Antibacterial Activity of 9-Octadecanoic Acid-Hexadecanoic Acid- Tetrahydrofuran-3,4-Diyl Ester

合集下载

肉桂叶化学成分及药理作用研究进展

肉桂叶化学成分及药理作用研究进展

第47卷第1期2019年1月广 州 化 工Guangzhou Chemical IndustryVol.47No.1Jan.2019肉桂叶化学成分及药理作用研究进展*张笮晦1,2,童永清3,黄广智3,李石兰3,钱信怡3(1广西中医药大学,广西 南宁 530200;2广西中药药效研究重点实验室,广西 南宁 530200;3广西庚源香料有限责任公司,广西 东兴 538100)摘 要:肉桂叶为樟科樟属植物肉桂(Cinnamomum cassia Presl)的叶,是肉桂种植加工产业中常见的副产物之一㊂肉桂叶是工业上通过水蒸气蒸馏法提取肉桂油的原料,提取残渣通常仅作为锅炉燃料处理,其中含有丰富的天然活性成分没有得到充分利用,造成资源浪费和环境污染㊂本文综述了肉桂叶化学成分㊁提取方法及药理作用的研究进展,以期为肉桂叶的综合利用提供参考㊂关键词:肉桂叶;挥发油;水蒸气蒸馏法;抗菌作用;抗氧化作用 中图分类号:R282.71;TQ074 文献标志码:A文章编号:1001-9677(2019)01-0020-03*基金项目:广西重点研发计划资助项目(2017AB35155);广西中药药效研究重点实验室(16-380-29)㊂第一作者:张笮晦(1979-),女,讲师,主要从事天然药物的生物化工㊁农作物废弃物功能成分的开发与研究㊂Research Progress on Chemical Components and Pharmacological Activitiesof Cinnamomum Cassia Leaves *ZHANG Zuo -hui 1,2,TONG Yong -qing 3,HUANG Guang -zhi 3,LI Shi -lan 3,QIAN Xin -yi 3(1Guangxi University of Chinese Medicine,Guangxi Nanning 530200;2Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica,Guangxi Nanning 530200;3Guangxi GengYuanFlavor and Fragrance Co.,Ltd.,Guangxi Dongxing 538100,China)Abstract :Cinnamomum cassia leaves,the leaves of Cinnamomum cassia (Cinnamomum camphoraceae Presl),are common by-product in the Cinnamon planting and processing industry.They are raw materials for extracting cinnamon oil by steam distillation in industry.Extraction residue,which contains rich natural active ingredients,is not fully utilized and often only treated as boiler fuel,causing resource-wasting and environmental pollution.The chemical constituents,extraction methods and pharmacological activities of Cinnamomum cassia leaves were reviewed in order to provide reference for the comprehensive utilization of Cinnamomum cassia leaves.Key words :Cinnamomum Cassia leaves;volatile oil;steam distillation;antibacterial activity;anti-oxidant activity肉桂(Cinnamomum cassia Presl)为樟科(Lauraceae)樟属(Cinnamomum Trew)植物,又名玉桂,为热带㊁南亚热带常绿乔木[1]㊂肉桂原产地为斯里兰卡,中国㊁越南㊁印度㊁印尼等国家及其他许多热带地区都有栽培,我国肉桂主要种植于广西㊁广东㊁云南㊁福建等的湿热地区[2-3]㊂肉桂作为我国传统的中药材,具有补火助阳㊁散寒止痛㊁引火归元等传统功效以及抗炎㊁免疫调节㊁改善糖脂代谢㊁抗肿瘤㊁抗氧化㊁抗衰老㊁抗胃溃疡㊁扩张血管㊁抑菌等药理活性[4-5]㊂肉桂叶为肉桂叶子部分,其含油量丰富,且再生能力强㊁再生量大,具有较大的潜在利用价值[6]㊂本文从肉桂叶的化学成分㊁提取方法和药理作用三个方面综述了肉桂叶近年来的研究状况,为更深层次的研究肉桂叶及提高其利用价值提供参考㊂1 肉桂叶化学成分1.1 挥发油樟属植物富含精油,不同种或同一个种内具有的化学成分含量㊁组成存在差异[7]㊂桂皮㊁桂枝中挥发油含量丰富,肉桂叶中挥发油含量也很丰富,且功效与桂皮油类似[4]㊂国内外学者分析鉴定出139种化学成分[8-20],包括醛酮类29种㊁醇类28种㊁烯类41种㊁酸和酯类22种㊁烷烃类8种㊁其他类11种㊂肉桂叶挥发油以肉桂醛为主,相对含量在50%~90%,此外,含量在1%以上的有苯丙醛㊁邻甲氧基肉桂醛㊁乙酸肉桂酯㊁香豆素等㊂1.2 萜类(二萜)周蕾[19]通过多种现代色谱分离技术及光谱分析手段,从肉桂叶的乙醇提取物正丁醇部位分离鉴定出39个化合物,其中包括2个二萜新骨架化合物㊁5个Cinncassiol G 类二萜骨架新化合物和11个Cinncassiol D 类二萜骨架新化合物㊂曾俊芬[20]运用反复柱层析技术从肉桂叶的乙醇提取物共分离鉴定了20个单体化合物,其中1个为新异瑞诺烷二萜,命名为cinncassiol G2㊂1.3 苯丙素类曾俊芬等[21]从肉桂叶乙醇提取物中分离鉴定出3个简第47卷第1期张笮晦,等:肉桂叶化学成分及药理作用研究进展21单苯丙素:3(4-hydroxy-3-methoxy phenyl)propan-1,2-dio㊁3-dehydroxy-1-(3,4-dihydroxyphenyl)-1-propanone㊁dihydrocinnacasside,2个首次在肉桂叶中发现的木脂素(+) lariciresinol㊁(-)4-epi-lyoniresinol㊂1.4 酚苷类曾俊芬[20]从肉桂叶中分离鉴定出3个酚苷类化合物:2,6-dimethoxy-p-hydroquinone-1-O-β-D-glucopyranside㊁cinnacasolide A㊁canthoside C㊂1.5 黄 酮向丽等[22]从广西玉林桂叶中提取分离得到黄酮类化合物,且通过红外光谱对比分析得出其含量比肉桂皮高㊂李军集等[23]用紫外分光光度计法测定肉桂叶及其渣所提取的总黄酮浓度,结果分别为2.56g/L和1.18g/L,说明在提油过程中有部分黄酮损失㊂1.6 其 他此外,肉桂叶中还含有草酸钙㊁微量无机元素㊁单宁㊁树脂㊁树胶质㊁纤维素等化学成分㊂2 提取方法2.1 水蒸气蒸馏法水蒸气蒸馏法是工业上提取肉桂叶挥发油的最常用的方法,具有生产设备投入低㊁技术成熟㊁操作简单等优点㊂张浩等[9]对肉桂叶浸泡5h后进行加热处理,破坏细胞组织以释放精油,水蒸气辅助提取,提取功率和时间分别为900W和3h,提取率可达7.13‰㊂张玉姣等[24]以肉桂醛为指标,在肉桂叶粒径20目,提取时间1.5h,提取温度168℃条件下肉桂醛提取率和含量分别为2.08%和91.50%㊂卫向南等[17]采用水扩散蒸馏提取肉桂叶油,得到适宜条件为:蒸馏时间90min,投料量200g/L,蒸汽进口压力为1750Pa,此条件下得油率为8.88‰,其主要成分为肉桂醛(86.89%)㊁苯甲醛(1.55%)㊁乙酸肉桂酯(3.92%)㊁邻甲氧基肉桂醛(4.56%),占96.92%㊂得到挥发油的同时获得副产物黄酮和多糖,提取率分别0.039%和0.818%㊂2.2 超声波辅助溶剂提取法邹勇芳等[25]用超声波提取法提取肉桂叶总黄酮,并与乙醇浸提法提取总黄酮的含量进行对比,测得肉桂叶总黄酮含量为0.9097g/L,是乙醇浸提法的3.37倍,回收率为99.3%,其纯度和产率均较高㊂2.3 超临界二氧化碳提取法张清华[18]对肉桂叶的超临界CO2提取工艺进行小试及中试研究,确定肉桂叶的超临界CO2的最优提取工艺为:温度40℃,压力15MPa,萃取时间1.5h,CO2流量30L/h,挥发油收率达到2.88%㊂2.4 其他方法李军集等[23]采用索氏提取法,以石油醚为溶剂,肉桂叶粒径50目,回流时间4h,回流温度60℃,得到肉桂叶及桂叶渣提取液黄酮浓度分别为2.56g/L和1.18g/L㊂张笮晦等[26]采用微生物法提取肉桂叶有效成分,其最优工艺条件:葡萄糖质量浓度30g/L,蛋白胨质量浓度20g/L,初始pH=6.0,28℃下提取60h,该条件下,肉桂醛㊁香豆素和邻甲氧基肉桂醛的提取率分别为1.40%,0.729%和0.918%㊂3 药理作用3.1 抗菌作用Duan J等[27]等表明,肉桂叶精油单独冻融处理对大肠杆菌O157:H7和肠道沙门菌具有显著的抗菌活性,随着精油浓度的增加和贮藏时间的延长,抗菌活性逐渐增强㊂Jeong E J 等[28]证明浓度为4000ppm/mm2的肉桂叶精油能完全抑制青霉属的生长㊂Jasenka'Cosi'c等[29]证明肉桂叶油对Diaporthe phaseolorum var.caulivora,Phomopsis viticola,Diaporthe helianthi 等10种植物致病真菌具有较好的抗真菌活性㊂朱羽尧等[10]选用肉桂的皮㊁叶㊁枝㊁果实㊁花萼5种精油对金黄色葡萄球菌(Staphylococcus aureus)㊁大肠杆菌(Escherichia coli)的抑制活性,各部位精油精油对大肠杆菌㊁金黄色葡萄球菌的抑菌圈直径均大于20mm,属于极度敏感,说明各部位精油对两种供试微生物均具有显著抑菌效果㊂卫向南[14]提取了肉桂叶水扩散蒸馏副产物黄酮和多糖并考察了它们的抗菌活性,结果显示它们对金黄色葡萄球菌㊁枯草芽孢杆菌㊁大肠杆菌的抑制作用较明显,而对病疾杆菌的抑制效果不明显㊂3.2 抗氧化作用孙振军[13]对肉桂叶乙醇提取液的不同极性部分清除自由基的能力进行研究的结果表明:肉桂叶乙醇相清除羟自由基的能力接近于维生素C,其清除能力随样品添加量的递增而增强;石油醚部分清除NO2-的能力略强于维生素C,肉桂叶不同极性部分对超氧阴离子自由基均有一定活性㊂Ayala-Zavala J F 等[30]的研究表明肉桂叶油是一种有效的抗氧化剂,且添加的肉桂叶油浓度越高,其丁香酚含量和抗氧化能力越高㊂而Melgarejo-Flores B G等[31]的研究表明肉桂叶油能增加葡萄的抗氧化保健作用㊂卫向南[14]提取了肉桂叶水扩散蒸溜副产物黄酮和多糖并考察了它们的抗氧化活性,结果表明:黄酮对羟自由基和超氧阴离子具有明显的清除作用,在供试质量浓度范围内,羟自由基(超氧阴离子)清除率随黄酮质量浓度的增大而增大;多糖对羟自由基具有一定的清除作用,在供试质量浓度范围内,羟自由基清除率随多糖质量浓度的增大而增大,而多糖对超氧阴离子的清除效果几乎没有㊂3.3 免疫调节作用周蕾[19]从肉桂叶中提取出39个化合物,其中6个化合物在不同的浓度之下,对ConA诱导的小鼠T淋巴细胞表现出促进增值的作用,且增幅可达78%,而另2个化合物在低浓度下表现为明显促进作用㊁高浓度下表现为抑制作用,说明这部分二萜类化合物具有良好的免疫调节作用㊂曾俊芬[20]从肉桂叶的乙醇提取物分离鉴定的倍半萜类化合物aglycon和badounoid B 有一定的免疫抑制活性,其中化合物aglycon在800μM时,对T细胞和B细胞的增殖抑制率达到68%㊂3.4 其他作用肉桂叶油的主要活性成分为肉桂醛,肉桂可使肝癌HepG2细胞[32]凋亡加快,对人肺癌A549细胞有抑制增殖作用[33-34],能使宫颈癌HeLa细胞p21蛋白表达增强㊁CDK4蛋白表达减弱,进而使HeLa细胞凋亡加快[35]㊂此外,桂叶精油还有灭活酿酒酵母[36]㊁降低霉菌毒素[37]和体外抗虱子(Pediculus humanus)[38]等作用㊂4 结 语近年来,国内外学者对于肉桂的研究大多集中在肉桂皮及22 广 州 化 工2019年1月其精油的成分和功效上,对肉桂叶的研究大多处在基础阶段㊂肉桂叶资源丰富,再生能力强,常年可采集㊂因此,有必要系统研究肉桂叶的化学成分及单体活性的作用机制,为进一步开发利用肉桂叶提供科学依据㊂参考文献[1] 黎贵卿,陆顺忠,江燕,等.不同生长阶段肉桂叶中油细胞的形态及精油成分[J].广西林业科学,2016,45(1):85-88. [2] 侯小涛,郝二伟,秦健峰,等.肉桂的化学成分㊁药理作用及质量标志物(Q-marker)的预测分析[J].中草药,2018,49(1):20-34. [3] 李艳,苗明三.肉桂的化学㊁药理及应用特点[J].中医学报,2015,30(9):1335-1337.[4] 郭虹,林观样.肉桂叶挥发性成分分析[J].浙江中医药大学学报,2009,33(6):883-884.[5] 黄丽涛,杨向宏,许育佳,等.肉桂的研究进展[J].大众科技,2018,20(1):77-79.[6] 邓淑蓉,潘宇政.肉桂主要化学成分及药理作用研究概况[J].现代中西医结合杂志,2018,27(4):448-451.[7] 欧阳少林,罗志华,周小卿,等.樟属植物化学型研究概况[J].中国实验方剂学杂志,2011,17(18):268-271.[8] 王琳琳,陈小鹏,韦小杰.广西桂枝桂叶挥发油化学成分分析[J].企业技术开发,2003(15):6-8.[9] 张浩,柴向华.肉桂叶精油水蒸气提取工艺及甄别技术的研究[J].广东工业大学学报,2017,34(4):27-30,40. [10]朱羽尧,钱骅,张琪瑶,等.肉桂不同植物部位精油成分分析及抑菌活性研究[J].中国野生植物资源,2014,33(6):1-5. [11]刘红星,孙振军,黄初升,等.桂皮㊁桂枝㊁桂叶挥发油的化学成分比较分析[J].食品研究与开发,2010,31(12):144-147. [12]刘红星,林森,黄初升,等.肉桂三个不同部位提取肉桂油的化学成分比较分析[J].中国调味品,2011,36(4):102-104,110. [13]孙振军.桂皮㊁桂枝㊁桂叶油提取工艺㊁化学成分及其乙醇提取物的抗氧化活性研究[D].南宁:广西师范学院,2010. [14]卫向南.水扩散蒸馏提取肉桂叶有效成分的研究[D].南宁:广西大学,2014.[15]Chang C T,Chang W L,Hsu J C,et al.Chemical composition andtyrosinase inhibitory activity of Cinnamomum cassia essential oil[J].Botanical Studies,2013,54(10):1-7.[16]Wang R,Wang R J,Yang B.Extraction of essential oils from fivecinnamon leaves and identification of their volatile compound compositions[J].Innovative Food Science and Emerging Technologies, 2009,10(2):289-292.[17]卫向南,李伟光,刘雄民,等.肉桂叶水扩散蒸馏提取肉桂油的研究[J].应用化工,2014,43(6):1047-1049.[18]张清华.四种海南芳香药物的超临界萃取工艺及GC-MS分析研究[D].北京:中国协和医科大学,2010.[19]周蕾.肉桂叶化学成分及免疫调节活性研究[D].武汉:华中科技大学,2016.[20]曾俊芬.肉桂皮及叶化学成分和生物活性研究[D].武汉:华中科技大学,2014.[21]曾俊芬,朱虎成,周忠泉.肉桂皮及叶中木脂素类化学成分的研究[J].中国药师,2017,20(5):781-784.[22]向丽,张贵君,赵保胜,等.肉桂不同部位及其挥发油的红外光谱宏观表征[J].中国实验方剂学杂志,2017,23(8):57-61. [23]李军集,周丽珠,陈海燕,等.紫外分光光度法检测桂叶㊁桂叶渣总黄酮研究[J].应用化工,2015,44(5):970-971,975. [24]张玉姣,方岩雄,杨祖金,等.水蒸气蒸馏提取桂叶精油中组分的分布规律[J].精细化工,2014,31(1):50-53.[25]邹勇芳,黄锁义,李卫彬,等.肉桂植物总黄酮的超声波提取工艺研究[J].食品研究与开发,2008(4):20-23.[26]张笮晦,邓家刚,黄静,等.微生物法提取桂叶精油的组分研究[J].应用化工,2017,46(1):109-112.[27]Duan J,Zhao Y.Antimicrobial efficiency of essential oil and freeze-thaw treatments against Escherichia coli O157:H7and Salmonella enterica Ser.Enteritidis in strawberry juice[J].Journal of Food Science,2009,74(3):131-137.[28]Jeong E J,Lee N K,Oh J,et al.Inhibitory effect of cinnamon essentialoils on selected cheese-contaminating fungi(Penicillium spp.)during the cheese-ripening process[J].Food Science and Biotechnology, 2014,23(4):1193-1198.[29]Jasenka'Cosi'c,Karolina Vrandĕc i'c,Jelena Pošti'c,et al.In vitroantifungal activity of essential oils on growth of phytopathogenic fungi [J].Agriculture,2010,16(2):25-28.[30]Ayala-Zavala J F,Silva-Espinoza B A,Cruz-Valenzuela M R,et al.Pectin-cinnamon leaf oil coatings add antioxidant and antibacterial properties to fresh-cut peach[J].Flavour and Fragrance Journal, 2013,28(1):39-45.[31]Melgarejo-Flores B G,Ortega-Ramírez L A,Silva-Espinoza B A,etal.Antifungal protection and antioxidant enhancement of table grapes treated with emulsions,vapors,and coatings of cinnamon leaf oil[J].Postharvest Biology and Technology,2013,86:321-328. [32]王旭林,王萍,侯玉龙,等.肉桂醛对肝癌HepG2细胞p21和CDK4蛋白的影响[J].实用肿瘤杂志,2016,31(4):344-348. [33]郑晓文,陈一强,孔晋亮,等.肉桂醛通过Hedgehog信号通路影响人肺腺癌A549细胞的E-cadherin㊁MMP-9的表达[J].中国免疫学杂志,2014,30(6):768-773,778.[34]宋晓兵.肉桂醛对肺癌细胞A549具有体外抑制作用[J].中国卫生标准管理,2014,5(6):30-32.[35]王跃新,邢继强,张晓波,等.肉桂醛抗人宫颈癌相关机制的研究[J].中国微生态学杂志,2011,23(6):516-518,524.[36]Marta Sánchez-Rubio,Amaury Taboada-Rodríguez,Rita Cava-Roda,et bined use of thermo-ultrasound and cinnamon leaf essential oil to inactivate Saccharomyces cerevisiae in natural orange and pomegranate juices[J].LWT-Food Science and Technology,2016,73: 140-146.[37]Perczak Adam,Ju's Krzysztof,Marchwińska Katarzyna,et al.Degradation of zearalenone by essential oils under in vitro conditions [J].Frontiers in microbiology,2016,7:1224.[38]Veal L.The potential effectiveness of essential oils as a treatment forheadlice,Pediculus humanus capitis[J].Complementary Therapies in Nursing and Midwifery,1996,2(4):97-101.。

