数列的概念练习题(有答案) 百度文库(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.在数列{}n a 中,12a =,1
1
1n n a a -=-(2n ≥),则8a =( ) A .1-
B .
12
C .1
D .2
2.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11
02
a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+
D .71089a a a a +>+
3.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件
4.
已知数列,21,
n -21是这个数列的( )
A .第10项
B .第11项
C .第12项
D .第21项
5.数列2345
1,,,,,3579
的一个通项公式n a 是( ) A .
21n
n + B .
23
n
n + C .
23
n
n - D .
21
n
n - 6.在数列{}n a 中,()11
11,1(2)n
n n a a n a --==+
≥,则5a 等于
A .
3
2
B .
53 C .85
D .
23
7.若数列的前4项分别是
1111,,,2345
--,则此数列的一个通项公式为( ) A .1(1)n n --
B .(1)n n -
C .1
(1)1
n n +-+
D .(1)1
n n -+
8.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220n
n x b x -+=的实数根,
则10b 等于( ) A .24
B .32
C .48
D .64
9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有
()()()f x f y f x y ⋅=+,若112
a =
,()()
*
n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )
A .
1324
n S ≤< B .
3
14
n S ≤< C .102
n S <≤
D .
1
12
n S ≤< 10.已知数列{}n a 的通项公式为()()2
11n
n a n
=--,则6a =( )
A .35
B .11-
C .35-
D .11
11.已知数列{}n a 满足1N a *
∈,1,2+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
,若{}n a 为周期数列,则1a 的
可能取到的数值有( ) A .4个
B .5个
C .6个
D .无数个
12.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列
{}n a 为周期数列,周期为T .
已知数列{}n a 满足()111,1
0,{1
,01n n n n n
a a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B
.若m =
,则数列{}n a 是周期为3的数列;
C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;
D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列.
13.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,
12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被
4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24
B .26
C .28
D .30
14.数列{}n a 满足12a =,111
1
n n n a a a ++-=+,则2019a =( ) A .3-
B .12-
C .
13
D .2
15.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4
B .6
C .8
D .10
16.数列{}n a 满足1
111,(2)2
n n n a a a n a --==≥+,则5a 的值为( )
A .
18
B .
17 C .
131
D .
16
17.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45
B .46
C .47
D .48
18.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32
f x f x f -=-=,数列
{}n a 满足11a =,且
21n n
S a n n
=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )
A .1
B .3
C .-3
D .0
19.已知数列{}n a 满足2
112n n n a a a +=+-,且112
a =,则该数列前2016项的和为( ) A .2015
B .2016
C .1512
D .
3025
2
20.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30
B .20
C .40
D .50
二、多选题
21.设数列{}n a 满足11
02
a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .
21
12
a << B .{}n a 是递增数列 C .2020312
a <<
D .
20203
14
a << 22.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为
b n (n ∈N *),则( )
A .4(b 2020-b 2019)=πa 2018·a 2021
B .a 1+a 2+a 3+…+a 2019=a 2021-1
C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021
D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0
23.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4
B .-2
C .0
D .2
24.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
25.(多选)在数列{}n a 中,若2
2
1(2,,n n a a p n n N p *
--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .
(){}1n
- 是等方差数列
C .{}2
n
是等方差数列.
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 26.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >
B .130S >,140S <,则78a a >
C .若915S S =,则n S 中的最大值是12S
D .若2
n S n n a =-+,则0a =
27.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12
d =
B .12
d =-
C .918S =
D .936S =
28.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减
D .数列{}n S 有最大值
29.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=
B .27S S =
C .5S 最小
D .50a =
30.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-
B .310n
a n
C .2
28n S n n =- D .2
4n S n n =-
31.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{
}n
a n
是递增数列 D .数列{}3n a nd +是递增数列
32.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .(
)
*
2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
33.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
34.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .24
37
d -
<<- C .S n <0时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项
35.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.B 解析:B
【分析】
通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =-
-,3211121a a =-=-=-,43
1
1112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥
8521
2
a a a ∴===
, 故选:B. 【点睛】
本题考查数列的周期性,考查递推公式的应用,是基础题.
2.C
解析:C 【分析】 由递推公式1221n n n a a a ++=
+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫
∈ ⎪⎝⎭
,利用递推公式推导得
出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列
{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.
