
(2)如图,∵点O 是AB 的中点, ∴AO =
12AB =12(m+n ), 又∵AC =m ,
∴OC =AC ﹣AO =m ﹣12(m+n )=12m ﹣12
n . 【点睛】 本题主要考查了基本作图,解决问题的关键是掌握作一条线段等于已知线段的方法.
29.(1)a =20,b =﹣10;(2)20+
2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度
【解析】
【分析】
(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;
(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;
(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503
时,点C 表示的数为20﹣3(t ﹣203
)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503
,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.
【详解】
解:(1)∵(a ﹣20)2+|b+10|=0,
∴a ﹣20=0,b+10=0,
∴a =20,b =﹣10.
(2)∵设P 表示的数为x ,点A 表示的数为20,M 是AP 的中点.
∴点M 表示的数为202
x .
又∵点B 表示的数为﹣10,
∴BM =202x +﹣(﹣10)=20+2
x . (3)当0≤t≤
203时,点C 表示的数为3t ; 当203<t≤503时,点C 表示的数为:20﹣3(t ﹣203
)=40﹣3t ; 当0≤t≤5时,点D 表示的数为﹣2t ;
当5<t≤20时,点D 表示的数为:﹣10+2(t ﹣5)=2t ﹣20.
当0≤t≤5时,CD =3t ﹣(﹣2t )=5,
解得:t =1;
当5<t≤203
时,CD =3t ﹣(2t ﹣20)=5, 解得:t =﹣15(舍去); 当203<t≤503
时,CD =|40﹣3t ﹣(2t ﹣20)|=5, 即60﹣5t =5或60﹣5t =﹣5,
解得:t =11或t =13.
答:1秒、11秒或13秒后,C 、D 两点相距5个单位长度.
【点睛】
本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a ,b 的值;(2)根据各点之间的关系,用含x 的代数式表示出BM 的长;(3)找准等量关系,正确列出一元一次方程.
30.【解析】
【分析】
先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.
【详解】
2210.5244
-+-- 10.25444
=-+-- 10.2504
=-+
- =0.
【点睛】 本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.
四、压轴题
31.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-44
3
或4;(3) 当Q点开始运动后第
6、21秒时,P、Q两点之间的距离为8,理由见解析
【解析】
【分析】
(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;
(2)分两种情况讨论可求点P的对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.
【详解】
(1)∵|a+24|+|b+10|+(c-10)2=0,
∴a+24=0,b+10=0,c-10=0,
解得:a=-24,b=-10,c=10;
(2)-10-(-24)=14,
①点P在AB之间,AP=14×
2
21
=
28
3

-24+28
3
=-
44
3

点P的对应的数是-44
3

②点P在AB的延长线上,AP=14×2=28,
-24+28=4,
点P的对应的数是4;
(3)∵AB=14,BC=20,AC=34,
∴t P=20÷1=20(s),即点P运动时间0≤t≤20,
点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;
当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);
当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=46
3
<17(舍去);
当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=62
3
>20(舍去),
当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,
解得t=21;
综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.
【点睛】
此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题. 32.(1)图1中∠AOD=60°;图2中∠AOD=10°;
(2)图1中∠AOD=
n m 2+;图2中∠AOD=n m 2-. 【解析】
【分析】
(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;
(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=
n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2
+,故∠AOD=∠BOD ﹣∠AOB=
n m 2-. 【详解】
解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;
图2中∠BOC=∠AOC+∠AOB=120°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;
(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,
如图1中,
∠BOC=∠AOC ﹣∠AOB=n ﹣m ,
∵OD 是∠BOC 的平分线,
∴∠BOD=12∠BOC=n m 2
﹣,
∴∠AOD=∠AOB+∠BOD=n m 2
+; 如图2中, ∠BOC=∠AOC+∠AOB=m+n ,
∵OD 是∠BOC 的平分线,
∴∠BOD=
12∠BOC=n m 2
+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2
-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.
33.(1)x=1;(2) x =-3或x =5;(3) 30.
【解析】
【分析】
(1)根据题意可得4-x =x -(-2),解出x 的值;
(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;
(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.
【详解】
(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:
x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x ,解得:x =6,则5x =30,故答案为30个单位长度.
【点睛】
本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。

相关文档
最新文档