高效液相色谱的发展及其应用

合集下载

高效液相色谱仪的发展和在药物分析中的应用

高效液相色谱仪的发展和在药物分析中的应用

高效液相色谱仪的发展和在药物分析中的应用摘要:早在上个世纪六十年代,高效液相色谱仪就已经作为一项分离分析技术在医药行业、化学领域、工业行业、商业领域以及法学领域等获得了广泛良好的应用。

其主要是将液体当做流动相,同时应用颗粒极细的高效固定相的柱色谱分离技术。

目前高效液相色谱仪凭借自身高分离速度、高分离质量、高检测准确性以及自动化操作等优势,在医药行业中药品研发、制作、检验等流程中获得了广泛应用,且应用效果优良。

因此,本文主要对高效液相色谱仪在药物分析中的应用进行了简要分析,并对高效液相色谱仪的发展进行了深入研究。

关键词:高效液相色谱仪;发展;药物分析;应用引言在现代科学技术迅猛发展的背景下,我国医学界药物分析项目的检测设备、技术也获得了极大的进步与改善。

高效液相色谱仪是药物分析项目众多设备中最为高效质优的仪器之一,其操作灵活简便,而且检测效果跟早期人工检测对比也更精准、更快速,由此在我国药物分析生命科学领域中获得了广泛应用。

一、高效液相色谱仪在药物分析中的应用(一)在药物鉴别中的应用高效液相色谱仪之所以能够对药物进行鉴别,主要是因为药物中各个成分的结构、性质跟其保留时长有直接关系,利用此关系对药物性质进行判断。

比如:西红花,也叫作藏红花、番红花,是一种较为名贵的中药材,主要功能为镇静、祛痰、解痉,通常应用在胃病、调经、麻疹、黄疸、发热、肝脾肿大等疾病诊治中。

正是因为该药物产量少、价位高,所以市面上假冒伪劣产品极多,以玉米须、莲须、菊花、红花造假的较多。

患者服用伪造西红花药物之后,非但无法治愈疾病,还会对生命带来较大威胁,所以,一定要注重对西红花的分析与鉴别工作,高效液相色谱仪的运用可有效提升真假判断、优劣断定的精准性。

之前,相关学者曾通过高效液相色谱法分别针对西红花和假药物中所含成分展开了鉴别,发现真正的西红花中没有绿原酸与羟基红花黄素A,并将此当做鉴别环节的有效方式,称之为HPLC-DAD含量测定法。

高效液相色谱的原理及应用

高效液相色谱的原理及应用

高效液相色谱的原理及应用一、引言高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种广泛应用于生化、制药、食品安全等领域的分析技术。

本文将详细介绍高效液相色谱的原理及其在不同领域中的应用。

二、高效液相色谱的原理高效液相色谱是一种基于分配和吸附作用的色谱技术。

其原理如下:1.分配作用: 样品在液相中均匀分散,样品中的组分按溶解度的不同在液相和固定相之间分配,从而实现对样品的分离。

2.吸附作用: 组分在固定相上通过吸附作用与固定相表面相互作用,进一步实现对组分的分离。

3.色谱柱: 高效液相色谱中常使用填充在色谱柱中的固定相,通过色谱柱中的孔隙结构和表面特性实现对样品的分离。

三、高效液相色谱的应用高效液相色谱技术广泛应用于以下几个领域:1. 生化分析高效液相色谱在生化分析中起着重要的作用,可以用于蛋白质、核酸、糖类等生物大分子的分离和定量分析。

•分离蛋白质: 高效液相色谱可以通过选择合适的固定相和流动相,实现对蛋白质的不同特性进行分离,如分离不同分子量的蛋白质。

•分析核酸: 高效液相色谱可以通过裂解DNA或RNA,使用特定的检测方法,实现核酸的定量分析。

•糖类分析: 高效液相色谱可以用于糖类的检测和分析,对食品、医药等行业具有重要意义。

2. 制药领域高效液相色谱在制药领域中应用广泛,可用于药物的分离、纯化和定量分析等。

•药物分离和纯化: 高效液相色谱可以通过调整固定相和流动相的性质,实现对复杂药物混合物的分离和纯化。

•药物含量测定: 高效液相色谱可用于药物中成分的定量分析,以保证药物的质量和安全性。

•质量控制: 高效液相色谱可用于制药过程中的质量控制,例如检测制药中间体和产成品中的杂质和不纯物。

3. 食品安全高效液相色谱在食品安全领域中起着重要的作用,可用于检测和分析食品中的有害物质和添加剂。

•残留农药检测: 高效液相色谱可以用于检测食品中农药的残留量,以保障食品安全。

高效液相色谱标准

高效液相色谱标准

高效液相色谱标准高效液相色谱标准的发展及其在分析化学中的重要性随着科技的不断进步,高效液相色谱法(HPLC)已经成为了现代分析化学中不可或缺的一部分。

这种方法以其极高的分离效能和灵敏度,广泛应用于各个领域,包括医药、环保、化工等。

然而,为了确保实验结果的准确性和可靠性,制定高效液相色谱标准显得尤为重要。

本文将深入探讨高效液相色谱法的原理、实验条件、标准制定原则与流程,以及其在实际应用中的案例分析,评估其优缺点并预测未来发展趋势。

一、高效液相色谱法的基本原理与概念高效液相色谱法是一种基于色谱分离技术的分析方法。

其基本原理是利用不同的物质在固定相和流动相之间的分配系数差异,实现对不同物质的分离。

这种方法的分离效能高,分析速度快,且具有较高的灵敏度和较低的检测限。

柱效能和检测限是高效液相色谱法中的关键概念。

柱效能反映了色谱柱的分离效果,而检测限则代表了方法的灵敏度。

二、实验条件与方法在进行高效液相色谱实验时,选择合适的固定相、流动相以及实验条件是至关重要的。

固定相是色谱分离的基础,不同的固定相对于不同物质的吸附能力不同。

流动相则决定了物质在色谱柱中的移动速度,从而影响分离效果。

实验条件包括温度、压力、流速等,这些因素都会对实验结果产生影响。

三、标准制定原则与流程制定高效液相色谱标准需要遵循一定的原则和流程。

首先,标准制定应基于广泛认可的方法和规范,确保实验过程的科学性和合理性。

其次,标准制定应注重可重复性和可操作性。

这意味着标准的制定应考虑到不同实验室之间的差异,确保实验结果具有可比性。

此外,标准制定还应关注样品处理、色谱柱条件优化、重复试验等环节,以确保实验结果的准确性和可靠性。

四、实际应用案例分析在实际应用中,高效液相色谱法已经在多个领域取得了显著成果。

例如,在医药领域,高效液相色谱法被用于药物的分离和纯化,以确保药品的质量和安全性。

在环保领域,高效液相色谱法被用于对环境样品中的有害物质进行检测和分析。

高效液相色谱的原理与发展

高效液相色谱的原理与发展

高效液相色谱的原理与发展高效液相色谱是目前应用最多的色谱分析方法,对复杂样品中的分析物具有极高的分离效率,在环境监测、药物鉴别、石油化工、食品安全等广泛应用。

本文从仪器原理、仪器结构、液相色谱发展、应用范围等方面,简要介绍高效液相色谱法在不同领域的应用情况及对前景进行展望,以期为相关研究人员提供参考。

高效液相色谱法具有下列主要优点:①应用了颗粒极细、规则均匀的固定相,传质阻抗小,柱效高,分离效率高;②采用高压输液泵输送流动相,流速快,一般试样的分析需数分钟,复杂试样分析在数十分钟内即可完成③广泛使用了高灵敏检测器,大大提高了灵敏度。