【详解】
()()
113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()
12
1259245221545944221454544452121
n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,
且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()
2
1212
2121
n n n n n n n a a a a a a a +-+-=-=
++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n
a a =-
∈+, 如此继续可得知()(
)
210,1n a n N *
-∈∈,则(
)2
21
21212141=
045
n n n n a a a a -+---->+,
所以,数列{}()21n a n N *
-∈单调递增;
同理可知,()21n
a n N *
>∈,数列{}()2n
a n N *
∈单调递减.
对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误;
对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】
本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列
{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.
3.A
解析:A 【分析】
根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】
{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,
充分性:
1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,
0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,
10n a +<,则1n n S S +<,不合乎题意;
若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.
所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;
必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.
所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.
因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】
本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.
4.B
解析:B 【分析】
根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】
令2121n -=,解得n =11是这个数列的第11项. 故选:B.
【点睛】
该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.
5.D
解析:D 【分析】
根据数列分子分母的规律求得通项公式. 【详解】
由于数列的分母是奇数列,分子是自然数列,故通项公式为21
n n
a n =-. 故选:D 【点睛】
本小题主要考查根据数列的规律求通项公式,属于基础题.
6.D
解析:D 【解析】
分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解234512
2323
a a a a ==
==,,,.故选D 点睛:对于含有()1n
-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.
7.C
解析:C 【分析】
根据数列的前几项的规律,可推出一个通项公式. 【详解】
设所求数列为{}n a ,可得出()11
1
111
a
+-=
+,()21
2
121
a
+-=
+,()31
3
131
a
+-=
+,()41
4
141
a
+-=
+,
因此,该数列的一个通项公式为()1
11
n n
a n +-=
+.
故选:C. 【点睛】
本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.
8.D
解析:D 【分析】
根据题意,得到1n n n a a b ++=,12n
n n a a +=,求得22a =,推出
1
1
2n n a a +-=,进而可求出
10a ,11a ,从而可求出结果.
【详解】
因为n a ,1n a +是方程220n
n x b x -+=的实数根, 所以1n n n a a b ++=,12n
n n a a +=,
又11a =,所以22a =;
当2n ≥时,1
12n n n a a --=,所以
11
112n n n n n n
a a a a a a ++--==, 因此4102232a a =⋅=,5
111232a a =⋅=
所以101011323264b a a =+=+=. 故选:D. 【点睛】
本题主要考查由数列的递推关系求数列中的项,属于常考题型.
9.D
解析:D 【分析】
根据题意得出111
2
n n n a a a a +==
,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】
取1x =,(
)y n n N
*
=∈,由题意可得()()()111
112
n n n a
f n f f n a a a +=+=⋅==
, 11
2n n a a +∴
=,所以,数列{}n a 是以12为首项,以12
为公比的等比数列, 11112211212n n n S ⎛⎫
- ⎪⎝⎭
∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即
1
12
n S ≤<. 故选:D. 【点睛】
本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.
10.A
解析:A 【分析】
直接将6n =代入通项公式可得结果.
【详解】 因为()()2
11n
n a n
=--,所以626(1)(61)35a =--=.
故选:A 【点睛】
本题考查了根据通项公式求数列的项,属于基础题.
11.B
解析:B 【分析】
讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】
已知数列{}n a 满足1N a *
∈,1,2
+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
. ①若11a =,则24a =,32a =,41a =,54a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
②若12a =,则21a =,34a =,42a =,51a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
③若13a =,则26a =,33a =,46a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,此时,{}n a 为周期数列;
④若14a =,则22a =,31a =,44a =,52a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意
的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,
此时,{}n a 为周期数列;
⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2
n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2
n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.
下面说明,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
(1)当(
34
12,2a ⎤∈⎦
且1N a *
∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(
()1
12,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么
当(
()1
212
,23,k k a k k N ++*
⎤∈≥∈⎦时.
若1a 为正偶数,则(11
22,22
k k a a +⎤=
∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则(
(1
213
2132
3,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,
由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.
综上所述,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】
本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.
12.C
解析:C 【解析】
试题分析:A:当01m <≤时,由34a =得1;125m m =
<≤时,由34a =得54
m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .
B:
234111,11,1,m a a a =>∴==
==> 所以3T =,正
确.
C :命题较难证明,先考察命题
D .
D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.
【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.
13.B
解析:B 【分析】
先写出新数列的各项,找到数列的周期,即得解. 【详解】
由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,
则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.