黄花蒿精油抑菌、抗氧化及毒理学特性研究

黄花蒿精油抑菌、抗氧化及毒理学特性研究

陈文丹,白玉莹,郭成虎,等. 黄花蒿精油抑菌、抗氧化及毒理学特性研究[J]. 食品工业科技,2024,45(7):44−50. doi:10.13386/j.issn1002-0306.2023030150CHEN Wendan, BAI Yuying, GUO Chenghu, et al. Antibacterial, Antioxidant and Toxicological Properties of Artemisia annua Essential Oil[J]. Science and Technology of Food Industry, 2024, 45(7): 44−50. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023030150· 研究与探讨 ·黄花蒿精油抑菌、抗氧化及毒理学特性研究陈文丹1,2,3,白玉莹1,郭成虎1,柴玉宏1,王丰俊3, *,黄丛林1, *,刘 华1,*(1.北京市农林科学院,北京 100089;2.中央储备粮宁陵直属库有限公司,河南商丘 476111;3.北京林业大学生物科学与技术学院,北京 100083)摘 要:采用水蒸气蒸馏法提取北京地区黄花蒿精油,通过气相色谱-质谱法(GC-MS )对黄花蒿精油的挥发性成分进行分析,通过测定黄花蒿精油对DPPH 自由基、羟基自由基的清除率研究其体外抗氧化活性,采用琼脂扩散法评估抗菌活性,通过灌注小鼠不同剂量黄花蒿精油进行毒理学特性测定。

结果表明:黄花蒿精油产率为1.04‰,GC-MS 分析鉴定出332种精油组分,其中22个组分占总挥发物的71.09%,相对含量较多的为蒿酮(19.34%)和(+)-α-蒎烯(6.10%);黄花蒿精油有较好的抗氧化性,对DPPH 自由基、羟自由基的清除率与添加量呈量效关系,当其浓度为10 mg/mL 时,DPPH 自由基、羟基自由基的清除率最大,分别为40.03%和92.97%;黄花蒿精油对金黄色葡萄球菌和大肠杆菌均有较明显的抑制作用,且对金黄色葡萄球菌的抑菌效果(12.67±0.29 mm )优于大肠杆菌的抑菌效果(9.27±0.25 mm );黄花蒿精油的LD 50为7491 mg/kg ,表明黄花蒿精油无毒性。