高效液相色谱仪是由高压输液系统、进样器、色谱柱、检测器、工作站等几部分组成。

一、原理高效液相色谱的原理是以液体为流动相,采用高压输液系统,样品溶液经进样器进入流动相,被流动相载入固定相内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中做相对运动时,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器进行检测。

二、结构贮液器主要用来提供足够数量的符合要求的流动相以完成分析工作,对于贮液器的要求:①必须有足够的容积,以备重复分析时保证供液;②脱气方便;③能耐一定的压力;④所选用的材质对所使用的溶剂都是惰性的。

贮液器一般是以不锈钢、玻璃、聚四氟乙烯或特种塑料聚醚醚酮衬里为材料,容积一般为0.5-2L。

所有流动相放入贮液罐之前都必须用0.45微米滤膜过滤,除去流动相中的杂质,防止输液管道或者进样阀出现阻塞现象。

所有流动相在使用前必须脱气。

因为色谱柱是带压力操作的,而检测器是在常压下工作的。

若流动相所含有的空气不除去,则流动相通过柱子时其中的气泡受到压力而收缩,流出柱子后到检测器时因常压而将气泡释放出来,造成检测器噪声较大,基线不稳,仪器不能正常工作,在梯度洗脱时尤为突出。

高压输液泵是高效液相色谱仪的关键部件,其作用是将流动相以稳定的流速或压力输送到色谱分离系统。

高效液相色谱分离与检测技术的进展与创新

高效液相色谱分离与检测技术的进展与创新

高效液相色谱分离与检测技术的进展与创新概述高效液相色谱(High Performance Liquid Chromatography, HPLC)是一种重要的分离与检测技术,已经在广泛的科学领域中得到了广泛的应用。

本文将对高效液相色谱分离与检测技术的进展与创新进行综述,并探讨其在不同领域中的应用。

一、高效液相色谱的基本原理高效液相色谱是以液相作为固定相的分离技术。

其基本原理是将样品溶解在流动相中,通过与固定相之间的相互作用来实现样品的分离。

高效液相色谱的固定相种类繁多,不同种类的固定相可以实现对不同性质样品的选择性分离。

二、高效液相色谱的发展与创新1. 色谱柱技术的发展:随着材料科学与合成化学的不断进步,新型的色谱柱材料如亲水性、疏水性、离子交换、手性等材料相继出现。

这些材料可以提供更高的分离效率和选择性。

2. 检测器技术的创新:传统的高效液相色谱检测器主要有紫外检测器、荧光检测器和电化学检测器等。

随着科学技术的发展,新型的检测器如质量分析检测器(Mass Spectrometry, MS)和电喷雾检测器(Electrospray Ionization, ESI)等被引入到高效液相色谱中,提高了检测灵敏度和选择性。

3. 色谱分离模式的创新:除了传统的反相色谱分离模式,还出现了离子交换色谱、手性色谱、亲水色谱等新的分离模式。

这些分离模式可以对特定问题提供更好的解决方案。

三、高效液相色谱在不同领域中的应用1. 制药工业:高效液相色谱在制药工业中起着至关重要的作用。

它可以用于药物分析、药物代谢物分析和质量控制,以确保药物的质量和安全性。

2. 环境监测:高效液相色谱在环境监测领域中广泛应用,例如水质监测、土壤污染分析和空气污染物检测等。

它可以快速、准确地测定各种环境污染物。

3. 农业食品安全:高效液相色谱在农业食品安全领域中也发挥着重要作用。

它可以用于农药残留分析、食品添加剂检测和农产品质量控制等方面。

高效液相色谱法的发展和应用探究

高效液相色谱法的发展和应用探究
体 、易挥发 的 、具 有 中等 分子 量的化合 物都能 进行 分析 。 2 . 高效液 相色谱 法应 用的限 制
动相 通过 高压 输液泵 进 入了 柱压很 大 的色 谱柱 中,在 固定 相 中 ,溶 质 的传质 和扩 散速 度都 很快 ,所 以在 很多 的 时间 内 ,柱子 的效 率和 分 离
_ ‘
2 0 1 3 年1 2
C h i i l a C h e m i c a l T r a d e
实验岔 晰
高效液相色谱法的发展和应用探 究
王 艳
2 2 20 6 2) ( 江 苏正大 天晴 药业集 团有 限公司 ,江苏 连云港

要 :在对 高效液相 色谱 法进行 了解以后 ,概述 了高效液相 色谱 的组成结构、操作原理和 方法,分析 了高效液相 色谱的分 类方法和 它的优 势
1 . 高效液 相色谱 法的应 用范 围 对 于那 些高 沸 点不 易挥 发 、热稳 定性 差 的 、高分 子 的 、具有 不 同 极性 饿有机 化合 物 ,生 物活 性物 质和 各 种天 然的 物质 ,高 效液 相色 谱 法都能 对其 进行 分离和 分析 。这 些物 质在 食 品 、合 成 药物 、石 油化 工 产品 、生物 化工 产 品等 方面 都有 应用 ,其 中在 这 些方 面应 用 的无机 物 中占 2 0 %,在这 些方 面应 用 的有 机物 中占 8 0 %,特 别是 那些 永久 性气
的传质 和扩 散 的速度 都很 慢 ,因为柱 的入 口压 力很 小 ,导致 柱子 的效 果很 差 ,在 很 大程度 上增 加 了分析 时 间 。而高 效液 相色 谱 法使 用的 固 定相 是全 多孔 微粒 ,将 固定相 装在 口径 小 、短 的不 锈钢 的 柱子 内 ,流