14.B
解析:B 【分析】
由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111
n n n a a a ++-=
+,可得111n
n n a a a ++=-,
由12a =,可得23a =-,312
a =-
,41
3a =,52a =,
由15a a =,可知数列{}n a 是周期数列,周期为4, 所以201931
2
a a ==-. 故选:B.
15.C
解析:C 【分析】
利用443a S S =-计算. 【详解】
由已知22
443(44)(33)8a S S =-=+-+=.
故选:C .
16.C
解析:C 【分析】
根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】
因为1
111,(2)2
n n n a a a n a --==
≥+,
所以211
123a =
=+,31131723a ==+,4117
11527a ==+,51
115131215
a ==+ 故选:C 17.C
解析:C 【分析】
利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】
当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C
18.C
解析:C 【分析】
判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】
依题意定义在R 上的函数()f x 是奇函数,且满足3()()2
f x f x -=, 所以()333332222f x f x f x f
x ⎛⎫⎛⎫⎛
⎫⎛
⎫+=---=--=-+ ⎪ ⎪ ⎪
⎪⎝⎭⎝⎭⎝
⎭⎝⎭ ()()()32f x f x f x ⎛⎫
=---=--= ⎪⎝⎭
,所以()f x 是周期为3的周期函数.
由
21n n S a n n
=-得2n n S a n =-①, 当1n =时,11a =,
当2n ≥时,()1121n n S a n --=--②,
①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),
所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,
652163a a =+=.
所以
56()()f a f a +=
()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-
故选:C 【点睛】
如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .
19.C
解析:C 【分析】
通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】 依题意,112
a =,
211122a =
,
3111222
a =
+=, ⋯
从而数列{}n a 是以2为周期的周期数列, 于是所求值为20161
(1)151222
⨯+=, 故选:C 【点睛】
关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.
20.B
解析:B 【分析】
利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】
由13920a a a ++=,得131020a d +=,
则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】
考查等差数列通项公式的运用,知识点较为简单.
二、多选题 21.ABD 【分析】
构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,
所以当时,,
即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,
解析:ABD 【分析】
构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】
由()1ln 2n n n a a a +=+-,1102
a << 设()()ln 2f x x x =+-, 则()11122x
f x x x
-'=-
=--, 所以当01x <<时,0f x
,
即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭
为单调递增函数,
即()()102f f x f ⎛⎫
<< ⎪⎝⎭
,
即()131
ln 2ln ln 1222
f x <<<+<+=, 所以()1
12
f x << , 即
1
1(2)2
n a n <<≥, 所以
2112a <<,20201
12
a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,
1
12
n a <<,所以{}n a 是递增数列,故B 正确;
2112a <<,所以 231
32131113ln(2)ln ln 222234
a a a e =+->+>+=+> 因此20202020333
144
a a a ∴<><>,故D 正确 故选:ABD 【点睛】
本题考查了数列性质的综合应用,属于难题.
22.ABD 【分析】
对于A ,由题意得bn
=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3
解析:ABD 【分析】
对于A ,由题意得b n =
4
πa n 2
,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】
由题意得b n =
4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4π
a 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·
a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;
数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n
-1
2
=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+
(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;
由题意a n -1=a n -a n -2,则a 2019·
a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】
此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题
23.AB 【分析】
由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解.
【详解】 ,, 则,,,,
上述式子累加可得:,, 对于任意的恒成立
解析:AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,
则
11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误;
对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣
⎦
,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.
24.AD 【分析】
分类讨论大于1的情况,得出符合题意的一项. 【详解】
①, 与题设矛盾. ②符合题意. ③与题设矛盾. ④ 与题设矛盾. 得,则的最大值为. B ,C ,错误. 故选:AD. 【点睛】
解析:AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意.
③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q
n N -=∈.
25.BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故
解析:BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,则12222
(1)21n n a a n n n --=--=-不是常数,故
{}n
a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方
差数列,故B 正确; 对于C ,数列{}2
n
中,()(
)
2
2
221
112
234n n n n n a
a ----=-=⨯不是常数,{}
2n
∴不是等方差
数列,故C 错误; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数
列,()()2
2
2
112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,
故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BD. 【点睛】
关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.