药物国际非专利名称所用词干

药物国际非专利名称所用词干

国际非专利名称〔INN〕所用词干-abine -他滨-ac 抗感染药 -酸异丁芬酸衍生物Aceclofenac 醋氯芬酸Alclofenac 阿氯芬酸Amfenac 氨芬酸Anirolac 阿尼罗酸Bendazac 苄达酸Bromfenac 溴芬酸Bufexamac 丁苯羟酸Bufezolac 丁苯唑酸Cinfenoac 辛芬酸Clidanac 环氯茚酸Clofurac 氯呋酸Clopirac 氯吡酸Dexpemedolac 右培美酸Diclofenac 双氯芬酸Eltenac 依尔替酸Etodolac 依托度酸Felbinac 联苯乙酸Fenclofenac 芬氯酸Fenclorac 苯克洛酸Fentiazac 芬替酸Furofenac 呋罗芬酸Ibufenac 异丁芬酸 Isofezolac 三苯唑酸 Isoxepac 伊索克酸Ketorolac 酮咯酸 Lexofenac 来克芬酸 Lonazolac 氯那唑酸Mofezolac 莫苯唑酸 Nepafenac 奈帕芬胺 Oxepinac 奥昔平酸Oxindanac 羟吲达酸 Pemedolac 培美酸 Pirazolac 吡拉唑酸Sulindac 舒林酸 Tianafac 噻那酸 Tifurac 替呋酸Tiopinac 硫平酸 Trifezolac 曲非唑酸 Zomepirac 佐美酸-zolac -唑酸Bufezolac 丁苯唑酸Isofezolac 三苯唑酸Lonazolac 氯那唑酸Pirazolac 吡拉唑酸Trifezolac 曲非唑酸-acetam 〔见-racetam〕 -西坦-actide 类促皮质激素合成多肽-克肽Alsactide 阿沙克肽ricosactide 曲可克肽Codactide 可达克肽Tosactide 托沙克肽Giractide 吉拉克肽Norleusactide 正亮克肽Seractide 丝拉克肽Tetracosactide 替可克肽-adol 止痛药 -多Acetylmethadol 醋美沙多Alimadol 阿利马多Alphacetylmethadol 阿醋美沙多Alphamethadol 阿法美沙多Axomadol 阿索马多Betacetylmethadol 倍醋美沙多Betamethadol 倍他美沙多Ciprefadol 环丙法多Ciramadol 西拉马多Cloracetadol 氯西他多Dibusadol 地布沙多Dimenoxadol 地美沙多Diproxadol 地丙沙多Filenadol 非来那多Flumexadol 氟甲沙多Gaboxadol 加波沙多Hexapradol 己普拉醇Levacetylmethadol 左醋美沙多Levonantradol 左南曲多Lorcinadol 洛西那多Myfadol 麦法多Nafoxadol 萘克沙多Nantradol 南曲多Nerbacadol 那巴卡多Noracymethadol 诺美沙多Oxapadol 奥沙帕多Picenadol 哌西那多Pipradimadol 哌地马多Pipramadol 哌马多Profadol 普罗法多Quinestradol 奎雌醇Tapentadol 他喷他多Tolpadol 托帕多Tramadol 曲马多-adom 止痛药 -多替氟多类衍生物Lufuradom 鲁夫拉多Tifluadom 替氟多-fenone 抗心律失常药-非农<酮> 普罗帕酮类衍生物Alprafenone 阿普非农Berlafenone 柏拉非农Diprafenone 地丙苯酮Etafenone 依他苯酮Nizofenone 尼唑苯酮Pitofenone 吡托非农Propafenone 普罗帕酮Romifenone 罗米芬酮-afil 血管扩药 -非Beminafil 贝米那非Dasantafil 达生他非Sildenafil 那非Tadalafil 他达拉非Vardenafil 伐地那非-aj- 抗心律失常药 -义西萝芙木碱类衍生物Ajmaline* 阿义马林Detajmium Bitartrate 重酒石酸地他义铵Lorajmine 劳拉义明-al -醛-aldrate 抗酸药 -铝Carbaldrate 卡巴铝Magaldrate 镁加铝Potassium Glucaldrate 葡铝酸钾Simaldrate 硅镁铝Sodium Glucaspaldrate 葡柳铝酸钠-alol <见-olol> -洛尔-alox <见-ox>-铝-amivir <见-vir> -米韦-ampanel AMPA受体阻滞药 -帕奈Becampanel 贝坎帕奈 Irampanel 伊仑帕奈 Talampanel 他仑帕奈Zonampanel 唑南帕奈andr 雄激素类药雄Andrographolide 穿心莲酯 Androisoxazole 雄异唑 Androstanolone 雄诺龙Androstenediol 雄烯二醇 Androsterone 雄酮-anib 血管生成抑制药 -尼Pegaptanib 培加他尼 Semaxanib 司马沙尼 Vandetanib 凡德他尼 Vatalanib 伐他拉尼-anide 利尿药 -尼特苯吡磺苯酸衍生物-oxanide抗蠕虫药 -沙奈水酰苯胺衍生物Bromoxanide 溴沙奈Clioxanide 氯碘沙奈Diloxanide 二氯沙奈Nitazoxanide 硝唑沙奈Rafoxanide 雷复沙奈-anserin 5-羟色胺拮抗药 -色林Adatanserin 阿达色林 Altanserin 阿坦色林 Blonanserin 布南色林Butanserin 布坦色林 Cinanserin 辛那色林 Eplivanserin 依利色林Fananserin 法南色林 Flibanserin 氟班色林 Glemanserin 格来色林Iferanserin 艾夫色林 Ketanserin 酮色林 Lidanserin 利丹色林Mianserin 米安色林 Pelanserin 培兰色林 Pruvanserin 普凡色林Ritanserin 利坦色林 Seganserin 司更色林 Tropanserin 托烷色林-antel抗蠕虫药 -太尔Amidantel 阿米太尔Carbantel 卡班太尔Closantel 氯生太尔Epsiprantel 依西太尔Febantel 非班太尔Flurantel 氟仑太尔Morantel 莫仑太尔Oxantel 奥克太尔Pexantel 哌克太尔Resorantel 雷琐太尔Salantel 沙仑太尔Zilantel 齐仑太尔-apine <见-pine> -氮平<平>-<ar>abine 抗肿瘤药 -拉滨阿拉伯糖苷衍生物Ancitabine 安西他滨Capecitabine 卡培他滨Clofarabine 氯法拉滨Cytarabine 阿糖胞苷Decitabine 地西他滨Elvucitabine 艾夫他滨Emtricitabine 恩曲他滨Enocitabine 依诺他滨Fazarabine 法扎拉滨Fengabine 酚加宾Fiacitabine 非西他滨Fludarabine 氟达拉滨Flurocitabine 氟西他滨Galocitabine 加洛他滨Gemcitabine 吉西他滨Ibacitabine 伊巴他滨Nelzarabine 奈拉滨Retigabine 瑞替加滨Tezacitabine 替扎他滨Tiagabine 噻加宾Torcitabine 托西他滨Troxacitabine 曲沙他滨Valtorcitabine 伐托他滨Vidarabine 阿糖腺苷Zalcitabine 扎西他滨-arit消炎镇痛药 -<扎>利Actarit 阿克他利Bindarit 宾达利Clobuzarit 氯丁扎利Lobenzarit 氯苯扎利Romazarit 氯马扎利-arol抗凝血药-香豆素双香豆素衍生物Acenocoumarol 醋硝香豆素 Clocoumarol 氯香豆素 Cloridarol 氯达香豆素Coumetarol 库美香豆素 Cyclocoumarol 环香豆素 Dicoumarol 双香豆素Ethylidenedicoumarol 乙双香豆素 Fluindarol 氟茚香豆素Tioclomarol 噻氯香豆素 Xylocoumarol 甲苄香豆素-arone -隆<酮>Amiodarone 胺碘酮 Benzarone 苯扎隆 Benzbromarone 苯溴马隆Benziodarone 苯碘达隆 Brinazarone 布吲扎酮 Bucromarone 布色酮Diarbarone 地阿巴隆 Dronedarone 决奈达隆 Etabenzarone 依他扎隆Fantofarone 泛托法隆 Furidarone 呋碘达隆 Inicarone 吡香豆酮Mecinarone 美西那隆 Pyridarone 吡达隆 Rilozarone 利洛扎隆-arotene -罗汀Betacarotene 倍他胡萝卜素 Bexarotene 贝沙罗汀 Etarotene 依他罗汀Linarotene 林那罗汀 Mofarotene 莫法罗汀 Sumarotene 舒马罗汀Tamibarotene 他米巴罗汀 Tazarotene 他扎罗汀 Temarotene 替马罗汀arte-抗疟药<青>蒿- 青蒿素衍生物Artemether蒿甲醚 Artemisinin青蒿素 Artemotil蒿乙醚Artenimol青蒿醇Artesunate青蒿琥酯-ase -酶Alfimeprase 阿非普酶 Alglucerase 阿糖脑苷酶 Alpha Amylase 阿法淀粉酶Alteplase 阿替普酶 Amediplase 安地普酶 Anistreplase 阿尼普酶Asparaginase 门冬酰胺酶 Brinase 纤维蛋白酶 Cellulase 纤维素酶Cocarboxylase 辅羧酶 Desmoteplase 去氨普酶 Desoxyribonuclease 去氧核糖核酸酶Diastase 淀粉酶 Duteplase 度替普酶 Elastase 弹性酶 Epafipase依帕非酶Eufauserase 尤福丝酶 Hyalosidase 透明糖酶 Hyaluronidase 玻璃酸酶Idusulfase 艾度硫酸酯酶 Imiglucerase 伊米苷酶 Kallidinogenase 血管舒缓素Lanoteplase 拉诺普酶 Laronidase 拉罗尼酶 Ledismase 来地酶Monteplase 孟替普酶 Nasaruplase 那沙普酶 Nateplase 那替普酶Pamiteplase 帕米普酶 Pancrelipase 胰脂肪酶 Pegademase 培加酶Pegaspargase 培门冬酶 Penicillinase 青霉素酶 Promelase 普罗米酶Ranpirnase 豹蛙酶 Rasburicase 拉布立酶 Reteplase 瑞替普酶Rizolipase 根霉脂肪酶 Saruplase 沙芦普酶 Serrapeptase 舍雷肽酶Sfericase 司非立酶 Silteplase 西替普酶 Streptodornase 链道酶Streptokinase 链激酶 Sudismase 超氧歧化酶 Tenecteplase 替奈普酶Tilactase 半乳糖苷酶 Urokinase 尿激酶-ast 镇咳平喘药、抗过敏药 -司特Acitazanolast 阿扎司特 Acreozast 阿克瑞司特 Andolast 安多司特Asobamast 阿索司特 Ataquimast 阿喹司特 Bamaquimast 巴马司特Batebulast 巴布司特 Binizolast 比尼司特 Bunaprolast 布那司特Cilomilast 西洛司特 Cinalukast 西那司特 Dametralast 达美司特Dazoquinast 达唑司特 Doqualast 多夸司特 Eclazolast 乙唑司特Eflumast 乙氟司特 Enofelast 乙诺司特 Enoxamast 依诺司特Fenprinast 苯呤司特 Filaminast 非明司特 Ibudilast 异丁司特Idenast 艾地司特 Lirimilast 利米司特 Loxanast 洛沙司特Melquinast 甲喹司特 Ontazolast 昂唑司特 Oxalinast 草氨司特Pemirolast 吡嘧司特 Piclamilast 吡拉米司特 Picumast 哌香豆司特Pirodomast 吡咯司特 Quazolast 喹唑司特 Quinotolast 喹托司特Raxofelast 雷索司特 Repirinast 瑞吡司特 Revenast 瑞那司特Roflumilast 罗氟司特 Scopinast 司考匹司特 Tazanolast 他扎司特Tetomilast 替托司特 Tetrazolast 四唑司特 Tiacrilast 硫克司特Tibenelast 硫苯司特 Tioxamast 噻草司特 Tiprinast 替普司特Tofimilast 妥非司特 Tranilast 曲尼司特 Zaprinast 扎普司特-lukast -鲁司特Ablukast 阿鲁司特 Cinalukast 西那司特 Iralukast 伊拉司特Montelukast 孟鲁司特 Pobilukast 泊比司特 Pranlukast 普仑司特Ritolukast 利托司特 Sulukast 硫鲁司特 Tomelukast 托鲁司特Verlukast 维鲁司特 Zafirlukast 扎鲁司特-trodast-曲司特Imitrodast 咪曲司特 Seratrodast 塞曲司特- astride<见-ster-> -雄胺Dutasteride 度他雄胺 Finasteride 非那雄胺-astine 抗组胺药 -斯汀Acrivastine 阿伐斯汀 Alinastine 阿利那斯汀 Azelastine 氮斯汀Bamirastine 巴麦斯汀 Barmastine 巴马斯汀 Bepiastine 贝匹斯汀Bepotastine 贝他斯汀 Bermastine 哌马斯汀 Bilastine 比拉斯汀Cabastine 卡巴斯汀 Carebastine 卡瑞斯汀 Clemastine 氯马斯汀Cloperastine 氯哌斯汀 Dorastine 多拉斯汀 Ebastine 依巴斯汀Emedastine 依美斯汀 Epinastine 依匹斯汀 Flezelastine 氟斯汀Levocabastine 左卡巴斯汀 Linetastine 利奈他斯汀 Mapinastine 马哌斯汀Mizolastine 咪唑斯汀 Moxastine 莫沙斯汀 Noberastine 诺柏斯汀Octastine 辛斯汀 Perastine 哌拉斯汀 Piclopastine 吡氯斯汀Rocastine 罗卡斯汀 Setastine 司他斯汀 Talastine 他拉斯汀Temelastine 替美斯汀 Vinblastine 碱 Zepastine 帕斯汀-azam <见-azepam> -占Arfendazam 阿芬达占 Clobazam 氯巴占 Lofendazam 洛芬达占Razobazam 雷唑巴占 Triflubazam 三氟巴占 Zomebazam 唑美巴占-azenil苯二氮类拮抗药-西尼.苯二氮衍生物Bretazenil 溴他西尼Flumazenil 氟马西尼Nabazenil 大麻折尼Sarmazenil 沙马西尼-carnil苯二氮类拮抗药 -卡尔咔啉衍生物Abecarnil 阿贝卡尔 Gedocarnil 吉多卡尔-quinil苯二氮类拮抗药 -喹尼喹啉衍生物Lirequinil 利瑞喹尼 Resequinil 瑞司奎尼 Terbequinil 特贝喹尼-azepam 安定药-西泮地西泮衍生物Bentazepam 苯他西泮 Bromazepam 溴西泮 Camazepam 卡马西泮Carburazepam 卡布西泮Cinolazepam 西诺西泮Clonazepam 氯硝西泮Clotiazepam 氯噻西泮Cyprazepam 环丙西泮Delorazepam 地洛西泮Diazepam 地西泮Doxefazepam 度氟西泮Elfazepam 依法西泮Fletazepam 氟乙西泮Fludiazepam 氟地西泮Flunitrazepam 氟硝西泮Flurazepam 氟西泮Flutemazepam 氟替马西泮Flutoprazepam 氟托西泮Fosazepam 膦西泮Halazepam 哈拉西泮Iclazepam 伊氯西泮Lopirazepam 氯吡西泮Lorazepam 劳拉西泮Lormetazepam 氯甲西泮Meclonazepam 甲氯西泮Medazepam 美达西泮Menitrazepam 甲硝西泮Metaclazepam 美氯西泮Motrazepam 莫曲西泮Nimetazepam 尼美西泮Nitrazepam 硝西泮Nordazepam 去甲西泮Nortetrazepam 诺替西泮Oxazepam 奥沙西泮Pinazepam 匹那西泮Pivoxazepam 匹伏西泮Prazepam 普拉西泮Premazepam 普瑞西泮Proflazepam 丙氟西泮Quazepam 夸西泮Reclazepam 瑞氯西泮Ripazepam 利帕西泮Sulazepam 硫西泮Temazepam 替马西泮Tetrazepam 四氢西泮Tolufazepam 甲磺西泮Tuclazepam 妥氯西泮Uldazepam 乌达西泮Zolazepam 唑拉西泮-azepide缩胆囊素拮抗药 -西匹<派特>Devazepide 地伐西匹 Pranazepide 普拉那西匹 Tarazepide 他折派特-azocine 镇痛药-佐辛6,7-二苯吗啡衍生物Anazocine 阿那佐辛 Bremazocine 布马佐辛 Butinazocine 布替佐辛Carbazocine 卡巴佐辛 Cogazocine 可加佐辛 Cyclazocine 环佐辛Eptazocine 依他佐辛 Gemazocine 吉马佐辛 Ibazocine 伊巴佐辛Ketazocine 酮佐辛 Metazocine 美他佐辛 Moxazocine 莫沙佐辛Pentazocine 喷他佐辛 Phenazocine 非那佐辛 Quadazocine 夸达佐辛Tonazocine 托那佐辛 Volazocine 伏拉佐辛-azolam <见-azepam> -唑仑Adinazolam 阿地唑仑Alprazolam 阿普唑仑Clazolam 克拉唑仑Climazolam 氯马唑仑Cloxazolam 氯唑仑Estazolam 艾司唑仑Flutazolam 氟他唑仑Haloxazolam 卤沙唑仑Ketazolam 凯他唑仑Loprazolam 氯普唑仑Mexazolam 美沙唑仑Midazolam 咪达唑仑Oxazolam 奥沙唑仑Triazolam 三唑仑-azoline抗组胺药\血管收缩 -唑啉安他唑啉衍生物Aminothiazoline 氨噻唑啉Antazoline 安他唑啉Cilutazoline 西鲁唑啉Cirazoline 西拉唑啉Clonazoline 氯萘唑啉Coumazoline 库马唑啉Diphenazoline 二苯唑啉Domazoline 多马唑啉Fenoxazoline 非诺唑啉Indanazoline 茚唑啉Metrafazoline 美曲唑啉Naphazoline 萘甲唑啉Nemazoline 奈马唑啉Oxymetazoline 羟甲唑啉Phenamazoline 非那唑啉Prednazoline 泼那唑啉Tefazoline 替法唑啉Thibenzazoline 