高效液相色谱的发展及现状【文献综述】

高效液相色谱的发展及现状【文献综述】

毕业论文文献综述应用化学高效液相色谱的发展及现状1. 色谱技术的发展历程色谱技术的研究起步于20世纪初,俄国植物学家M.S.Tswett发表了题为“一种新型吸附现象在生化分析上的应用”的研究论文中提到了一种用吸附原理分离植物的方法,并将其命名为色谱法。

但由于这种色谱分离技术速度慢且效率低,没有受到科学界重视。

1938年获得诺贝尔化学奖的德国化学家Kuhn采用Tswett色谱分离技术,在维生素和胡萝卜素的分离和结构的分析中取得了重大成果,色谱法因此得到各国科学家的关注[1]。

可以预想到,在接下来的几十年中,色谱技术更是飞速发展。

随着1940年Martin 和Synge提出液液分配色谱法后,1952年James和Martin发明了气相色谱因此获得1952年诺贝尔化学奖[2]。

紧接着,通过各国科学家的努力,还分别开创了毛细管气相色谱法、毛细管超临界色谱、毛细管电泳和电色谱等分析分离技术,使色谱技术的应用日益广泛。

高效液相色谱出现于20世纪60年代末,由高压泵和键合固定相应用于液相色谱,导致了高效液相色谱的出现。

直至今日,高效液相色谱技术不断发展,并广泛应用在各个领域,成为分析、分离技术中不可或缺的一种尖端科技。

2.高效液相色谱的构成高效液相色谱是近几十年来分析化学中最活跃的领域之一。

这种将分离手段及检测系统相连接的分析分离技术,逐步成为在生化药物、精细化工产品、环境保护等各个领域中主要的物质分析分离方法[3]。

2.1输液系统——泵由于色谱柱很细,填充剂粒度小,因此阻力很大,为达到快速、高效的分离效果,必须要提高柱前压力,以获得高速的液流,使分析、分离更加有效率的进行。

泵为液相提供了流动相流动所必须的压力。

2.2进样系统一般高效液相色谱对于进样系统多采用六通阀进样[4]。

先由注射器将样品常压下注入样品环[5]。

然后切换阀门到进样位置,由高压泵输送的流动相将样品送人色谱柱。

样品环的容积是固定的,因此进样重复性好。

高效液相色谱技术的研究现状及其应用

高效液相色谱技术的研究现状及其应用

高效液相色谱技术的研究现状及其应用高效液相色谱(HPLC)是现代分析化学中最常用的分离分析技术之一。

它可以快速、准确地分离和检测各种化合物,广泛应用于大家生命科学、化工、环保、食品等领域。

本文将介绍高效液相色谱技术的研究现状及其应用。

一、HPLC技术的基础高效液相色谱技术基于物质的化学性质,在多种物理和化学作用的共同作用下,通过高效液相色谱柱进行分离和检测。

它借助液体流动的特点,将待检样品溶解于流动相中,在分配指定波长下,测量物质的独特的光学特性,进行定性和定量分析。

二、HPLC技术的研究现状HPLC技术诞生于20世纪60年代末,经过多年的发展和完善,它已成为现代分析化学的核心技术之一。

在HPLC仪器、柱、检测器等方面的持续改进和优化,使得HPLC分析的灵敏度、分辨率、重现性等指标得到了大幅提升,并且越来越适应于复杂的样品分析。

1. HPLC仪器传统的HPLC仪器结构简单,易于维护,但灵敏度和分离能力有限。

随着技术的进步,新型HPLC仪器受到更多关注。

它们使用电镀柱和各种新型材料,如小孔隙、非球形、非对称等,使样品分析更加高效。

此外,凭借着现代信息技术(IT)的发展,HPLC仪器正在向珂学(在线监测、规定实时性检测),自动化(自动进样、数据处理智能化)和移动化(小型化、便携式)等方向发展。

2. HPLC柱HPLC柱作为HPLC技术的核心部件之一,是HPLC性能和分离效率的关键因素之一。

对于众多的HPLC柱,随着时间的推移和应用领域的不同,柱的类型也在持续发展和改进。

例如,亲水凝胶柱、醚类柱、反相柱、离子交换柱、手性分析柱等不同的HPLC柱的类型,都得到了不同程度上的应用。

3. HPLC检测器HPLC检测器是HPLC分析中最关键的部分之一。

现代HPLC检测器可以识别样品中的任何鉴定成分,测量许多光学信号、电学信号等,请通过检测技术进行检测分析样品。

例如,高性能荧光检测器、紫外光吸收检测器、电感耦合等离子体发射光谱仪等应用在HPLC技术中,使HPLC检测手段的多样性和分析手段的严密性得以彰显。

中国药典2020 高效液相色谱

中国药典2020 高效液相色谱

中国药典2020 高效液相色谱第一部分:高效液相色谱的概述高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种分离和分析化合物的重要技术。

它通过液相色谱柱将混合物中的化合物分离出来,然后利用不同化合物在柱中的分配和吸附作用,采用不同的流动相来实现化合物的分离和分析。

HPLC已成为分析化学中不可或缺的技术手段,广泛应用于药物分析、环境监测、食品安全等领域。

第二部分:高效液相色谱的原理高效液相色谱的分离原理是基于样品与固定相的相互作用来实现的。

样品经过柱子时,不同的成分会在固定相和流动相的作用下以不同的速率迁移,从而实现分离。

常用的固定相有反相、离子交换、凝胶等。

流动相通常是有机溶剂和水的混合物,也可以根据样品的性质来选择适当的流动相。

在分离过程中,通过调节柱温、流速、流动相和检测器参数等因素,可实现对目标物的选择性提取和分离。

第三部分:高效液相色谱的仪器设备高效液相色谱仪主要包括进样器、色谱柱、泵、检测器和数据处理系统等组成。

进样器用于将样品引入色谱柱,色谱柱是色谱分离的关键部分,泵用于推动流动相,检测器用于监测样品的出峰情况并进行定量分析,数据处理系统用于处理和分析所得的色谱数据。

现代高效液相色谱仪通常还配备有自动进样和自动数据处理功能,提高了分析效率和准确性。

第四部分:高效液相色谱的应用HPLC技术在药物分析中有着广泛的应用,可以用于药物的纯度检测、含量测定、稳定性研究等。

它还可以用于分析环境中的有机污染物和重金属离子、食品中的添加剂和残留物、植物中的活性成分等。

此外,HPLC还可以用于生物分析,如蛋白质和肽类的纯度和组成分析、核酸和小分子的分析等。

第五部分:高效液相色谱的发展趋势随着科学技术的不断进步,高效液相色谱仪的性能和分析能力不断提升,包括色谱柱材料的改进、检测器的灵敏度和分辨率的提高、数据处理系统的智能化等。