26.AD 【分析】
对于,作差后利用等差数列的通项公式运算可得答案;
对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案; 对于,由求出及
解析:AD 【分析】
对于A ,作差后利用等差数列的通项公式运算可得答案;
对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;
对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】
对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,
所以2
4619150a a a a d -=>,所以4619a a a a >,故A 正确;
对于B ,因为130S >,140S <,所以
77713()
1302
a a a +=>,即70a >,
787814()
7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以
7878||||0a a a a -=+<,即78||||a a <,故B 不正确;
对于C ,因为915S S =,所以101114150a a a a ++
++=,所以12133()0a a +=,即
12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值
是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;
对于D ,若2
n S n n a =-+,则11a S a ==,2n ≥时,
221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,
所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】
关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.
27.BD 【分析】
由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.
因为,,所以公差. 故选:BD
解析:BD 【分析】
由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】
因为1937538a a a a +=+=+=, 所以()199998
3622
a a S +⨯=
==. 因为35a =,73a =,所以公差731
732
a a d -==--. 故选:BD
28.ABD 【分析】
由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】
根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正
解析:ABD 【分析】
由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】
根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;
由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.
29.BD 【分析】
设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】
设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,
解析:BD 【分析】
设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】
设等差数列{}n a 的公差为d ,则81187
88282
S a d a d ⨯=+
=+,91198
99362
S a d a d ⨯=+
=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,
解得14a d =-,()()115n a a n d n d ∴=+-=-,()()21
9122
n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2
8
88942
d S d -⨯=
=-,A 选项错误; 对于B 选项,()2
2
29272
d S
d -⨯=
=-,()2
7
79772
d S
d -⨯=
=-,B 选项正确;
对于C 选项,()2
298192224n d d S n n n ⎡⎤
⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
.
若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】
在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.
30.AD 【分析】
设等差数列的公差为,根据已知得,进而得,故,. 【详解】
解:设等差数列的公差为,因为
所以根据等差数列前项和公式和通项公式得:, 解方程组得:, 所以,. 故选:AD.
解析:AD 【分析】
设等差数列{}n a 的公差为d ,根据已知得1145
460
a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故
25n a n =-,24n S n n =-.
【详解】
解:设等差数列{}n a 的公差为d ,因为450,5S a == 所以根据等差数列前n 项和公式和通项公式得:11
45
460a d a d +=⎧⎨+=⎩,
解方程组得:13,2a d =-=,
所以()31225n a n n =-+-⨯=-,2
4n S n n =-.
故选:AD.
31.AD 【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】
, ,所以是递增数列,故①正确,
,当时,数列不是递增数列,故②不正确, ,当时,不是递增数列,故③不正确, ,因
解析:AD 【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】
0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,
()()2
111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d -<时,数列{}n na 不是递增数列,故②不正确, 1n a a d d n n -=+,当10a d -<时,{}n a n 不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确,
故选:AD 【点睛】
本题主要考查了等差数列的性质,属于基础题.
32.AC 【分析】
直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】
A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中(为常数,),不符合从第二项起
解析:AC 【分析】
直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*
2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差
数列,故正确;
D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2
n S An Bn =+,所以{}n a 不
为等差数列.故错误.
故选:AC 【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.
33.ABC 【分析】
由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则
所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.
解析:ABC 【分析】
由2
n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.
【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴=
所以当0c 时,{}n a 是等差数列, 0
a c
b ==⎧⎨≠⎩时是等比数列;当0
c ≠时,{}n a 从第二
项开始是等差数列. 故选:A B C 【点睛】
本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础
题.
34.ABCD 【分析】
S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0
解析:ABCD 【分析】
S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得24
7
-
<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫
⎨⎬⎩⎭
中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断
出D 是否正确. 【详解】
∵S 12>0,a 7<0,∴
()
67122
a a +>0,a 1+6d <0.
∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴24
7
-<d <﹣3.a 1>0. S 13=
()
113132
a a +=13a 7<0.
∴S n <0时,n 的最小值为13.
数列n n S a ⎧⎫
⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.
对于:7≤n ≤12时,n
n S a <0.S n >0,但是随着n 的增大而减小;a n <0,
但是随着n 的增大而减小,可得:n
n S a <0,但是随着n 的增大而增大.
∴n =7时,n
n
S a 取得最小值.
综上可得:ABCD 都正确. 故选:ABCD . 【点评】
本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.
35.AD 【分析】
先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】
解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大,
由于, 所以,即:
解析:AD 【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,
0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=>,()
112121202
a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。