硫苯唑林Tinazoline 替那唑啉Tolazoline 妥拉唑林Tramazoline 曲马唑啉Tymazoline 泰马唑啉Xylometazoline 赛洛唑啉-azone <见-butazone> -宗-azosin 抗高血压药 -唑嗪哌唑嗪衍生物Bunazosin 布那唑嗪 Doxazosin 多沙唑嗪 Neldazosin 奈达唑嗪Prazosin 哌唑嗪 Quinazosin 喹唑嗪 Terazosin 特拉唑嗪Tiodazosin 硫达唑嗪 Trimazosin 曲马唑嗪-bactamβ酰胺酶抑制药 -巴坦Brobactam 溴巴坦 Sulbactam 舒巴坦 Tazobactam 三唑巴坦-bamate 安定药 -氨酯丙二醇类衍生物Chlorphenesin Carbamate 氯苯甘油氨酯 Cyclarbamate 环拉氨酯Difebarbamate 苯巴氨酯 Febarbamate 非巴氨酯 Felbamate 非尔氨酯Lorbamate 劳氨酯 Meprobamate 甲丙氨酯 Nisobamate 尼索氨酯Pentabamate 喷他氨酯 Phenprobamate 苯丙氨酯 Tybamate 泰巴氨酯barb催眠镇静药 -比妥巴比妥类衍生物Allobarbital 阿洛巴比妥 Amobarbital 异戊巴比妥 Aprobarbital 阿普比妥Barbital 巴比妥 Barbital Sodium 巴比妥钠 Benzobarbital 苯佐巴比妥Brallobarbital 溴烯比妥 Brophebarbital 溴苯比妥 Butobarbital 丁巴比妥Carbubarb 卡布比妥 Cyclobarbital 环己巴比妥 Cyclopentobarbital 环戊巴比妥Eterobarb 依特比妥 Ethallobarbital 依沙比妥 Heptabarb 环庚比妥Heptobarbital 苯甲比妥 Hexobarbital 海索比妥 Methylphenobarbital 甲苯比妥Narcobarbital 那可比妥 Nealbarbital 尼阿比妥 Pentobarbital 戊巴比妥Phenobarbital 苯巴比妥 Phenobarbital Sodium 苯巴比妥钠 Probarbital Sodium 普罗比妥钠Proxibarbal 丙羟巴比 Secbutabarbital 仲丁比妥 Secobarbital 司可巴比妥Tetrabarbital 替曲比妥 Thialbarbital 硫烯比妥 Thiotetrabarbital 硫替比妥Vinbarbital 戊烯比妥-benakin <见-kin> -白介素-bendan强心药<见-dan> -本旦Adibendan 阿地本旦 Meribendan 美立苯旦 Pimobendan 匹莫苯旦-bendazole 抗蠕虫药 -苯达唑噻苯达唑类衍生物Albendazole 阿苯达唑 Bisbendazole 双苯达唑 Cambendazole 坎苯达唑Ciclobendazole 环苯达唑 Dribendazole 屈苯达唑 Etibendazole 依苯达唑Fenbendazole 芬苯达唑 Flubendazole 氟苯达唑 Lobendazole 洛苯达唑Luxabendazole 鲁苯达唑 Mebendazole 甲苯达唑 Oxibendazole 奥苯达唑Parbendazole 帕苯达唑 Subendazole 舒苯达唑 Tiabendazole 噻苯达唑Triclabendazole 三氯苯达唑-bermin<见-ermin> -明-betasol <见pred> -倍他索-bersat 抗惊厥药-博沙Carabersat 卡拉博沙 Tidembersat 替旦柏沙 Tonabersat 托那博沙Bol同化激素类药 -勃Bolandiol 勃雄二醇 Bolasterone 勃拉睾酮 Bolazine 勃拉嗪Boldenone 勃地酮 Bolenol 勃来诺 Bolmantalate 勃金刚酯Clostebol 氯司替勃 Dichlorbenzyl Alcobol 二氯苯甲醇 Enestebol 依奈替勃Formebolone 甲酰勃龙 Furazabol 夫拉扎勃 Mebolazine 美勃嗪Mesabolone 美沙勃龙 Metribolone 美曲勃龙 Mibolerone 米勃酮Norboletone 诺勃酮 Norclostebol 诺司替勃 Oxabolone Cipionate 环戊丙羟勃龙Quinbolone 奎勃龙 Roxibolone 罗昔勃龙 Stenbolone 司腾勃龙Tibolone 替勃龙 Trenbolone 群勃龙-bradine减缓心率药-雷定Cilobradine 西洛雷定 Ivabradine 伊伐布雷定 Zatebradine 扎替雷定-brate 降血脂药<见-fibrate> -贝特-bufen 消炎镇痛药 -布芬芳基丁酸类衍生物Fenbufen 芬布芬 Furobufen 呋罗布芬 Indobufen 吲哚布芬Metbufen 甲布芬-butazone 消炎镇痛药<见-buzone> -布宗-buzone消炎镇痛药 -布宗保泰松类衍生物Feclobuzone 苯氯布宗 Kebuzone 凯布宗 Pipebuzone 哌布宗Suxibuzone 琥布宗 Tribuzone 曲布宗-butazoneMofebutazone 莫非布宗 Oxyphenbutazone 羟布宗 Phenylbutazone 保泰松-azoneAmbazone 安巴腙 Aminophenazone 氨基比林 Azapropazone 阿扎丙宗Balaglitazone 巴格列酮 Benhepazone 苯庚宗 Bisfenazone 双苯那宗Bitipazone 比替哌宗 Caroxazone 卡罗沙酮 Cefbuperazone 头孢拉宗Cefoperazone 头孢哌酮 Chlorzoxazone 氯唑沙宗 Ciglitazone 环格列酮Cinnopentazone 辛喷他宗 Ciproquazone 环丙喹宗 Citenazone 氰噻腙Clodazone 氯达酮 Darglitazone 达格列酮 Denpidazone 登匹达酮Dichloralphenazone 氯醛比林 Edaglitazone 依格列宗 Emorfazone 依莫法宗Englitazone 恩格列酮 Famprofazone 泛普法宗 Feprazone 非普拉宗Fluproquazone 氟丙喹宗 Fluquazone 氟喹宗 Furilazone 呋烟腙Gloxazone 格洛沙腙 Halazone 哈拉宗 Ipenoxazone 伊培沙宗Isamfazone 伊胺法宗 Isoprazone 异普拉酮 Meseclazone 美西拉宗Metamfazone 美坦法宗 Metisazone 美替沙腙 Metolazone 美托拉宗Mitoguazone 米托胍腙 Mofebutazone 莫非布宗 Molinazone 吗林那宗Morazone 吗拉宗 Naftazone 萘醌腙 Netoglitazone 萘格列酮Nicothiazone 尼可硫腙 Nifenazone 尼芬那宗 Nifurethazone 硝呋乙宗Nihydrazone 尼海屈腙 Nimazone 尼马宗 Niprofazone 烟丙法宗Nitraquazone 硝喹宗 Oxyphenbutazone 羟布宗 Paraxazone 帕拉沙酮Phenazone 安替比林 Phenopyrazone 非诺吡酮 Pioglitazone 吡格列酮Promepiazone 普罗哌宗 Propyphenazone 异丙安替比林 Proquazone 普罗喹宗Quinethazone 喹乙宗 Ramifenazone 雷米那酮 Rivoglitazone 利格列酮Rosiglitazone 罗格列酮 Ruvazone 芦伐腙 Seclazone 司克拉宗Sulfamazone 磺胺马宗 Sulfinpyrazone 磺吡酮 Thiethazone 硫乙腙Thioacetazone 氨硫脲 Troglitazone 曲格列酮-caine 局部麻醉药 -卡因Ambucaine 氨布卡因 Amoxecaine 阿莫卡因 Amydricaine 戊胺卡因Amylocaine 阿米卡因 Aptocaine 阿托卡因 Articaine 阿替卡因Benzocaine 苯佐卡因 Betoxycaine 贝托卡因 Bucricaine 丁吖卡因Bumecaine 布美卡因 Bupivacaine 布比卡因 Butacaine 布他卡因Butanilicaine 布坦卡因 Chloroprocaine 氯普鲁卡因 Cinchocaine 辛可卡因Clibucaine 氯丁卡因 Clodacaine 氯达卡因 Clormecaine 氯美卡因Cocaine 可卡因 Cyclomethycaine 环美卡因 Dexivacaine 地昔卡因Diamocaine 二胺卡因 Dimethocaine 二甲卡因 Edronocaine 依屈卡因Elucaine 依鲁卡因 Etidocaine 依替卡因 Fexicaine 苯氧卡因Fomocaine 福莫卡因 Fomocaine 福莫卡因 Hexylcaine 海克卡因Hydroxyprocaine 羟普鲁卡因 Hydroxytetracaine 羟丁卡因 Ipravacaine 艾拉卡因Isobucaine 异布卡因 Isobutylcaine 异丁卡因 Ketocaine 凯托卡因Leucinocaine 亮氨卡因 Levobupivacaine 左布比卡因 Lidocaine 利多卡因Lotucaine 洛土卡因 Mepivacaine 甲哌卡因 Meprylcaine 美普卡因Metabutoxycaine 美布卡因 Myrtecaine 麦替卡因 Octacaine 奥他卡因Orthocaine 奥索卡因 Oxetacaine 奥昔卡因 Oxybuprocaine 奥布卡因Parethoxycaine 对乙氧卡因 Paridocaine 哌多卡因 Phenacaine 非那卡因Pinolcaine 哌诺卡因 Piperocaine 哌罗卡因 Piridocaine 匹多卡因Polycaine 泊利卡因 Pramocaine 普莫卡因 Pribecaine 丙贝卡因Prilocaine 丙胺卡因 Procaine 普鲁卡因 Propanocaine 丙泮卡因Propipocaine 丙哌卡因 Propoxycaine 丙氧卡因 Proxymetacaine 丙美卡因Pyrrocaine 吡咯卡因 Quatacaine 夸他卡因 Quinisocaine 奎尼卡因Risocaine 利索卡因 Rodocaine 罗多卡因 Ropivacaine 罗哌卡因Tetracaine 丁卡因 Tolycaine 托利卡因 Trapencaine 曲喷卡因Trimecaine 三甲卡因 Vadocaine 伐多卡因-cain-局部麻醉药 -卡- 普鲁卡因胺、利多卡因类衍生物Acecainide 乙酰卡尼 Asocainol 阿索卡诺 Barucainide 巴芦卡尼Betoxicaine → Betoxycaine Bucainide 布卡尼 Carcainium Chloride 卡氯铵Carocainide 卡罗卡尼 Droxicainide 羟卡尼 Encainide 恩卡尼Epicainide 依吡卡尼 Erocainide 依罗卡尼 Flecainide 氟卡尼Guafecainol 呱非卡诺 Indecainide 英地卡尼 Ketocainol 凯托卡诺Lorcainide 劳卡尼 Milacainide 米拉卡尼 Modecainide 莫地卡尼Murocainide 莫罗卡尼 Nicainoprol 尼卡普醇 Nofecainide 诺非卡尼Pilsicainide 吡西卡尼 Pincainide 平卡尼 Procainamide 普鲁卡因胺Recainam 瑞卡南 Solpecainol 索培卡诺 Stirocainide 司替卡尼Suricainide 舒立卡尼 Tocainide 妥卡尼 Transcainide 群司卡尼Verocainine 维罗卡宁 Zocainone 佐卡酮Calci维生素类药骨化醇维生素D类衍生物Alfacalcidol 阿法骨化醇Atocalcitol 阿托骨化醇Calcifediol 骨化二醇Calcitriol 骨化三醇Doxercalciferol 度骨化醇Falecalcitriol 氟骨化三醇Inecalcitol 依奈骨化醇Lexacalcitol 来沙骨化醇Maxacalcitol 马沙骨化醇Paricalcitol 帕立骨化醇Secalciferol 司骨化醇Seocalcitol 西奥骨化醇Tacalcitol 他卡西醇Tisocalcitate 替索骨化酯-carbef抗生素类药 -头孢Loracarbef氯碳头孢-carnil 苯二氮受体激动药<见-azenil> -卡尔-castat 酶抑制药<见-stat> -卡司他-cavir 抗病毒药<见-vir> -卡韦cef-抗生素类药头孢-Cefalosporannic acid衍生物Cefacetrile头孢乙腈Cefaclomezine头孢氯嗪Cefaclor头孢克洛Cefadroxil头孢羟氨苄Cefalexin头孢氨苄Cefaloglycin头孢来星Cefalonium头孢XXCefaloram头孢洛仑Cefaloridine头孢噻啶Cefalotin头孢噻吩Cefamandole头孢孟多Cefamandole Nafate头孢孟多酯钠Cefaparole头孢帕罗Cefapirin头孢匹林Cefatrizine头孢曲Cefazaflur头孢氮氟Cefazedone头孢西酮Cefazolin头孢唑林Cefbuperazone头孢拉宗Cefcanel头孢卡奈Cefcanel Daloxate头孢卡奈酯Cefcapene头孢卡品Cefclidin头孢克定Cefdaloxime头孢达肟Cefdinir头孢地尼Cefditoren头孢托仑Cefedrolor头孢屈洛Cefempidone头孢吡酮Cefepime头孢吡肟Cefetamet头孢他美Cefetecol头孢替考Cefetrizole头孢三唑Cefivitril头孢维曲Cefixime头孢克肟Cefluprenam头孢瑞南Cefmatilen头孢替林Cefmenoxime头孢甲肟Cefmepidium Chloride头孢氯铵Cefmetazole头孢美唑Cefminox头孢米诺Cefodizime头孢地Cefonicid头孢尼西Cefoperazone头孢哌酮Ceforanide头孢雷特Cefoselis头孢噻利Cefotaxime头孢噻肟Cefotetan头孢替坦Cefotiam头孢替安Cefovecin头孢维星Cefoxazole头孢唑Cefoxitin头孢西丁Cefozopran头孢唑兰Cefpimizole头孢咪唑Cefpiramide头孢匹胺Cefpirome头孢匹罗Cefpodoxime头孢泊肟Cefprozil头孢丙烯Cefquinome头孢喹肟Cefradine头孢拉定Cefrotil头孢罗替Cefroxadine头孢沙定Cefsulodin头孢磺啶Cefsumide头孢舒米Ceftazidime头孢他啶Cefteram头孢特仑Ceftezole头孢替唑Ceftibuten头孢布烯Ceftiofur头孢噻呋Ceftiolene头孢噻林Ceftioxide头孢噻氧Ceftizoxime头孢唑肟Ceftizoxime Alapivoxil头孢唑肟酯Ceftriaxone头孢曲松Cefuracetime头孢呋汀Cefuroxime头孢呋辛Cefuzonam头孢唑南-oxef抗生素类药 -氧头孢 Oxcefalosporannic acid衍生物Flomoxef 氟氧头孢 Latamoxef 拉氧头孢cell-或 cel-纤维素衍生物纤维-Cellulase纤维素酶Celiprolol塞利洛尔cell-ate纤维-酯Cellaburate纤维醋丁酯 Cellacefate纤维醋法酯-cellose -纤维素Cellulose Sodium Phosphate纤维素磷酸钠Cellulose Acetate醋酸纤维素-cic保肝药 -西克<酸>Alonacic 阿洛西克 Bisorcic 比索西克 Limazocic 利马西克Tidiacic 噻二西酸 Timonacic 噻莫西酸-cidin抗生素类药 -菌素<肽>Candicidin 克念菌素Gramicidin 短杆菌肽Methocidin 美索菌素-cillin抗生素类药 -西林 6-aminopenicilanic acid 衍生物Adicillin 阿地西林 Almecillin 阿美西林 Amantocillin 金刚西林Amoxicillin 阿莫西林 Ampicillin 氨苄西林 Apalcillin 阿帕西林Aspoxicillin 阿扑西林 Azidocillin 阿度西林 Azlocillin 阿洛西林Bacampicillin 巴氨西林 Benethamine Penicillin 苯明青霉素Benzathine Benzylpenicillin 苄星青霉素 Benzylpenicillin 青霉素Carbenicillin 羧苄西林 Carfecillin 卡非西林 Carindacillin 卡茚西林Ciclacillin 环己西林 Clemizole Penicillin 克咪西林Clometocillin 氯甲西林 Cloxacillin 氯唑西林 Dicloxacillin 双氯西林Epicillin 依匹西林 Epihetacillin 表海他西林 Fenbenicillin 芬贝西林Fibracillin 非布西林 Flucloxacillin 氟氯西林 Fomidacillin 福米西林Fumoxicillin 呋莫西林 Furbenicillin 呋苄西林 Furbucillin 呋布西林Fuzlocillin 呋洛西林 Hetacillin 海他西林 Isopropicillin 异丙西林Lenampicillin 仑氨西林 Levopropicillin 左普匹西林 Metampicillin 美坦西林Meticillin 甲氧西林 Mezlocillin 美洛西林 Nafcillin 萘夫西林Oxacillin 苯唑西林 Oxetacillin 氧他西林 Penamecillin 培那西林Penethacillin 喷沙西林 Pheneticillin非奈西林 Phenoxymethylpenicillin 青霉素VPhenyracillin 苯拉西林 Piperacillin 哌拉西林 Pirbenicillin 吡苄西林Piroxicillin 匹罗西林 Pivampicillin 匹氨西林 Prazocillin 普唑西林Procaine Benzylpenicillin普鲁卡因青霉素 Propicillin丙匹西林 Quinacillin 喹那西林Rotamicillin 罗坦西林 Sarmoxicillin 沙莫西林 Sarpicillin 沙匹西林Sulbenicillin 磺苄西林 Sultamicillin 舒他西林 Suncillin 森西林Talampicillin 酞氨西林 Tameticillin 他甲西林 Temocillin 替莫西林Ticarcillin 替卡西林 Tifencillin 替芬西林 