同时,绿色分析、微型化、高通量分析等也成为研究热点。

超高效液相色谱技术的新进展

超高效液相色谱技术的新进展

超高效液相色谱技术的新进展超高效液相色谱技术(Ultra High Performance Liquid Chromatography, UHPLC)是一种高效分离技术,常常被用于药物分析、生物分析、环境监测等领域。

随着科技的不断进步,UHPLC技术也不断发展,为人类社会带来了更多的科学发明和创新。

一、UHPLC技术的定义UHPLC是一种高效的液相色谱技术,在传统液相色谱的基础上增加了更高的压力,并且使用更小的颗粒来作为填充物。

由于技术的不断发展,现在的UHPLC技术已经能够实现更高的分离效率和更快的分析速度。

同时,UHPLC技术也为科研人员提供了更加精确的分析数据。

二、UHPLC技术的应用UHPLC技术在生物医学、环境监测、药物研发等领域有着广泛的应用。

在药物研发领域,UHPLC技术可以用来进行药物的纯度、杂质和残留物的分析。

在食品安全监测方面,UHPLC技术也可以用来对食品中的残留物和添加剂进行分析。

在环境监测领域,UHPLC技术可以用来监测水质和空气中的污染物。

在未来,UHPLC技术还将继续扩展其应用领域,成为更加普及和受欢迎的分析技术。

三、UHPLC技术的新进展1. 柱技术的发展UHPLC技术柱技术是UHPLC技术中的核心部分。

随着UHPLC技术的发展,柱技术也在逐步进步。

目前,柱技术已经可以实现更高的效率和更快的分析速度。

此外,柱技术也可以用于更复杂的样品分析。

2. 离子色谱联用技术的发展离子色谱联用技术(Ion Chromatography, IC)是一种被广泛使用的分析技术之一,但是IC技术在过去并不适用于UHPLC技术。

然而,最近UHPLC技术和IC技术的结合已经成为可能,这为一些需要离子色谱分析的化合物提供了更加精确的分析手段。

3. 软件的改进随着技术的不断升级,UHPLC分析数据的处理和分析也变得越来越令人关注。

因此,软件的改进也逐渐成为新进展的一个重要方面。

现在的软件可以帮助用户更好地收集和分析数据,并提供更加完整的数据处理。

高效液相色谱法及其在中药研究中的应用

高效液相色谱法及其在中药研究中的应用

一、概述高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种应用广泛的分离和分析技术,其在中药研究中扮演着重要角色。

本文将对HPLC技术及其在中药研究中的应用进行介绍和探讨。

二、高效液相色谱法的原理及技术特点高效液相色谱法是一种基于液相为分离介质的色谱分析技术。

其原理是将待分析物质溶解于流动相中,在固定的色谱柱中经过固定相的分离。

HPLC技术具有分离效率高、分析速度快、灵敏度高、分析准确等特点,因此在中药研究中得到了广泛应用。

三、高效液相色谱法的应用1. 中药质量控制HPLC技术可以对中药中的有效成分进行定量分析,为中药的质量控制提供了重要手段。

通过HPLC技术可以对中药中的多种成分进行快速、准确的分析,实现对中药质量的快速检测。

2. 药效成分分离HPLC技术可以有效分离药效成分中的杂质,提高药效成分的纯度。

通过HPLC技术可以对药效成分进行快速分离和检测,为药物研发提供了有力支持。

3. 药物代谢动力学研究HPLC技术可以对药物在体内的代谢过程进行分析,为药物代谢动力学研究提供了重要手段。

通过HPLC技术可以对药物在体内的代谢产物进行快速分离和检测,为药物代谢过程的研究提供了有力支持。

四、当前HPLC技术在中药研究中的挑战与发展1. 检测方法的标准化当前HPLC技术在中药研究中仍面临着检测方法标准化的问题,各种方法的标准化程度有待提高。

2. 技术发展趋势随着科学技术的不断发展,HPLC技术在分辨率、分析速度、检测灵敏度等方面仍有进一步提升的空间。

未来HPLC技术有望在中药研究中发挥出更大的作用。

3. 多样性应用未来HPLC技术有望在中药研究中实现多种成分同时分析、高通量检测等多样化应用,为中药研究提供更全面的支持。

五、结论HPLC技术作为一种高效、准确、灵敏的分析技术,在中药研究中发挥着重要作用。

当前HPLC技术仍面临着标准化、技术发展等问题,但未来有望在中药研究中发挥更大的作用,为中药研究提供更全面的支持和保障。

高效液相色谱法

高效液相色谱法

60年代研制出气动放大泵、注射泵及低流量往复式 柱塞泵,但后者的脉冲信号很大,难以满足高效液 相色谱的要求。1970年代,往复式双柱塞恒流泵, 解决了这一问题1970年代后,科克兰制备出全多孔 球形硅胶,平均粒径只有7μm,具有极好的柱效, 并逐渐取代了无定形微粒硅胶。之后又制造出的键 合固定相使柱的稳定性大为提高,多次使用成为可 能。1970年后,适合分离生物大分子的填料又成为 研究的热点。1980年后,改善分离的选择性成为色 谱工作者的主要问题,人们越来越认识到改变流动 相的组成是提高选择性的关键
• 流程:如左图所示,流 动相贮器⑴中的流动相 被泵⑵吸入,经梯控制 器按一定的梯度进行混 合然后输出,测其压力 和流量,导入(3)进样 阀(器)经(4)色谱柱 后到(5)检测器检测, 由(7)记录仪记录色谱 图,(6)为废液。
特点(高效液相色谱法有“四高一广”的特点):
①高压:流动相为液体,流经色谱柱时,受 到的阻力较大,为了能迅速通过色谱柱,必 须对载液加高压。 ②高速:分析速度快、载液流速快, 较经典液体色谱法速度快得多,通常 分析一个样品在15~30分钟,有些样 品甚至在5分钟内即可完成,一般小于 1小时。
HPLC已在环境监测中得到广泛应用,特别 适用于分子量大、挥发性低、热稳定 性差的有机污染物的分离和分析如多 环芳烃、酚类、多环联苯、邻苯二甲 酸酯类、联苯胺类、阴离子表面活性 剂有机农药、除草剂等,其中多数属于 美国环保局(EPA)清洁水法案中颁布的 114项优先有机污染物范围。
5.在药品检验中的应用: 现在,在药品质量标准中,对有关物质检查的要 求越来越高,一个药物从合成原料到制备有 关的制剂,再经过贮备、运输、使用,要经过 一段较为复杂和漫长的过程,在此期间,每一 个过程都有可能产生有关的物质,如生产中 可能带入原料、试剂、中间体、副产物和 异构体等;在贮备和运输过程中,可能产生降 解产物,聚合物等。为了保证药物的安全有 效。同时也要考虑到生产的实际情况。因 此,对药物的研究,可以允许有一定量的无害 或低毒性的有关物质液相仪器各厂家的仪 器展。还有对药品的含量测定