Tobicillin 托比西林Xantocillin 占托西林-cillide 抗生素类药 -西来Libecillide 利贝西来-cillinam 抗生素类药-西林Bacmecillinam 巴美西林Mecillinam 美西林Pivmecillinam 匹美西林-cilpine <见-pine> -平-cisteine <见-steine> -司坦-citabine抗肿瘤药 -他滨阿糖胞苷类衍生物Ancitabine 安西他滨 Capecitabine 卡培他滨 Decitabine 地西他滨Elvucitabine 艾夫他滨 Emtricitabine 恩曲他滨 Enocitabine 依诺他滨Fiacitabine 非西他滨 Flurocitabine 氟西他滨 Galocitabine 加洛他滨Gemcitabine 吉西他滨 Ibacitabine 伊巴他滨 Tezacitabine 替扎他滨Torcitabine 托西他滨 Troxacitabine 曲沙他滨 Valtorcitabine 伐托他滨Zalcitabine 扎西他滨-clone催眠镇静药 -克隆Barbexaclone 巴比沙隆 Eszopiclone 艾司佐匹克隆 Gestaclone 孕氯酮Pagoclone 帕戈隆 Pazinaclone 帕克隆 Pimeclone 哌美克隆Suproclone 舒普罗酮 Suriclone 舒立克隆 Zopiclone 佐匹克隆-cog凝血因子 -凝血素Eptacog alfa <activated> 依他凝血素α〔活化〕 Moroctocog Alfa 莫罗凝血素αNicogrelate 烟格雷酯 Nonacog Alfa 诺那凝血素α Octocog alfa 辛凝血素αTifacogin 替法可近-conazole抗真菌药 -康唑咪康唑类衍生物Albaconazole 阿巴康唑 Aliconazole 阿利康唑 Alteconazole 阿替康唑Azaconazole 阿扎康唑 Becliconazole 贝康唑 Brolaconazole 溴康唑Butoconazole 布康唑 Cisconazole 顺康唑 Croconazole 氯康唑Democonazole 地莫康唑 Doconazole 多康唑 Eberconazole 依柏康唑Econazole 益康唑 Enilconazole 恩康唑 Fenticonazole 芬替康唑Fluconazole 氟康唑 Fosfluconazole 磷氟康唑 Isoconazole 异康唑Itraconazole 伊曲康唑 Ketoconazole 酮康唑 Lanoconazole 拉诺康唑Luliconazole 氯利康唑 Miconazole 咪康唑 Neticonazole 奈康唑Omoconazole 奥莫康唑 Orconazole 奥康唑 Oxiconazole 奥昔康唑Parconazole 帕康唑 Posaconazole 泊沙康唑 Ravuconazole 雷夫康唑Saperconazole 沙康唑 Sertaconazole 舍他康唑 Sulconazole 硫康唑Terconazole 特康唑 Tioconazole 噻康唑 Valconazole 戊康唑Voriconazole 伏立康唑 Zinoconazole 齐诺康唑 Zoficonazole 佐非康唑cort皮质激素类药 -可特可的松类衍生物Amebucort 安布可特 Anecortave 阿奈可他 Butixocort 布替可特Cicortonide 西可奈德 Clocortolone 氯可托龙 Corticorelin 可的瑞林Corticotrophin 促皮质素 Corticotrophin Zinc Hydroxide 促皮质素锌Cortisone 可的松 Cortisuzol 可的磺唑 Cortivazol 可的伐唑Cortodoxone 可托多松 Deflazacort 地夫可特 Desoxycortone 去氧皮质酮Fluazacort 氟扎可特 Fludrocortisone 氟氢可的松 Fludroxycortide 氟氢缩松Fluocortin 氟可丁 Formocortal 福莫可他 Halocortolone 卤可托龙Hydrocortamate 氢可他酯 Hydrocortisone 氢化可的松Hydrocortisone Aceponate 醋丙氢可的松 Locicortolone Dicibate 地西洛可龙Naflocort 萘非可特 Nicocortonide 尼可奈德 Nivacortol 尼伐可醇Resocortol 瑞索可托 Tetrahydrocortisol 四氢可的索 Tixocortol 替可的松-coxib环氧酶-2抑制药 -考昔Celecoxib 塞来考昔 Cimicoxib 西米考昔 Deracoxib 地拉考昔Etoricoxib 依托考昔 Firocoxib 非罗考昔 Lumiracoxib 芦米考昔Parecoxib 帕瑞考昔 Robenacoxib 罗贝考昔 Rofecoxib 罗非考昔Tilmacoxib 替马考昔 Valdecoxib 伐地考昔-crinat利尿药 -利那依他尼酸类衍生物Brocrinat 溴克利那 Sulicrinat 磺克利那-crine -吖啶吖啶类衍生物Amsacrine 安吖啶 Botiacrine 波替吖啶 Dimetacrine 二甲他林Floxacrine 氟克吖啶 Ipidacrine 伊匹达克林 Mepacrine 米帕林Monometacrine 莫诺吖啶 Nitracrine 尼曲吖啶 Suronacrine 舒罗吖啶Tacrine 他克林 Velnacrine 维吖啶-cromil 抗过敏药 -罗米 cromoglicic acid 类衍生物Ambicromil 安克罗米 Isocromil 异克罗米 Minocromil 米诺罗米Nedocromil 奈多罗米 Probicromil 普克罗米 Proxicromil 普昔罗米Terbucromil 特丁罗米 Texacromil 替沙罗米-curium <见-ium> -司坦-cycline抗生素类药 -环素四环素类衍生物Amicycline 阿米环素 Apicycline 阿哌环素 Cetocycline 西托环素Chlortetracycline 金霉素 Clomocycline 氯莫环素 Colimecycline 多粘环素Demeclocycline 地美环素 Demecycline 去甲环素 Doxycycline 多西环素Etamocycline 乙莫环素 Guamecycline 胍甲环素 Lymecycline 赖甲环素Meclocycline 甲氯环素 Meglucycline 甲葡环素 Metacycline 美他环素Minocycline 米诺环素 Nitrocycline 硝环素 Oxytetracycline 土霉素Pecocycline 哌考环素 Penimepicycline 青哌环素 Penimocycline 培莫环素Pipacycline 匹哌环素 Rolitetracycline 罗利环素 Sancycline 山环素Tetracycline 四环素 Tigecycline 替吉环素-dan强心药 -旦匹莫苯类衍生物Adibendan 阿地本旦 Bemoradan 贝莫拉旦 Imazodan 伊马唑旦Indolidan 吲哚利旦 Levosimendan 左西孟旦 Meribendan 美立苯旦Nitrodan 硝旦 Pimobendan 匹莫苯旦 Prinoxodan 普啉索旦Senazodan 司那佐旦 Siguazodan 氰胍佐旦 Simendan 西孟旦Tyromedan 甲状米登-dapsone抗麻风药 -苯砜二氨基苯砜类衍生物Acedapsone 醋氨苯砜 Amidapsone 阿米氨苯砜 Dapsone 氨苯砜-decakin免疫抑制药<见-kin> -白介素-dermin<见-ermin> -德明-dil血管舒药 -地尔Alprostadil 前列地尔 Aviptadil 阿肽地尔 Belfosdil 贝磷地尔Bepridil 苄普地尔 Biclodil 二氯地尔 Buflomedil 丁咯地尔Bumepidil 布美地尔 Carprazidil 卡普地尔 Cetiedil 西替地尔Cinepaxadil 桂帕地尔 Dopropidil 多普吡地 Ecipramidil 环丙地尔Eliprodil 依利罗地 Fasudil 法舒地尔 Fenetradil 芬曲地尔Fenoxedil 非诺地尔 Floredil 夫洛地尔 Flosatidil 氟沙地尔Fostedil 福司地尔 Fronepidil 夫罗吡地 Ifenprodil 艾芬地尔Ipramidil 异丙地尔 Levosemotiadil 左司莫地尔 Manozodil 马诺地尔Mefenidil 甲苯地尔 Mepramidil 美普地尔 Metrifudil 腺苷地尔Mibefradil 米贝拉地尔 Minoxidil 米诺地尔 Naftopidil 萘哌地尔Naminidil 纳米尼地尔 Nesapidil 奈沙地尔 Nicorandil 尼可地尔Perfomedil 哌福地尔 Phenobutiodil 碘芬布酸 Pinacidil 吡那地尔Piribedil 吡贝地尔 Pirozadil 吡扎地尔 Pitenodil 哌诺地尔Pretiadil 普硫地尔 Razinodil 雷嗪地尔 Semotiadil 司莫地尔Sinitrodil 西硝地尔 Stevaladil 甾伐地尔 Suloctidil 舒洛地尔Tipropidil 替普地尔 Tixadil 噻吨地尔 Trapidil 曲匹地尔Traxoprodil 曲索罗地 Urapidil 乌拉地尔 Viquidil 维喹地尔-dilol -地洛Carvedilol 卡维地洛 Dioxadilol 地奥地洛 Dramedilol 屈美地洛Flavodilol 黄酮地洛 Mindodilol 明多地洛 Nipradilol 尼普地洛Oberadilol 奥拉地洛 Parodilol 帕地洛 Prizidilol 普齐地洛Tribendilol 曲苯地洛-pendyl -喷地Cloxypendyl 氯羟喷地 Isothipendyl 异西喷地 Oxypendyl 奥昔喷地Prothipendyl 丙硫喷地-dylBisacodyl 比沙可啶 Bunamiodyl 丁碘桂酸 Trihexyphenidyl 苯海索-dilol血管扩药 <见-dil>-地洛Carvedilol 卡维地洛Dioxadilol 地奥地洛Dramedilol 屈美地洛Flavodilol 黄酮地洛Mindodilol 明多地洛Nipradilol 尼普地洛Oberadilol 奥拉地洛Parodilol 帕地洛Prizidilol 普齐地洛Tribendilol 曲苯地洛-dipine钙通道阻滞药 -地平硝苯地平类衍生物Amlodipine 氨氯地平Aranidipine 阿雷地平Azelnidipine 阿折地平Barnidipine 巴尼地平Benidipine 贝尼地平 Budipine 布地品Cilnidipine 西尼地平Clevidipine 氯维地平 Cronidipine 氯硝地平Darodipine 达罗地平Dexniguldipine 右尼古地平 Efonidipine 依福地平Elgodipine 依高地平Elnadipine 依那地平 Felodipine 非洛地平 Flordipine 氟地平Furnidipine 呋尼地平 Iganidipine 伊加地平Isradipine 伊拉地平Lacidipine 拉平 Lemildipine 来米地平Lercanidipine 乐卡地平Manidipine 马尼地平 Mesudipine 甲硫地平Nicardipine 尼卡地平Nifedipine 硝苯地平 Niguldipine 尼古地平 Niludipine 尼鲁地平Nilvadipine 尼伐地平 Nimodipine 尼莫地平 Nisoldipine 尼索地平Nitrendipine 尼群地平 Olradipine 奥拉地平 Oxodipine 奥索地平Palonidipine 帕洛地平 Pranidipine 普拉地平 Prodipine 普罗地平Riodipine 利奥地平 Sagandipine 沙更地平 Sornidipine 索尼地平Teludipine 替鲁地平 Vatanidipine 伐尼地平-dismase酶类药<见-ase> -歧化酶-dodekin <见-kin>-dopa抗震颤麻痹药 -多巴多巴胺类衍生物Carbidopa 卡比多巴 Ciladopa 西拉多巴 Droxidopa 屈昔多巴Etilevodopa 乙左旋多巴 Levodopa 左旋多巴 Melevodopa 美左旋多巴Methyldopa 甲基多巴-opamine多巴胺类药 -巴胺Butopamine 布托巴胺 Cliropamine 克利巴胺 Denopamine 地诺帕明Dopamine 多巴胺 Fosopamine 磷巴胺 Ibopamine 异波帕胺Octopamine 奥克巴胺 Oxidopamine 羟多巴胺 Ractopamine 雷托巴胺Tiopropamine 噻罗帕明 Tolpropamine 托普帕敏 Xylopropamine 赛洛丙胺-dox <见-ox/-alox> -多司Carbadox 卡巴多司 Ciadox 氰多司 Cinoquidox 氰喹多司Drazidox 肼多司 Mequidox 美喹多司 Olaquindox 奥喹多司Temodox 替莫多司-dralazine抗高血压药 -屈嗪衍生物Budralazine 布屈嗪 Cadralazine 卡屈嗪 Dihydralazine 双肼屈嗪Endralazine 恩屈嗪 Hydralazine 肼屈嗪 Mopidralazine 莫哌屈嗪Oxdralazine 奥屈嗪 Picodralazine 吡考屈嗪 Pildralazine 匹尔屈嗪Todralazine 托屈嗪-drine类交感神经药 -君Alifedrine 阿利非君 Benzylephedrine 苄麻黄碱 Bufenadrine 丁苯那胺Butidrine 布替君 Cafedrine 咖啡君 Camphamedrine 樟美君Cinnamedrine 桂美君 Corbadrine 可巴君 Cyclodrine 环戊君Dioxifedrine 二羟非君 Ephedrine 麻黄碱 Etafedrine 乙非君Levopropylhexedrine 左丙己君 Meluadrine美卢君 Methoxyphedrine甲氧非君Methylephedrine 甲麻黄碱 Midodrine 米多君 Norbudrine 诺布君Octodrine 奥托君 Oleandrine 夹竹桃苷 Orphenadrine 奥芬那君Oxyfedrine 奥昔非君 Pholedrine 福来君 Propylhexedrine 丙己君Pseudoephedrine 伪麻黄碱 Racephedrine 消旋麻黄碱 Ritodrine 利托君Tetrandrine 粉防己碱 Theophylline Ephedrine 茶麻黄碱 Tinofedrine 替诺非君Trecadrine 曲卡君-frine 类交感神经药 -福林Berefrine 贝瑞福林Ciclafrine 环拉福林Dimetofrine 二甲福林Dipivefrine 地匹福林Etilefrine 依替福林Gepefrine 吉培福林Norfenefrine 去甲苯福林Oxilofrine 奥洛福林Pivenfrine 新戊福林Racepinefrine 消旋肾上腺素-dronic acid钙代药 -膦酸Alendronic Acid 阿仑膦酸 Butedronic Acid 布替膦酸 Clodronic Acid 氯膦酸Etidronic Acid 依替膦酸 Ibandronic Acid 伊班膦酸 Incadronic Acid 英卡膦酸Lidadronic Acid 利达膦酸 Medronic Acid亚甲膦酸 Minodronic Acid 米诺膦酸Neridronic Acid 奈立膦酸 Olpadronic Acid奥帕膦酸 Oxidronic Acid 奥昔膦酸Pamidronic Acid 帕米膦酸 Piridronic Acid 吡膦酸 Risedronic Acid 利塞膦酸Tiludronic Acid 替鲁膦酸 Zoledronic Acid 唑来膦酸-dutant <见-tant>-dyl <见-dil>-ectin抗寄生虫药 -克丁伊维菌素衍生物Abamectin 阿巴克丁 Dimadectin 地马待克丁 Doramectin 多拉克丁Eprinomectin 依立诺克丁 Fuladectin 呋拉迪克丁 Ivermectin 伊维菌素Latidectin 拉替待克丁 Moxidectin 莫昔克丁 Nemadectin 奈马克丁Selamectin 司拉克丁-elestat<见-stat>-elvekin<见-kin>-emcinal -西那无抗生素活性的红霉素衍生物衍生物Alemcinal 阿兰西那 Idremcinal 伊屈西那 Mitemcinal 米坦西诺-entan 皮素受体阻滞药 -生坦Ambrisentan 安立生坦Atrasentan 阿曲生坦Bosentan 波生坦Clazosentan 克拉生坦Darusentan 达卢生坦Edonentan 艾多南坦Enrasentan 恩拉生坦Fandosentan 泛多生坦Feloprentan 非洛仑坦Nebentan 奈苯坦Sitaxentan 西他生坦Tezosentan 替唑生坦-eptacog <见-cog>erg麦角碱衍生物麦角Acetergamine 醋麦角胺 Amesergide 安麦角 Brazergoline 溴麦角林Bromerguride 溴麦角脲 Cabergoline 卡麦角林 Cianergoline 氰麦角林Delergotrile 地麦角腈 Dihydroergocristine 双氢麦角汀 Dihydroergotamine 双氢麦角胺Dihydroergotamine Mesilate 甲磺双氢麦角胺 Dosergoside度麦角胺 Ergometrine麦角新碱Ergotamine 麦角胺 Etisulergine 乙舒麦角 Lergotrile 麦角腈Lysergide 麦角二乙胺 Mergocriptine 甲麦角隐亭 Mesulergine 美舒麦角Metergoline 甲麦角林 Metergotamine 甲麦角胺 Methylergometrine 甲麦角新碱Methysergide 美西麦角 Nicergoline 尼麦角林 Propisergide 普罗麦角Proterguride 丙麦角脲 Romergoline 罗麦角林 Sergolexole 麦角克索Terguride 特麦角脲 Tiomergine 硫麦角林 Voxergolide 伏高利特-eridine镇痛药 -利定哌替啶类衍生物Anileridine 阿尼利定Carperidine 卡哌利定Diaveridine 二氨藜芦啶Eseridine 依舍立定Etoxeridine 依托利定Meperidine → PethidineMorpheridine 吗哌利定Nexeridine 奈西利定Oxpheneridine 羟芬利定。

三氯生10

三氯生10

Assessment of the antibacterial activity of a triclosan-containing cutting boardTrond Møretrøa ,⁎,Gunn S.Høiby-Pettersen a ,b ,Olivier Habimana a ,Even Heir a ,Solveig Langsrud aa No fima Mat AS,Osloveien 1,N-1430Aas,NorwaybDepartment of Chemistry,Biotechnology and Food Science,Norwegian University of Life Sciences,N-1430Aas,Norwaya b s t r a c ta r t i c l e i n f o Article history:Received 27September 2010Received in revised form 16February 2011Accepted 17February 2011Keywords:Triclosan Microban Cutting board HygieneAntibacterialSeveral studies have shown that consumers may not clean cutting boards properly between preparation of raw and cooked meat.Cutting boards may therefore act as sources for contamination of cooked meat or other ready-to-eat foods with pathogenic and spoilage bacteria.The aim of the work was to investigate if cutting boards containing the antimicrobial compound triclosan can reduce the viability of bacteria,thus acting as a hygiene barrier.Survival and growth of food pathogens and spoilage bacteria on two cutting boards without antimicrobials and a commercial cutting board containing triclosan were tested.No difference in bacterial counts on cutting boards without and with triclosan was found after exposure to naturally contaminated chicken filets for one hour.Pathogenic and spoilage bacteria were inoculated on coupons (6.7–7log per coupon)of cutting boards and incubated at 25°C at controlled relative humidity for 24and 72h.At a relative humidity of 100%,growth of Escherichia coli ,Salmonella ,Staphylococcus aureus ,coagulase-negative staphylococci (CNS)and Serrratia spp.was observed and no antibacterial effect of the triclosan-containing board was found except for against Listeria monocytogenes .At lower humidity (70%RH)less growth was found on the triclosan-containing cutting board than untreated boards after 24h.After 72h of incubation,cell counts were reduced on triclosan-containing boards,with the most pronounced antibacterial effects observed against Salmonella ,S.aureus and CNS.For S.aureus and Salmonella it was found that when a lower initial cell count was applied (3.5log per coupon),the triclosan-containing board had an antibacterial effect under humid conditions,as well as a more pronounced antibacterial effect under dry conditions.An agar overlay assay showed that triclosan migrated out of the coupons.Repeated washing of the triclosan-containing cutting boards reduced the antibacterial effect,thus the amount of triclosan available on the surface seemed to be limited.In conclusion,using triclosan-containing cutting boards as a hygienic barrier may only work under certain conditions (low humidity,long exposure time,and clean conditions)and not against all genera of bacteria.©2011Elsevier B.V.All rights reserved.1.IntroductionA substantial proportion of foodborne disease has been linked to poor food preparation and hygienic practices in the home (Redmond and Grif fith,2003).Cutting boards are recognized as possible sources of cross contamination with pathogens as well as spoilage bacteria (Carpentier,1997;Cliver,2006).Bacteria may grow or survive for a long time on cutting boards,which may subsequently be a source for contamination of ready-to-eat foods (Todd et al.,2009).To avoid cross-contamination and possible foodborne disease it is recommended to clean cutting boards with warm water and a detergent between using it for raw meat and cooked meat or other ready to eat foods (e.g.salad)(Anonymous,2008).Surveys show inadequate handling of cutting boards (lack of or insuf ficient cleaning)for 30–90%of consumers (Redmond and Grif fith,2003).The discrepancy between knowledge and practices shows thatconsumer education is not enough to prevent unsafe practices and has provided a market for products with claimed antimicrobial activity (Aider,2010;Marambio-Jones and Hoek,2010;Monteiro et al.,2009;Møretrøet al.,2006).Examples of products containing antimicrobial compounds intended to enhance food safety are flooring material,knife handles,refrigerators,storage boxes and cutting boards.In general the antibacterial effects of these products are marketed as an improved hygiene barrier.On the other hand there is growing concern regarding increased use of products containing antimicrobial compounds,espe-cially in the domestic sector.One of the reasons behind the concern is fear of development of antimicrobial resistance (Aiello et al.,2007;Gilbert and McBain,2001,2003;Levy,2001).Triclosan,2,4,4′-trichloro-2′-hydroxydiphenyl ether,has broad spectrum antimicrobial effect,acting through multiple mechanism at high concentrations,while inhibiting fatty acid synthesis at sublethal concentrations (Jones et al.,2000;Levy et al.,1999).The widespread use of triclosan is increasingly debated due to fear of development of bacterial resistance and toxicological issues (Fang et al.,2010).In the USA,the safety of triclosan has recently been reviewed by EPA (U.S.International Journal of Food Microbiology 146(2011)157–162⁎Corresponding author.Tel.:+4764970100;fax:+4764970333.E-mail address:trond.moretro@no fima.no (T.Møretrø).0168-1605/$–see front matter ©2011Elsevier B.V.All rights reserved.doi:10.1016/j.ijfoodmicro.2011.02.017Contents lists available at ScienceDirectInternational Journal of Food Microbiologyj o u r n a l ho m e p a g e :w w w.e l s ev i e r.c o m /l o c a t e /i j fo o dm i c r oEnvironmental Protection Agency,EPA,2010)and is under review by FDA(U.S.Food and Drug Administration,FDA,2010).Triclosan has recently been removed by the European Commission from the provisional list of additives for use in plastic food-contact materials (European Commission,2010).Triclosan is used in the medicalfield,and in several personal hygiene products such as toothpaste,hand soaps and mouth washes.It is also incorporated in different types of plastic under the trade name Microban®.Examples of use are in building products, paints,textiles,footwear and food contact materials such as cutting boards.According to Microban®(),triclosan is incorporated throughout the material and will be continuously delivered to the surface of the material.There is a wide variation in sensitivity towards triclosan among different genera of bacteria (Møretrøet al.,2006;Vischer and Regös,1974).To have an impact on hygiene,an antimicrobial surface should be active against different genera of bacteria.Thus testing of antibacterial properties of a triclosan-containing material intended for use in contact with food should include relevant food pathogenic and spoilage bacteria.Several strains of the same species should be tested to ensure that the hygienic effect is robust to intraspecies variations in sensitivity.Even if there is a range of antibacterial materials intended for domestic use on the market,only few of them have been evaluated in scientific literature.There are some studies on antibacterial effect of triclosan-containing materials.DeVere and Purchase(2007)showed that Escherichia coli and Staphylococcus aureus survived in lower numbers on a commercial cutting board containing triclosan,compared to cutting boards of glass and plastic.The effects were small(b1log reduction),but were confirmed by a similar study(Ji and Zhang,2009). For bacteria dried on material surfaces,no additional lethal effects of triclosan-containing surfaces compared to control surfaces were obtained(Cutter,1999;Møretrøet al.,2006).Ji and Zhang(2009) demonstrated1–2log extra reduction of E.coli and S.aureus on triclosan-containing PVC compared to control PVC after drying for5–80h.No effect of triclosan-incorporated plastic on biofilm establish-ment in a drinking water model system was observed(Junker and Hay, 2004).Kalyon and Olgun(2001)showed that leakage of triclosan from materials into surrounding environmentfluids may expose suspended bacteria to sub-lethal concentrations of triclosan while bacterial growth and survival were hardly affected.Inhibition of growth of a wide range of bacteria suspended in nutrient medium in triclosan-impregnated storage boxes has been shown(Braid and Wale,2002).In the present study we compared a commercially available cutting board containing triclosan with untreated cutting boards for their effect on growth and survival of food pathogenic and spoilage bacteria.The experiments were performed under different environ-mental conditions relevant for use of cutting boards in kitchens.2.Materials and methods2.1.Bacterial strains and culturing conditionsFood borne pathogenic bacteria and bacteria commonly found on surfaces in food-related environments were used(Table1).The bacteria were cultivated in tryptone soy broth(TSB;Oxoid,Basingstoke,UK)or on tryptone soy agar(TSA;Oxoid)at30°C,unless otherwise stated. 2.2.Cutting boardsA triclosan-containing cutting board(Chef's edge cutting board, Microban®,C&K manufacturing&sales co.,LLC,Westlake,OH,USA) and two untreated cutting boards(U-A;Daloplast,Gnosjö,Sweden and U-B;Zyliss—Swiss innovation Irvine,Canada),all commercially available,were purchased.The cutting boards were cut into coupons which were sterilized by submersion in80%ethanol for15min prior to use.2.3.Growth and survival on cutting boardsFor the growth and survival studies,coupons were cut in6×4cm, and6squares of2×2cm were marked with ink on each coupon.For each group of bacteria(Salmonella,Serratia,Listeria monocytogenes, S.aureus and coagulase negative staphylococci),afive-strain mixture was tested(Table1).Four strains were tested for E.coli.For each of the six bacterial genera/species,equal volumes of overnight cultures of each of the strains were mixed by vortexing,and the cocktail was diluted1:10in fresh TSB.The numbers of bacteria of each of the six resulting suspensions were determined by dilution and plating to TSA, followed by incubation at30°C for24h,and used to determine the number of bacteria at the start of the experiment.Four times20μl of each of the six suspensions were applied on a coupon of the cutting board.After applying the six different bacterial suspensions,the coupons were transferred to plastic boxes.To model humid and dry conditions,an open petri dish with20ml distilled water or saturated lithium acetate solution was added to the box to obtain100%relative humidity(RH)or70%RH,respectively(Møretrøet al.,2010).The boxes were closed with a lid and incubated at25°C.Sampling was performed after24and72h.Each square on the coupon was swabbed with three cotton swabs(Selefa Trade,Spanga,Sweden)wetted in peptone water.The swabs were transferred to a tube with peptone water.The number of cfu per coupon was determined by plating to TSA.The experiment was performed in duplicate.Some combinations of bacteria and coupons were triplicated due to high variation between replicates.There were no significant differences in surviv-al/growth between the untreated control boards at any conditions, and in the result section data on untreated boards refers to the mean of the two untreated control boards.2.4.Agar diffusion assayThe agar diffusion assay was performed by the adhesion of coupons (2×2cm)of cutting boards to the bottom of petri dishes using double-sided tape,beforefilling the petri dishes with40ml of a bacterial suspension(approximately106/ml)mixed in soft agar(TSA,0.7%agar). The plates were inspected for clear zones around the coupons where bacterial growth had been inhibited after24h incubation at30°C.All29 strains were tested individually in duplicate on different days.The effect of repeated washes in a dishwashing machine on the antibacterial activity of the Microban®cutting board was tested.Three coupons were washed in a dishwasher(Electrolux ESF660,in a basket together with cutlery)in an ordinary household together with other dishes6–7times a week for a period of two months.The washing temperature was50°C and the total washing program lasted1h.The cleaning agent(Sun,Lilleborg,Oslo,Norway)contained5–15%oxygen based bleaching agent,b5%non-ionic surface active compounds,b5% polycarboxylate,b5%enzymes,b5%linalool,b5%benzylsalicate and b5%citronellol.After the two months washing period,the coupons were compared with three untreated coupons in the agar diffusion assay as described above,with S.aureus MF3674as the indicator.2.5.Minimal inhibitory concentrationThe minimal inhibitory concentrations(MIC)of triclosan(Irgasan DP300,Ciba Specialty Chemicals,Norwegian branch,Bergen,Norway) against the different bacteria were determined in a microtiter plate assay(Møretrøet al.,2006).Because of the limited solubility of triclosan, the MIC could only be monitored up to50ppm.The starting bacterial level was about105cells per ml.Growth(OD340nm)was recorded after 18–20h at30°C,and the lowest concentration of triclosan inhibiting growth,was taken to be the MIC.The concentrations tested were two-fold dilutions of50ppm.All strains were tested in duplicate on different days.158T.Møretrøet al./International Journal of Food Microbiology146(2011)157–1622.6.Antimicrobial effects during exposure of chicken filets to cutting boardsTwo packages of commercial raw chicken filets were transferred to a plastic bag.To obtain a homogenous microbiota on the filets,the filets were blended by hand-massaging the bag.Each piece of filet was placed on top of two coupons of cutting board covering them totally.After 1h at 25°C the coupons and the filets were examined for the total number of bacteria.For sampling the chicken filets,a piece was cut from the surface of the filet directly in contact with the 4×6cm coupons and diluted with peptone water before homogenisation and plating to PCA.The entire surface of each coupon was swabbed with three swabs wetted with peptone water.The swabs were transferred to a tube with peptone water.The tube was mixed by vortexing,and the suspension diluted and plated to PCA.All agar plates were incubated at 25°C for 48h.The bacterial numbers on chicken and coupons with and without Microban were compared.The experiment was performed in duplicate.2.7.Statistical analysisStatistical signi ficance of differences in growth and survival was tested using ANOVA in MINITAB v15.1(Minitab Inc.,State College,PA,USA).3.Results3.1.Survival and growth on cutting boardsFor untreated cutting boards incubated at 70%RH,0.8–1.5log increases in bacterial counts after 24h,followed by 0.7–2.0log reduction until 72h were observed (Fig.1).After 24h exposure at 70%RH,when comparing data for all bacterial genera together,less bacteria were recovered from Microban®compared to the untreated cutting boards (p=0.019).For the individual bacterial mixtures,signi ficant lower colony forming units on Microban®than on untreated boards were observed for S.aureus (p=0.046)(Fig.1).After 72h at 70%RH,lower bacterial counts (p=0.007)was observed on Microban®than on untreated boards when comparing all bacteria together.For the individual bacterial mixtures,signi ficant effects of Microban®were observed for Salmonella (p=0.003),S.aureus (p=0.004)and CNS (p=0.046)(Fig.1).The suspension on the coupons appeared partly dried after 24h incubation,and was visually dry after 72h.When untreated coupons was incubated at 100%RH there was 1–2log growth until 24h,with no further change in cell counts from 24to 72h.At 100%RH,no signi ficant differences between cell counts on Microban®compared to untreated cutting boards was observed,except for L.monocytogenes where a lower count was found on Microban®coupons than on the untreated boards (p=0.02)at 72h (data not shown).Table 1Bacterial strains.Bacterial strains Strain characteristics/originReferenceEscherichia coli E.coli MF2494O103:H25,stx2,human case,outbreak fermented sausage,Norway Schimmer et al.(2008)aE.coli MF2892O157:H7,stx1+2,outbreak,hamburger,USARiley et al.(1983);ATCC43895E.coli MF2411O111:H-,stx 1+2,outbreak,mettwurst/salami,Australia Ross and Shadbolt (2001)bE.coli MF3582O157:H-,stx 2,human case,outbreak,NorwayNorwegian Institute of Public Health aSalmonellaS.Agona MF2409Feed factory Vestby et al.(2009)S.Senftenberg MF2098Fish feed factory Nesse et al.(2003)S.Montevideo MF2096Feed factoryNesse et al.(2003)S.Typhimurium MF2113Reference collection ATCC14028S.Enteritidis MF3534Reference collection ATCC13076Listeria monocytogenes L.monocytogenes MF3132Kneader,serotype 1/2bMichel Hebraud,INRA,France c L.monocytogenes MF3131Fermented sausage,serotype 1/2a Michel Hebraud L.monocytogenes MF3134Conveyor belt,serotype 1/2c Michel HebraudL.monocytogenes MF1509Pasteurized milk,serotype 4b ILSI Listeria strain collection (Fugett et al.,2006)L.monocytogenes MF3643Outbreak,Camembert cheeseNorwegian Institute of Public HealthStaphylococcus spp.S.aureus MF3675Outbreak,sour cream,toxin C Rode et al.(2007)S.aureus MF3674MRSA,hospitalRode et al.(2007)S.aureus MF1981Reference collection ATCC12600S.aureus MF3714Outbreak pizza,toxin BRode et al.(2007)S.aureus MF3715Outbreak goat cheese,toxin A Rode et al.(2007)Staphylococcus sp.MF3716(CNS d )Fish feed factory Habimana et al .(2010)Staphylococcus sp.MF3717(CNS)Fish feed factory Habimana et al .(2010)S.simulans MF3625(CNS)Beef slaugtherhouse Heir,unpublished S.epidermidis MF1892(CNS)Reference collection ATCC35894S.cohnii MF3624(CNS)Beef slaugtherhouse Heir,unpublishedSerratia spp.Serratia sp.MF3324Triclosan containing floor,food industry Møretrøet al.(2006)S.proteamaculans MF3626SlaugtherhouseHeir,unpublished Serratia sp.MF3309Disinfecting footbath Langsrud et al.(2003)S.marcescens MF2602Reference collection ATCC13880S.marcescens MF2336Disinfecting footbath Langsrud et al.