高效液相色谱技术在食品检测中的应用

高效液相色谱技术在食品检测中的应用

高效液相色谱技术在食品检测中的应用一、引言食品安全一直是人们关注的热点话题,食品安全问题严重影响人们的健康和生命质量。

因此,食品检测越来越受到重视。

高效液相色谱技术是一种高灵敏度、高分辨率、高速度的分析技术,被广泛应用于食品检测领域。

本文将就高效液相色谱技术在食品检测中的应用进行探讨。

二、高效液相色谱技术的发展高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种分离化合物的分析技术,是一种以流动相在固定分离柱中传输,然后通过样品的分部分散和吸附来达到对样品分离和分析的方法。

HPLC技术具有高速、高分辨率、高灵敏度等特点,能够对化合物进行快速、准确地鉴定和定量。

HPLC技术的发展历程中,从1960年代开始应用,近年来又发展出了不同的检测技术,如超高效液相色谱(Ultra High Performance Liquid Chromatography,UHPLC)、离子色谱(Ion Chromatography,IC)等。

三、高效液相色谱技术在食品检测中的应用1.农药残留检测HPLC技术可用于农药残留检测。

农药残留可能对人体健康产生潜在风险,因此不得不进行高效的检测。

HPLC技术中的梯度洗脱和暴露反应检测分析法(Random Exposure Analysis)等技术,成功地用于检测多种农药残留物。

2.添加剂的检测HPLC技术还可用于检测食品添加剂,如糖浆、色素、凝胶等。

这些添加剂可能对人体造成不良影响,因此需要对它们进行快速和准确的检测。

普通葡萄糖和高级糖类添加剂的检测结果显示,几乎所有食品都含有这些添加剂。

3.营养成分及其代谢产物的检测HPLC技术可用于营养成分的检测。

例如,它可以检测酸和碱中的氨基酸、胺和低聚肽。

营养成分的检测过程中,HPLC技术可以用来判断产品中的成分数、成分质量、成分比例等。

4.抗生素的检测HPLC技术可用于抗生素的检测,术语常用的检测方法包括超高效液相色谱技术、芯片电泳技术、全谱扫描技术等。

高效液相色谱法的应用与发展前景

高效液相色谱法的应用与发展前景

高效液相色谱法的应用与发展前景高效液相色谱法(HPLC)是一种常用的分析方法,在多个领域中都有着广泛的应用。

该方法基于色谱原理,通过高效分离技术,对样品进行检测和分析。

本文将介绍高效液相色谱法的应用及其在未来可能的发展前景。

药物分析在药物分析领域中,高效液相色谱法已成为一种重要的分析方法。

通过对药物及其代谢产物的定性和定量分析,该方法能够有效地控制药品质量和药物疗效。

例如,利用高效液相色谱法可以测定药物中杂质的含量,确保药品的安全性和有效性。

食品质量检测在食品质量检测方面,高效液相色谱法可用于检测食品中的添加剂、有害物质和营养成分等。

该方法具有高灵敏度和快速分析的特点,可有效保障食品安全和人民健康。

例如,通过高效液相色谱法测定水果和蔬菜中的农药残留量,确保农产品质量安全。

环境监测在环境监测领域,高效液相色谱法可用于检测水体、土壤和大气中的污染物。

该方法能够准确地测定环境中的重金属离子、有机污染物等有害物质,为环境保护和治理提供科学依据。

例如,利用高效液相色谱法检测水体中的有毒物质,为水资源的保护和管理提供技术支持。

随着科学技术的不断进步,高效液相色谱法在未来也将迎来更多的发展机遇和挑战。

下面就简要讨论一下高效液相色谱法的发展趋势和可能面临的挑战,以及如何应对这些挑战。

技术创新与优化未来,高效液相色谱法将继续在技术上进行创新和优化。

例如,开发新型的固定相和流动相,提高分离效率和检测灵敏度;采用新型的检测器,如质谱检测器、拉曼光谱检测器等,拓展了高效液相色谱法的应用范围;引入人工智能和大数据等先进技术,对色谱数据进行深入挖掘和分析,提高检测准确性和效率。

多维分离技术的发展随着样品分离需求的不断提高,多维分离技术将成为未来高效液相色谱法发展的重要方向。

多维分离技术是指同时或依次在多个分离维度上进行样品分离,如反相色谱、离子交换色谱、体积排阻色谱等。

这些技术的结合,可以实现复杂样品的高效分离和精确分析。

高效液相色谱分析技术的发展与应用

高效液相色谱分析技术的发展与应用

高效液相色谱分析技术的发展与应用1. 引言高效液相色谱(High-Performance Liquid Chromatography,HPLC)是一种在化学分析领域中广泛使用的分离和定量分析技术。

它具有分离效率高、分析速度快、检测灵敏度高、分析范围广等优点,被广泛应用于医药、食品、环境监测等领域。

本文将重点探讨高效液相色谱分析技术的发展过程及其在不同领域的应用。

2. 高效液相色谱的发展历程2.1 早期发展高效液相色谱技术自20世纪70年代开始发展。

早期的HPLC设备和柱层析填料存在诸多限制,如分离效果较差、流速较慢等。

然而,随着技术的进步和仪器设备的不断升级,高效液相色谱分析技术得到了迅速的发展。

2.2 技术的革新随着柱层析填料的改进和新型分离介质的研发,高效液相色谱技术的分离能力显著提高。

同时,新型检测器和数据处理软件的引入,使得HPLC分析更加方便快捷。

此外,自动化和在线监测的应用也为高效液相色谱分析技术的进一步发展提供了基础。

3. 高效液相色谱在医药领域的应用3.1 药物分析高效液相色谱分析技术在药物分析中被广泛使用。

它可以用于药物的纯度、含量和稳定性等方面的研究。

通过分析药物的血药浓度,可以了解药物代谢和排泄的动力学过程,为药物剂量的调整提供依据。

3.2 药物代谢利用HPLC技术,可以对药物在体内的代谢产物进行分离和鉴定。

这对于了解药物的代谢途径和代谢产物在体内的活性有着重要意义。

同时,通过高效液相色谱技术还可以研究药物与代谢酶之间的相互作用,从而为新药开发提供理论依据。

4. 高效液相色谱在食品领域的应用4.1 食品安全检测高效液相色谱技术在食品安全领域的应用越来越重要。

它被广泛用于检测食品中的农药残留、添加剂、重金属等有害物质。

同时,高效液相色谱技术还可以对食品中的营养成分进行分析,如维生素、氨基酸等。

4.2 食品成分分析通过高效液相色谱技术可以对食品中的各种成分进行鉴定和分析,如香料、色素、抗氧化剂等。

高效液相色谱的发展及其在炼油中的应用

高效液相色谱的发展及其在炼油中的应用

高效液相色谱的发展及其在炼油中的应用作者:王雪来源:《山东工业技术》2015年第06期摘要:高效液相色谱是新型的检测方法,其能够借助高压输液方式将混合溶剂或单一溶剂进行有效分离,从而有效进行试样的分析。