(2003)a Kindly received from Prof.G.Kapperud,Norwegian Institute of Public Health,Norway.b Kindly received from Dr.F.Scheutz,Statens Serum Institut,Denmark.c INRA,Institut National de la Recherche Agronomique,Centre de Recherche de Clermont-Ferrand,France.dCoagulase negative staphylococci.159T.Møretrøet al./International Journal of Food Microbiology 146(2011)157–162To test if lowering the bacterial load would impact the antibac-terial effect,an experiment was performed with Salmonella and S.aureus as described above,but with approximately 3log lower starting concentration of bacteria (3.4–3.7log/coupon).The antibac-terial effects were more pronounced at lower initial cell concentra-tions.A 2–4log reduction was obtained at 70%RH on Microban®coupons compared to untreated coupons (Fig.2).At 100%RH a 3–4log lower count on the Microban®coupons compared to the untreated coupons was observed after both 24h and 72h (Fig.2).3.2.Inhibition of growth in an agar diffusion assayIn the agar diffusion assay,inhibition zones of bacterial growth were observed around the cutting boards containing triclosan,with the exception of Serratia .The clear zone distances measured from the shortest side of the cutting boards were determined and were 4–13mm for the staphylococci,0–5mm for L.monocytogenes and 2–4mm for E.coli and Salmonella .No inhibition zones were observed for untreated coupons for any of the bacteria.It was found that the strain S.aureus MF3674had reduced inhibition zones around the Microban®board that had been washed daily for two months in a domestic dish washer compared to coupons not washed (p=0.003)(Fig.3).3.3.MIC analysisThe bacteria most sensitive to triclosan were staphylococci (MIC b 0.1–12.5ppm), E.coli (0.8–3ppm)and Salmonella (1.5–3ppm).Listeria monocytogenes had MICs of 6–12ppm,while Serratia was most tolerant to triclosan with four of the five Serratia strains growing in 50ppm triclosan (MIC N 50ppm)(data notshown).-3-2.5-2-1.5-1-0.500.511.52G r o w t h /r e d u c t i o n (l o g c f u /c o u p o n )E. coliSalmonellaSerratiaL. monocytogenes S. aureusCNSFig.1.Growth and reduction of bacteria applied on triclosan-containing boards Microban®,(M)or untreated cutting boards (U)incubated at 70%RH at 25°C for 24h (white bars)and 72h (gray bars).The values given are changes from the initial starting concentration (log 6.7–7.0cfu/coupon).Positive numbers indicate growth,while negative numbers indicate reductions.Means and standard errors of triplicate experiments are shown.Asterisks indicate signi ficant differences (p b 0.05)between Microban®and untreatedboards.-4-3-2-1012345G r o w t h /r e d u c t i o n (l o g c f u /c o u p o n )Salmonella 70% RH S. aureus 100% RHS. aureus 100% RH Salmonella 100% RH Salmonella 100% RH S. aureus 70% RH S. aureus 70% RH Salmonella 70% RH Fig.2.Growth and reduction of Salmonella and Staphylococcus aureus applied on triclosan-containing boards (Microban®,M)or untreated cutting boards (U)incubated at 25°C at 70%RH or 100%RH for 24h (white bars)and 72h (gray bars).The values given are changes from the initial starting concentration (log 3.4–3.7cfu/coupon).Positive numbers indicate growth,while negative numbers indicate reductions.Means and standard errors of duplicate experiments are shown.Asterisks indicate signi ficant differences (p b 0.05)between Microban®and untreated boards.160T.Møretrøet al./International Journal of Food Microbiology 146(2011)157–1623.4.Raw chicken filets on cutting boardsThere were no reductions (p=0.2–0.6),of the bacterial counts on the filets nor on the coupons after raw chicken filets had laid on top of coupons containing triclosan for 1h,compared to filets laying on untreated coupons.4.DiscussionSeveral studies have shown that it is relatively common that consumers do not clean their cutting board between using it for raw and cooked meat,although most consumers are aware that this practice may represent a risk for foodborne disease (Redmond and Grif fith,2003).Compared to untreated cutting boards,no reduction in bacterial numbers was observed on the cutting board with triclosan after contamination from chicken.Similar results were found by Cutter (1999),who showed that a triclosan-incorporated plastic inhibited growth of several pathogenic and spoilage bacteria in an agar-overlay assay,but failed to have any effect in the presence of meat.Further analyses showed that the presence of fatty acids could diminish the activity of triclosan (Cutter,1999).Together,this implies that use of triclosan-containing cutting boards cannot replace the need for appropriate cleaning of boards between using it for preparation of raw meats and ready-to-eat food.Cleaning with hot water and detergent followed by drying is recommended to prevent cross-contamination from cutting boards (Anonymous,2008).Cleaning-procedures used by consumers may not be suf ficient to completely remove Salmonella from contaminated cutting boards (Cogan et al.,2002).DeVere and Purchase (2007)found a 67–75%reduction in counts of E.coli and S.aureus after 120min exposure on a Microban®board compared to a control.They used low bacterial counts (log 2.6)per surface and state that the conditions were dry,however experimental details are lacking and only one strain of each species was used.The present study indicated that drying after cleaning is important to reduce bacterial numbers and that triclosan may contribute to further reduction in bacterial counts.At high cell counts,an antimicrobial effect was observed under dry conditions but not under humid conditions.When the suspension dried on the surface there was a decline in living bacteria,also on untreated boards,and the presence of triclosan seemed to enhance the reductions under dry conditions.Dry conditions will impose osmotic stress on the bacteria,and by acting on the cell membrane,it may be speculated that triclosan may sensitize the cells to such stress,as triclosan are reported to destabilize the cytoplasmic membrane (Russell,2004).In many studies the effect of measures on survival and growth of bacteria is tested on one strain only.As there may be strain to strain variation it is important to test several strains to ensure that observed effects are robust and will also be valid in practical situations.In the present work it was shown that there were some differences within genera and species in sensitivity towards triclosan in the MIC tests as well as in the agar diffusion assay.No antibacterial effect of the Microban®board was observed against Serratia spp .Staphylococci were sensitive,and Serratia spp.was found to have high tolerance for triclosan,both in accordance with previous studies (Møretrøet al.,2006;Vischer and Regös,1974).The L.monocytogenes strains were next to Serratia spp.the strains most tolerant to triclosan in the MIC tests,and at 70%RH no antibacterial effect was observed on the triclosan-containing cutting board.However,surprisingly L.monocytogenes was the only bacterium where an antimicrobial effect was observed at 100%RH,after 72h incubation.We have no explanation for this,but as growth ended after 24h,stationary phase L.monocytogenes cells may somehow be more sensitive to triclosan than under other conditions.The strains most sensitive to triclosan in suspension (MIC),were also strongest inhibited in agar diffusion studies and in the growth/survival studies on cutting boards.Also,there were more pronounced antibacterial effects at low cell counts.This may indicate that the concentration of triclosan available at the surface of the board was limited.The board is sold commercially and we do not have any information about the triclosan-concentration.According to Micro-ban®,triclosan is added before the polymerization process,resulting in an even distribution of triclosan throughout the depth of the board.As triclosan is lost from the surface it will be replenished by triclosan diffusing up from lower layers of the board ( ).However,we found repeated dishwashing to reduce the antibacterial effect of the cutting board,thus as the surface of the material lost triclosan through migration it seemed not to be completely replenished from lower layers.This may be caused by limited diffusion of triclosan from lower layer or that the initial concentration of triclosan in the material was too low.The reported antimicrobial effect varies when comparing results from other reports of triclosan-containing materials with exposure time N 24h.In a study with flooring material (20–28ppm triclosan),no effects were seen unless for a strain highly sensitive to triclosan (Møretrøet al.,2006).In another study with triclosan-containing plastic (1500ppm triclosan),no antibacterial effects were observed (Cutter,1999).Antibacterial effects were observed where the triclosan concentration was a high as 50,000ppm (Ji and Zhang,2009).In another study with 50,000ppm triclosan in plastic,no antibacterial effects were observed,however this study was performed in a flow system,so there would be dilution effects in the surrounding liquid (Junker and Hay,2004).These studies seem to suggest that thetriclosanFig.3.Inhibition of growth (25°C)of Staphylococcus aureus MF 3674embedded in tryptone soy soft agar (0.7%,wt./vol.)around a coupon of a triclosan-containing (Microban®)cutting board washed daily for two months in a dishwasher (A),and unwashed coupon (B).The inhibition zones of three washed and unwashed coupons were 7,6,6and 12,11,10mm,respectively.161T.Møretrøet al./International Journal of Food Microbiology 146(2011)157–162concentration is too low in some materials to obtain significant antibacterial effects.It is also a tendency when comparing results that better effects are seen in testing at high temperatures(37°C,25°C), compared to4°C(this study,Cutter,1999;Ji and Zhang,2009),however no study has tested different temperatures under otherwise similar conditions.It can also not be ruled out that the dishwashing process somehow changed the board's physical properties leading to a reduced diffusion of triclosan to the surface and/or to its surroundings.No reduction in antibacterial effect of triclosan-impregnated plastic storage boxes was observed after cleaning in a dishwasher.However,the test was performed after only one wash(Braid and Wale,2002).The results in the present study showed that the bacterial counts on cutting board surfaces were greatly reduced after exposure to dry conditions,also on boards without triclosan.Thus,allowing equipment and surfaces to dry after cleaning will reduce the probability of cross-contamination.For some food related bacteria use of the triclosan containing cutting board may be an additional hygienic hurdle. However,it may be questioned if the advantage in the hygienic improvement is of a magnitude that merits an increased use of antimicrobials in the domestic sector,as there are concerns about development of antimicrobial resistance due to the widespread use of triclosan.Also released triclosan may be transferred to food,and toxicological effects of triclosan have been reported.For the board tested in this study,the amount of triclosan seems to be limited,thus the antibacterial effect may decrease during usage as the triclosan migrates out of the coupon.AcknowledgementsThe authors would like to thank Catherine K.Halvorsen for the technical assistance.This work was funded by The Foundation for Research Levy on Agricultural Products,The Norwegian Research Council and research funds from the Norwegian Agricultural Authority. ReferencesAider,M.,2010.Chitosan application for active bio-basedfilms production and potential in the food industry:review.Lwt-Food Science and Technology43, 837–842.Aiello,A.E.,Larson,E.L.,Levy,S.B.,2007.Consumer antibacterial soaps:effective or just risky?Clinical Infectious Diseases45,S137–S147.Anonymous,2008.Hygiene procedures in the home and their effectiveness:a review of the scientific evidence base.IFH International Scientific Forum on Home Hygiene. Braid,J.J.,Wale,M.C.J.,2002.The antibacterial activity of triclosan-impregnated storage boxes against Staphylococcus aureus,Escherichia coli,Pseudomonas aeruginosa, Bacillus cereus and Shewanella putrefaciens in conditions simulating domestic use.Journal of Antimicrobial Chemotherapy49,87–94.Carpentier,B.,1997.Sanitary quality of meat chopping board surfaces:a bibliographical study.Food Microbiology14,31–37.Cliver,D.O.,2006.Cutting boards in Salmonella cross-contamination.Journal of AOAC International89,538–542.Cogan,T.A.,Slader,J.,Bloomfield,S.F.,Humphrey,T.J.,2002.Achieving hygiene in the domestic kitchen:the effectiveness of commonly used cleaning procedures.Journal of Applied Microbiology92,885–892.Cutter,C.N.,1999.The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces.Journal of Food Protection62,474–479.DeVere,E.,Purchase,D.,2007.Effectiveness of domestic antibacterial products in decontaminating food contact surfaces.Food Microbiology24,425–430. European Commission,mission decision of19March2010concerning the non-inclusion of2,4,4′-trichloro-2′-hydroxydiphenyl ether in the Union list of additives which may be used in the manufacture of plastic materials and articles intended to come into contact with foodstuffs under Directive2002/72/EC.Official Journal of The European Union L75/25.Fang,J.L.,Stingley,R.L.,Beland,F.A.,Harrouk,W.,Lumpkins,D.L.,Howard,P.,2010.Occurrence,efficacy,metabolism,and toxicity of triclosan.Journal of Environmental Science and Health Part C—Environmental Carcinogenesis&Ecotoxicology Reviews 28,147–171.Fugett,E.,Fortes,E.,Nnoka,C.,Wiedmann,M.,2006.International Life Sciences Institute North America Listeria monocytogenes strain collection:development of standard Listeria monocytogenes strain sets for research and validation studies.Journal of Food Protection69,2929–2938.Gilbert,P.,McBain,A.J.,2001.Biocide usage in the domestic setting and concern about antibacterial and antibiotic resistance.Journal of Infection43,85–91.Gilbert,P.,McBain,A.J.,2003.Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance.Clinical Microbiology Reviews16, 189–208.Habimana,O.,Møretrø,T.,Langsrud,S.,Vestby,L.K.,Nesse,L.L.,Heir,E.,2010.Micro ecosystems from feed industry surfaces:a survival and biofilm study of Salmonella versus host residentflora strains.BMC Veterinary Research6,48.Ji,J.H.,Zhang,W.,2009.Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds.Journal of Biomedical Materials Research Part A88A,448–453.Jones,R.D.,Jampani,H.B.,Newman,J.L.,Lee, A.S.,2000.Triclosan:A review of effectiveness and safety in health care settings.American Journal of Infection Control28,184–196.Junker,L.M.,Hay,A.G.,2004.Effects of triclosan incorporation into ABS plastic on biofilm communities.Journal of Antimicrobial Chemotherapy53,989–996. Kalyon,B.D.,Olgun,U.,2001.Antibacterial efficacy of triclosan-incorporated polymers.American Journal of Infection Control29,124–125.Langsrud,S.,Møretrø,T.,Sundheim,G.,2003.Characterization of Serratia sp.surviving in disinfecting footbaths.Journal of Applied Microbiology95,186–195.Levy,C.W.,Roujeinikova,A.,Sedelnikova,S.,Baker,J.B.,Stuitje,A.R.,Slabas,A.R.,Rice,D.W., Rafferty,J.B.,1999.Molecular basis for triclosan activity.Nature398,383–384. Levy,S.B.,2001.Antibacterial household products:cause for concern.Emerging Infectious Diseases7,512–515.Marambio-Jones,C.,Hoek,E.M.V.,2010.A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment.Journal of Nanoparticle Research12,1531–1551.Monteiro,D.R.,Gorup,L.F.,Takamiya,A.S.,Ruvollo,A.C.,Camargo,E.R.,Barbosa,D.B., 2009.The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver.International Journal of Antimicrobial Agents34,103–110.Møretrø,T.,Heir,E.,Mo,K.R.,Habimana,O.,Abdelgani,A.,Langsrud,S.,2010.Factors affecting survival of Shigatoxin-producing Escherichia coli on abiotic surfaces.International Journal of Food Microbiology138,71–77.Møretrø,T.,Sonerud,T.,Mangelrød, E.,Langsrud,S.,2006.Evaluation of the antimicrobial effect of a triclosan-containing industrialfloor used in the food industry.Journal of Food Protection69,627–633.Nesse,L.L.,Nordby,K.,Heir,E.,Bergsjoe,B.,Vardund,T.,Nygaard,H.,Holstad,G.,2003.Molecular analyses of Salmonella enterica isolates fromfish feed factories andfish feed ingredients.Applied and Environmental Microbiology69,1075–1081. Redmond,E.C.,Griffith,C.J.,2003.Consumer food handling in the home:a review of food safety studies.Journal of Food Protection66,130–161.Riley,L.W.,Remis,R.S.,Helgerson,S.D.,McGee,H.B.,Wells,J.G.,Davis,B.R.,Hebert,R.J., Olcott,E.S.,Johnson,L.M.,Hargrett,N.T.,Blake,P.A.,Cohen,M.L.,1983.Hemorrhagic colitis associated with a rare Escherichia coli serotype.New England Journal of Medicine308,681–685.Rode,T.M.,Langsrud,S.,Holck,A.L.,Møretrø,T.,2007.Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions.International Journal of Food Microbiology116,372–383.Ross,T.,Shadbolt, C.,2001.Predicting Escherichia coli inactivitation in uncooked comminuted fermented meat products.Prepared for Meat and Livestock Australia by the Centre for Food Safety and Quality.School of Agricultural Science,University of Tasmania,Meat and Livestock Australia,North Sydney.Russell,A.D.,2004.Whither triclosan?Journal of Antimicrobial Chemotherapy53, 693–695.Schimmer,B.,Nygard,K.,Eriksen,H.,Lassen,J.,Lindstedt,B.,Brandal,L.,Kapperud,G., Aavitsland,P.,2008.Outbreak of haemolytic uraemic syndrome in Norway caused by stx2-positive Escherichia coli O103:H25traced to cured mutton sausages.BMC Infectious Diseases8,41.Todd,E.C.D.,Greig,J.D.,Bartleson,C.A.,Michaels,B.S.,2009.Outbreaks where food workers have been implicated in the spread of foodborne disease.Part 6.Transmission and survival of pathogens in the food processing and preparation environment.Journal of Food Protection72,202–219.U.S.Food and Drug Administration(FDA),2010.8April2010,Triclosan:what consumers should know.Available at /forconsumers/consumer updates/ucm205999.htm.Accessed February9.,2011.U.S.Environmental Protection Agency(EPA),2010.March2010.Triclosan facts.Available at /oppsrrd1/REDs/factsheets/triclosan_fs.htm.Accessed February9,2011.Vestby,L.K.,Møretrø,T.,Ballance,S.,Langsrud,S.,Nesse,L.L.,2009.Survival potential of wild type cellulose deficient Salmonella from the feed industry.BMC Veterinary Research5,43.Vischer,W.A.,Regös,J.,1974.Antimicrobial spectrum of triclosan,a broad-spectrum agent for topical application.Zentralblatt für Bacteriologie und Hygiene I.Abt.Orig.A.226,376–389.162T.Møretrøet al./International Journal of Food Microbiology146(2011)157–162。