随着高效液相色谱应用范围的扩大,其在炼油检测中也获得了较为广泛的应用。

本文对高效液相色谱的发展及在炼油中的应用进行了研究,以期对提高炼油质量有一定作用。

关键词:高效液相色谱;发展;炼油;应用1 前言高效液相色谱指的是将液体作为主体,把极性不同的混合溶剂或单一溶剂等各种液体借助高压液体输送系统,压入色谱柱之中,从而使其成分在色谱柱之中进行分离,最终在高效液相色谱的检测器中完成的试样检测及分析的一种科学检测系统。

对高效液相色谱的发展给予有效了解,并将其有效应用到炼油中,能够为炼油质量的提高奠定良好基础。

2 高效液相色谱的发展分析2.1 高效液相色谱形成简述在1906年,俄国的次维特[1]最先提出色谱法概念,且色谱技术随着相关技术的发展获得了较为广泛的应用及发展。

高效液相色谱则是色谱分析的一个重要分析,主要是以液体为相关流动相的检测基础。

此外,高效液相色谱还是一种新型、科学、有效分析及其分离方法。

到目前为止,高效液相色谱获得了较为广泛的发展及应用,尤其是在电子及机械技术快速发展的背景下,化学键、高压泵固定更是离不开高效液相色谱的支持,因此,加强高效液相色谱的创新研究就极为重要。

2.2 高效液相色谱结构分析高效液相色谱结构分析主要包括:(1)高压泵。

高效液相色谱高压泵主要分为往复式的柱塞泵以及气动的放大泵两种。

一般情况下,高效液相色谱中色谱柱的使用都比较细小,固定相的颗粒同样比较小,这会大大增加色谱柱中的液体流动压力,从而降低流动相的实际流动速度[2]。

此外,柱效在常压下通常比较低,分离时间就会加长,而要改变这一状况,就要给流动相增加相应的压力,以达到加快其流速、缩短液体分离时间的目的。

(2)进样装置。

高效液相色谱进样装置主要有注射器、自动进样、阀进样以及停流进样等几种。

高效液相色谱技术的应用与发展

高效液相色谱技术的应用与发展

高效液相色谱技术的应用与发展随着科学技术的发展,高效液相色谱(HPLC)技术在各个领域得到了广泛的应用,同时也得到了不断的发展和改进。

本文将从HPLC的基本原理、应用和发展趋势等方面进行论述。

一、HPLC的基本原理高效液相色谱是一种基于液相-固相或液相-液相分离机制的分析技术。

其基本原理是通过溶剂的流动将待测样品溶解在液相中,然后通过柱子中的填料将目标物与其他组分分离,并通过检测器进行检测和定量。

HPLC的分离机理主要有几种:一是基于分子的亲和性差异,如大小、极性、电荷等;二是基于物理的吸附性质,涉及填料和溶质分子之间的作用力;三是离子交换机制,涉及溶质分子及填料上的离子表面。

二、HPLC的应用HPLC技术在各个领域的应用非常广泛,以下将介绍几个常见的应用。

1. 药物分析HPLC在药物分析中有着重要的地位。

通过HPLC技术,可以对药物进行快速、准确、灵敏的分离和检测。

药物的纯度、含量以及残留物等都可以通过HPLC进行分析。

2. 食品安全食品中残留物的检测是保障食品安全的一项重要任务。

HPLC 技术可以用来检测食品中的农药、重金属、添加剂等有害物质。

这种技术可以对食品进行快速筛查,并可以获取高灵敏度和高选择性的检测结果。

3. 环境分析环境中的污染物对人类健康和生态环境造成了很大的影响。

HPLC技术可以用于监测和分析环境中的各种有害物质,如有机污染物、重金属等。

通过HPLC的精确分离和灵敏检测,可以追踪和控制污染源。

4. 生物医学研究在生物医学研究中,HPLC技术常用于蛋白质、酶、核酸等生物大分子的分离和分析。

通过HPLC技术,可以实现对生物活性物质的定性和定量研究,为新药的开发和生物分子的功能研究提供有力的支持。

三、HPLC的发展趋势HPLC技术自问世以来,得到了不断的发展和改进。

以下是HPLC技术的发展趋势:1. 纳米技术的应用纳米技术的发展为HPLC技术带来了新的突破。

纳米材料作为固相填料可以提高分离效率和选择性,同时减少分析时间和溶剂消耗。

高效液相色谱法及其在药物分析中的应用

高效液相色谱法及其在药物分析中的应用

高效液相色谱法及其在药物分析中的应用以液体为流动相的色谱法称为液相色谱法。

用常压输送流动相的方法为经典液相色谱法,这种色谱法的柱效能低、分离周期长。

高效液相色谱法(highperformanceliquidchromatography,简称HPLC)是在经典液相色谱的基础上发展起来的一种色谱方法。

与经典的液相色谱法相比,高效液相色谱法具有下列主要优点:①应用了颗粒极细(一般为10µm以下)、规则均匀的固定相,传质阻抗小,柱效高,分离效率高;②采用高压输液泵输送流动相,流速快,一般试样的分析需数分钟,复杂试样分析在数十分钟内即可完成;③广泛使用了高灵敏检测器,大大提高了灵敏度。

目前,已经发展了多种不同的固定相,有多种不同的分离模式,使高效液相色谱法的应用范围不断扩大。

下面介绍高效液相色谱法的有关知识,新的方法和技术以及在药物分析中的应用。

一、分类高效液相色谱法按分离机理的不同可分为以下几类:(一)吸附色谱法(adsorptionchromatography)以吸附剂为固定相的色谱方法称为吸附色谱法。

使用最多的吸附色谱固定相是硅胶,流动相一般使用一种或多种有机溶剂的混合溶剂。

在吸附色谱中,不同的组分因和固定相吸附力的不同而被分离。

组分的极性越大、固定相的吸附力越强,则保留时间越长。

流动相的极性越大,洗脱力越强,则组分的保留时间越短。

(二)液-液分配色谱法(liquid-liquidchromatography)液-液分配色谱的固定相和流动相是互不相溶的两种溶剂,分离时,组分溶入两相,不同的组分因分配系数(K)的不同而被分离。

目前广泛使用的化学键合固定相是将固定液的官能团键合在载体上而制成的,使用化学键合固定相的色谱方法(简称键合相色谱法)可以用分配色谱的原理加以解释。

键合相色谱法在HPLC中占有极其重要的地位,是应用最广的色谱法。

按照固定相和流动相极性的不同,分配色谱法又可分为正相色谱法和反相色谱法两类。

超高效液相色谱的发展及在分析领域的应用探讨

超高效液相色谱的发展及在分析领域的应用探讨

超高效液相色谱的发展及在分析领域的应用探讨超高效液相色谱(Ultra Performance Liquid Chromatography,UPLC)是液相色谱技术的一种高效分离方法,近年来在分析领域得到了广泛的应用。

本文将探讨超高效液相色谱的发展历程以及在分析领域的应用情况。

1. 超高效液相色谱的发展历程UPLC的关键技术是使用高压系统和细颗粒柱,其中最主要的是采用2μm的小颗粒柱和15000psi(1000bar)的高压系统,与HPLC相比提高了分离速度和分析效率。

UPLC还使用了更小的进样量和更短的柱温度梯度以匹配高分辨率的检测器,从而实现更高的分析效率。

这一发展轨迹使得UPLC成为分析领域的重要工具之一。

超高效液相色谱在分析领域的应用非常广泛,涵盖了食品安全、环境监测、生物药物分析、药物代谢动力学等多个方面。

(1)食品安全领域食品中的农药残留、重金属、有害物质等对人体健康造成严重威胁。

超高效液相色谱能够快速、高效地检测食品中的这些有害物质,保障食品安全。

超高效液相色谱结合质谱可以高效快速地检测水果、蔬菜中的农药残留量,帮助监管部门及时采取措施。

(2)环境监测领域环境中的大气、水、土壤等样品中存在着各种有机物和无机物的污染物。

超高效液相色谱结合质谱等分析方法能够对这些污染物进行快速准确的检测和分析,为环境监测提供了技术支持。

(3)生物药物分析领域超高效液相色谱在生物药物分析领域也有着重要的应用。

UPLC可以用于蛋白质药物的质量控制和杂质检测,也可以应用于生物样品的代谢物分析,对生物药物研发和生产提供了技术保障。

(4)药物代谢动力学领域药物代谢动力学研究需要对体内外样品中的药物和代谢产物进行分析和监测。

UPLC因其高分辨率、高灵敏度和高分析速度,成为这一领域的首选技术手段。

超高效液相色谱相比于传统的高效液相色谱有着明显的优势,主要表现在以下几个方面:(1)更高的分辨率和分析速度:UPLC的分辨率和分析速度明显优于HPLC,可以更快地完成分析。

高效液相色谱的应用与发展前景

高效液相色谱的应用与发展前景

高效液相色谱的应用呵发展前景液相色谱分析是指流动相为液体的色谱技术,是色谱法中最古老的一种,但通过改进的粒度及柱压,在经典的液相柱色谱的基础上引入了气相色谱的塔板理论,在技术上采用了高压输液泵,高效固定相和高灵敏度的检测器,实现了分析速度快.分离效率高和操作自动化,这种色谱技术被称为高效液相色谱法 HighperformanceliquidchromatographyHPLCHPLC的出现不过三十多年的时间,但这种分离分析技术的发展十分迅猛,目前应用也十分广泛。

其仪器结构和流程也多种多样。

典型的高效液相色谱仪结构。

高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置用双泵、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。

高效液相色谱更适宜于分离、分析高沸点、热稳定性差、有生理活性及相对分子量比较大的物质,因而广泛应用于核酸、肽类、内酯、稠环芳烃、高聚物、药物、人体代谢产物、表面活性剂,抗氧化剂、杀虫剂、除莠剂的分析等物质的分析。

对于高效液相色谱的发展前景应该是非常乐观的,现在的社会的发展节奏很快,各个领域对于分析检验的需求很多,而分析检验中,HPLC所占的比重是不言而喻的,已成化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。

所以她的发展情景很乐观。

理由有几点1,随着科技的发展,技术的日臻完善,较之以前色谱分析的方法有了很大程度的提高,很多科学家在对于一些分析上的难点有了新的突破,这样一个不断完善的技术在以后的社会发展中一定会扮演着一个重要的角色。

2,最近,一些先进的检测仪器成功的用在了高效液相色谱分析法上,使得高效液相色谱的应用更广泛,并充分利用高效快速.选择性好.灵敏度高等优点,建立更加系统的成分分析方法.通过与质谱联用.梯度洗脱.柱切换技术.配合先进的检测技术,以及与分子生物学.现代分子药理学相结合,必将在中药分析中发挥很大作用.3,在现在的生活中,人们对于物质的安全要求很高,对于物质中出现的对人体有害的东西,一直是一个敏感的话题,而对于这些东西何从分辨呢最后还是要归于分析检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效液相色谱的发展及其应用
摘要:了解高效液相色谱[1]的发展历史,知道高效液相色谱的组成结构、操作
原理以及方法等等。

掌握它的分类方法,通过比较得出高效液相色谱分析方法的优点与缺点。

明确高效液相色谱的应用,最终分析结果。

关键词:高效液相色谱;发展历史;应用
高效液相色谱是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。

1、高效液相色谱的发展历史
1.1高效液相色谱的历史
高效液相色谱作为色谱分析法的一个分支,是在二十世纪60年代末期,在经典液相色谱法和气相色谱法的基础上,发展起来的新型分离分析技术。

1960年中后期,气相色谱理论和实践的发展,以及机械、光学、电子等技术上的进步,液相色谱开始活跃。

到60年代末期把高压泵和化学键合固定相用于液相色谱就出现了高效液相色谱。

1.2高效液相色谱与其它色谱的比较[2]
1.2.1与经典液相色谱的比较
经典液相色谱法使用粗粒多孔固定相,装填在大口径、长玻璃柱管内,流动相仅靠重力流经色谱柱,溶质在固定相的传质、扩散速度缓慢,柱入口压力低,柱效低,分析时间冗长。

高效液相色谱法使用了全多孔微粒固定相,装填在小口径、短不锈钢柱内,流动相通过高压输液泵进入高柱压的色谱柱,溶质在固定相的传质,扩散速度大大加快,从而在短的分析时间内获得高柱效和高分离能力。

1.2.2与气相色谱法的比较
高效液相色谱法与气相色谱法有许多相似之处。

气相色谱法具有选择性高、分离效率高、灵敏度高,分析速度快的特点,但它仅适于分析蒸气压低、沸点低的样品,而不适用于分析高沸点有机物、高分子和热稳定性差的化合物以及生物活性物质,因而使其应用受到限制。

在全部有机化合物中仅有20%的样品适用于气相色谱分析。

高效液相色谱法却恰可弥补气相色谱法的不足之处,可对80%的有机化合物进行分离和分析。

2、高效液相色谱
2.1高效液相色谱的特点
2.1.1高效液相色谱的优点
1.分辨率高于其它色谱法,可选择固定相和流动相以达到最佳分离效果;
2.速度快,十几分钟到几十分钟可完成;
3.重复性高、样品不被破坏、易回收;
4.高效相色谱柱可反复使用;
5.自动化操作,分析精确度高;
6.应用范围广,百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。

2.1.2高效液相色谱的缺点
1.需要高压:一般可达150~350×105Pa。

2.柱外效应[3]:在从进样到检测器之间,除了柱子以外的任何死空间中,例如进样器、柱接头、连接管和检测池等,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。

2.2高效液相色谱的分类[4]
根据分离机制的不同,高效液相色谱法可分为:
1.分配色谱:固定相是液体,利用液体固定相对试样中诸组分的溶解能力不同,
即试样中诸组分在流动相与固定相中分配系数的差异,而实现试样中诸组分分离的色谱法。

根据固定相和液体流动相相对极性的差别,又可分为正相分配色谱和反相分配色谱。

当固定相的极性大于流动相的极性时,可称为正相分配色谱或简称正相色谱;若固定相的极性小于流动相的极性时,可称为反相分配色谱或简称反相色谱。

2.吸附色谱:用固体吸附剂作固定相,以不同极性溶剂作流动相,依据样品中
各组分在吸附剂上吸附性能的差别来实现分离。

3.离子交换色谱:以离子交换剂作为固定相。

是基于离子交换树脂上可电离的
离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。

4.亲和色谱:也称为亲和层析,是一种利用固定相的结合特性来分离分子的色
谱方法。

亲和色谱在凝胶过滤色谱柱上连接与待分离的物质有一定结合能力的分子,并且它们的结合是可逆的,在改变流动相条件时二者还能相互分离。

5.体积排阻色谱:用化学惰性的多孔性凝胶作固定相,按固定相对样品中各组
分分子体积阻滞作用的差别来实现分离。

以水溶液作流动相的体积排阻色谱法,称为凝胶过滤色谱;以有机溶剂作流动相的体积排阻色谱法,称为凝胶渗透色谱法。

2.3高效液相色谱的组成
(1)高压泵:高效液相色谱使用的色谱柱是很细的(1~6 mm),所用固定相的粒度也非常小(几微米到几十微米),所以流动相在柱中流动受到的阻力很大,在常压下,流动相流速十分缓慢,柱效低且费时。

为了达到快速、高效分离,必须给流动相施加很大的压力,以加快其在柱中的流动速度。

为此,须用高压泵进行高压输液。

高效液相色谱的高压泵的要求是流量恒定,无脉动,并有较大的调节范围;能抗溶剂腐蚀;有较高的输液压力。

(2)梯度洗提装置: 梯度洗提就是载液中含有两种(或更多)不同极性的溶剂,在分离过程中按一定的程序连续改变载液中溶剂的配比和极性,通过载液中极性的变化来改变被分离组分的分离因素,以提高分离效果。

有高压梯度和低压梯度。

(3)色谱柱:是色谱仪最重要的部件。

通常用后壁玻璃管或内壁抛光的不锈钢管制作的,对于一些有腐蚀性的样品且要求耐高压时,可用铜管、铝管或聚四氟乙烯管。

发展趋势是减小填料粒度和柱径以提高柱效。

(4)进样装置:注射器进样装置时进样所用微量注射器及进样方式与气相色谱法一样。

进样压力小于150×105Pa,当进样压力大于150×105Pa时,必须采用停
流进样。

(5)检测装置:主要用于监测经色谱柱分离后的组分浓度的变化,并由记录仪绘出谱图来进行定性、定量分析。

通常的检测器有紫外光度检测器、光电二极管阵列检测器、荧光检测器、差示折光检测器、电导检测器。

(6)数据处理装置:高效液相色谱的分析结果除可用记录仪绘制谱图外,还可使用微处理机和色谱数据工作站来记录和处理色谱分析的数据。

3、高效液相色谱的应用[5]
3.1高效液相色谱的应用范围
高效液相色谱法适于分析高沸点不易挥发的、受热不稳定易分解的、分子量大、不同极性的有机化合物;生物活性物质和多种天然产物;合成的和天然的高分子化合物等。

它们涉及石油化工产品、食品、合成药物、生物化工产品及环境污染物等,约占全部有机化合物的80%,其余20%的有机化合物,包括永久性气体,易挥发低沸点及中等分子量的化合物只能用气相色谱法进行分析。

3.2高效液相色谱的应用局限性
第一,在高效液相色谱法中,使用多种溶剂作为流动相,当进行分析时所需成本高于气相色谱法,且易引起环境污染。

当进行梯度洗脱操作时,它比气相色谱法的程序升温操作复杂。

第二,高效液相色谱法中缺少如气相色谱法中使用的通用型检测器(如热导检测器和氢火焰离子化检测器)。

近年来蒸发激光散射检测器的应用日益增多,有望发展成为高效液相色谱法的一种通用型检测器。

第三,高效液相色谱法不能替代气相色谱法,去完成要求柱效高达10万块理论塔板数以上,必需用毛细管气相色谱法分析组成复杂的具有多种沸程的石油产品。

第四,高效液相色谱法也不能代替中、低压柱色谱法,在200千帕至1兆帕柱压下去分析受压易分解、变性的具有生物活性的生化样品。

结论
高效液相色谱是从气相色谱和液相色谱发展而来的,其发展十分迅猛,目前应用也很广泛。

它的结构和操作流程比较完善。

高效液相色谱的应用范围也十分广泛。

但我们也要发现其不足之处,进一步完善高效液相色谱,为样品分析提供更为方便的分析方法。

参考文献
[1]于世林,高效液相色谱方法及应用[M].北京市:化学工业出版社 ,2005.04
[2]王俊德;商振华;郁蕴璐,高效液相色谱法[M]. 1992年03月第1版
[3]吴宁生;顾光华,高效液相色谱[M].1989年08月第1版
[4]张金专;华菲,;张晔,高效液相色谱在火灾调查中的应用[J].消防技术与产品信息,2005.10
[5]冀晓磊; 陈如春; 黑均安,高效液相色谱分析应用心得[J].CJFD收录刊,2006(04)。

相关文档
最新文档