(全面版)医疗环境禁止毒品宣传方案英文版

(全面版)医疗环境禁止毒品宣传方案英文版

(全面版)医疗环境禁止毒品宣传方案英文版Comprehensive Plan for Prohibition of Drug Promotion in Healthcare EnvironmentIn order to maintain a safe and drug-free environment in healthcare facilities, it is crucial to implement strict regulations and guidelines to prohibit the promotion of drugs within the premises. This comprehensive plan aims to outline the necessary steps and strategies to prevent drug promotion and ensure the well-being of patients and staff.Objectives1. Establish clear policies and guidelines regarding the prohibition of drug promotion in healthcare facilities.2. Educate healthcare professionals and staff about the risks and consequences of drug promotion.3. Monitor and enforce compliance with the prohibition of drug promotion through regular inspections and audits.4. Provide support and resources for individuals struggling with substance abuse issues.Strategies1. Develop and implement a code of conduct that explicitly prohibits drug promotion in any form within healthcare facilities.2. Conduct training sessions for healthcare professionals and staff on identifying and reporting instances of drug promotion.3. Collaborate with law enforcement agencies to investigate and prosecute individuals or organizations involved in illegal drug promotion.4. Implement strict penalties for individuals or organizations found to be promoting drugs within healthcare facilities.5. Establish a reporting mechanism for patients, staff, and visitors to report any suspicious activity related to drug promotion.6. Raise awareness about the dangers of drug promotion through educational campaigns and materials within healthcare facilities.Implementation1. Form a task force or committee responsible for overseeing the implementation of the prohibition of drug promotion in healthcare facilities.2. Develop and distribute written materials outlining the policies and guidelines regarding drug promotion to all healthcare professionals and staff.3. Conduct regular training sessions and workshops to educate healthcare professionals and staff on the importance of maintaining a drug-free environment.4. Monitor compliance with the prohibition of drug promotion through regular inspections and audits conducted by the task force or committee.5. Provide support and resources for individuals struggling with substance abuse issues, including referral to appropriate treatment programs.Evaluation1. Conduct regular evaluations and assessments to measure the effectiveness of the prohibition of drug promotion in healthcare facilities.2. Gather feedback from healthcare professionals, staff, and patients to identify any areas for improvement or further action.3. Make necessary adjustments to the plan based on feedback and evaluation results to ensure continued success in maintaining a drug-free environment.By implementing this comprehensive plan for the prohibition of drug promotion in healthcare environments, we can create a safe and supportive environment for patients, staff, and visitors alike.。

喹诺酮类抗生素临床应用态势及合理用药

喹诺酮类抗生素临床应用态势及合理用药

近年来喹诺酮类药物的发展速度迅猛,越来越受到世界各国的关注,是抗感染药物中的“明星”。

第一代喹诺酮类药物在1962年问世,在β-内酰胺类药物大潮之后便进入了快速发展阶段,2000年全球最畅销前200个药物中就有喹诺酮类的环丙沙星和左氧氟沙星。

多年来,喹诺酮类药物一直稳居我国抗感染药物市场销售排序第2位,而氟喹诺酮类正逐渐成为喹诺酮类药物的主流。

氟喹诺酮类药物近几年的销售额呈强劲上升态势,年平均增长率为8%~10%,在抗感染药物中仅次于头孢类[1]。

本文对该类抗生素的临床应用进展和合理用药作一探讨。

1 喹诺酮类(QNS)药物分类、作用机制和特点1.1 喹诺酮类(QNS )药物的分类根据喹诺酮类药物的研究开发状况,利用目前新的分类方法可分为四类[2,3]:第1代:奈啶酸、吡哌酸及西诺沙星作用于革兰阴性菌(假单胞菌除外),它们对大多数革兰阴性菌有活性,口服吸收良好,在体内被代谢和灭活,24h 尿中回收率高;且组织渗透性。

由于在泌尿道、胆管和肠管中浓度较高,可以治疗这些系统感染。

临床适用于非复杂性尿道感染。

第2代:诺氟沙星、洛美沙星、依诺沙星、氧氟沙星、环丙沙星抗菌谱扩大为革兰阳性菌、革兰阴性菌和葡萄糖非酵解菌、革兰阴性菌(包括假单胞菌)、某些革兰阳性细菌(包括金黄色葡萄球菌但不包括肺炎链球菌)和某些非典型病原体。

此类药具有良好的组织渗透性,除脑组织和脑脊液外,对各种组织均有良好的分布,所以不仅有广泛的抗菌谱,而且有广泛的适应证。

临床适应于治疗非复杂性和复杂性尿道感染和肾盂肾炎、皮肤和软组织感染。

第3代:左氧氟沙星、司帕沙星、加替沙星及莫西沙星,其作用他们有抗菌谱方面,有些药对葡萄球菌、肺炎球菌、脆弱类杆菌、支原体、衣原体、军团菌等都有很好的作用;有些药对结核分枝杆菌的活性是第三阶段喹诺酮的3~30倍,与异烟腓和利福平相当。

此类药物由于吸收迅速,重庆医药高等专科学校(400030)喹诺酮类抗生素临床应用态势及合理用药冉启文【摘要】 喹诺酮类(QNS)药物是一类分子中具有喹诺酮或萘啶结构的人工合成抗菌化合物,是近年来迅速发展起来的抗菌药物。

抑菌报告英文怎么说呢

抑菌报告英文怎么说呢

抑菌报告英文怎么说呢Report on Antibacterial ActivityIntroduction:This report aims to analyze the antibacterial activity of the test sample. The experiment was conducted to determine the effectiveness of the sample in inhibiting bacterial growth and to assess its potential as an antibacterial agent.Methodology:1. Test Organisms:- Bacterial strains used: Escherichia coli, Staphylococcus aureus - These strains were selected based on their common occurrence and significant impact on human health.2. Sample Preparation:- The test sample was prepared by following the standard protocol.- It was diluted to the required concentration using sterile distilled water.3. Agar Diffusion Method:- Sterilized agar plates were prepared, and wells were made in the agar using a sterile cork borer.- The bacterial suspension was spread evenly over the agar surface.- Various concentrations of the test sample were added to the wells.- Control plates (with no sample application) were also prepared for comparison.4. Incubation:- The plates were incubated at an appropriate temperature, allowing bacterial growth for 24 hours.5. Measurement of Antibacterial Activity:- The antibacterial activity of the test sample was determined by measuring the zone of inhibition.- The diameter of the zone of inhibition around each well was measured and recorded.Results:The results of the experiment indicated that the test sample exhibited antibacterial activity against both Escherichia coli and Staphylococcus aureus. The zone of inhibition measurements indicated the effectiveness of the sample in inhibiting bacterial growth.- Escherichia coli: The test sample resulted in an average zone of inhibition of X mm.- Staphylococcus aureus: The test sample resulted in an average zone of inhibition of Y mm.Discussion:The observed antibacterial activity against both Escherichia coli and Staphylococcus aureus showcases the potential of the test sample as an antibacterial agent. The results obtained suggest that further research and testing should be conducted to determine the mechanism of action and potential applications of the test sample.Conclusion:Based on the results obtained, it can be concluded that the test sample exhibits antibacterial activity against both Escherichia coli and Staphylococcus aureus. Further studies are recommended to explore the full potential of the test sample and its possible applications in the field of antibacterial research.Note: This report is provided for informational purposes only and does not aim to provide conclusive evidence. Further analysis and research are required to validate the findings presented.。

Anti-hyperglycae...

Anti-hyperglycae...

Ethnobotanical Leaflets 12: 1172-75. 2008.Anti-hyperglycaemic and Insulin Release Effects of Coccinia grandis (L.) VoigtLeaves in Normal and Alloxan Diabetic RatsA. Doss and R. DhanabalanPG Department of MicrobiologyRVS College of Arts and Science, Coimbatore, Tamil Nadu, IndiaCorrespondingauthor:*******************Issued 15 December 2008ABSTRACTCoccinia grandis (L.) Voigt (Cucurbitaceae), occurs throughout the world and has intensive popular use in the treatment of infections. The main aim of the present work was to investigate the antidiabetic effects of aqueous extracts of leaves of C. grandis obtained by Decoction method. Graded doses of the aqueous extract were administered to normal and experimental diabetic rats for 10 days. Significant (p < 0.05) reduction in fasting blood glucose levels were observed in the normal as well as in the treated diabetic animals. Serum insulin levels were not stimulated in the animals treated with the extract. The changes in body weight,serum lipid profiles, liver glycogen levels were assessed in the extract treated diabetic rats and compared with diabetic control and normal animals.Key words: Antidiabetic activity, alloxan monohydrate, Gliben clamide, Coccinia grandis.INTRODUCTIONDiabetes mellitus (DM) is a serious health problem with high rates of incidence and mortality. DM is characterized by elevated plasma glucose concentrations resulting from insufficient insulin, insulin resistance or both leading to metabolic abnormalities in carbohydrates, lipids and proteins (Hernandez-galicia et al., 2002). According to the World Health Organization, more than 70% of the world’s population must use traditional medicine to satisfy their principal health needs (Farnsworth et al., 1985). A great number of medicinal plants used in the control of the DM have been reported (Baily & Day 1989; Marles & Farnsworth, 1994). However these plants represent alternatives to developing new oral hypoglycemic agents, appropriate ethnobotanical information is scarce, obscure and ambiguous.Coccinia grandis (L.) Voigt. (Family: Cucurbitaceae) is a climbing perennial herb distributed almost all over the world. The leaves of the plant possess antidiabetic, anti-inflammatory, antipyretic, analgesic, antispasmodic, antimicrobial, cathartic and expectorant activities (Asolkar et al, 1992; Nadkami and Nadkami, 1992).The leaves contain Triterpenoids, alkaloids and tannins (Rastogi. and Mehrota, 1990).The objective of the present work is to make an analysis of the ethnobotanical information on Coccinia grandis used in South Indian region for diabetes mellitus control.MATERIAL AND METHODSPlant material and decoction preparationThe leaves of C. grandis were collected in December 2007 from Coimbatore district, Tamilnadu, India and authenticated by Botanical Survey of India (Southern circle), Coimbatore, Tamil Nadu, India. A voucher specimen is being maintained in the RVS College of Arts and Science and RVS Medical & Ayurvedic foundation, Coimbatore. The leaves were shade dried and powdered.About 150 g of dried powdered leaves were boiled in 1 liter of water for 5 min, allowing the decoction to stand for 30 min and filtered through Whatman no.1 filter paper which yielded a decoction with a 15% higher concentration than that of produced by the method described by Teixeira et al., (1990).Test animalsThe test animals used in the study were procured from Karpagam Medical and Research Foundation. Six Albino rats of wistar strain weighing 150 - 200 g bred in Animal Tissue Culture Lab, Karpagam Arts and Science College. They were individually housed in polypropylene cages in well-ventilated rooms, under hygienic conditions. Animals were given water ad libitum and fed with rat pellet feed.Induction of Experimental Diabetes and TreatmentAlloxan monohydrate solution of 10 mg/ml was prepared in ice-cold citrate buffer 0.1 M, pH 4.5 and was administered to the rats within 5 min at a dose of 50 mg/kg body weight intraperitonially. After 48 h of alloxan monohydrate administration, rats with moderate diabetes having glycosuria and hyperglycemia were taken for the experiment.Rats weighing 150 – 160 g, fasted over night were used for induction of diabetes. Rats were divided into two sets; diabetic and non-diabetic. Group I received normal diet and served as normal control. Group II consists of alloxan-induced rats receiving normal diet and serving as diabetic control. Group III consists of alloxan induced rats receiving Gliben clamide (synthetic antidiabetic drug) at 0.5 mg/kg body weight once a day orally for 10 days. Group IV consists of alloxan-induced rats receiving C. grandis (1 ml) once a day orally for 10 days. Group V consists of normal rats receiving C. grandis (1 ml) once a day orally for 10 days.Blood samples were collected through the tail vein just prior to and on days 10 after drug administration. The blood glucose, urea, cholesterol, serum glutamate oxygenate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were determined for all the samples.StatisticsThe data were analyzed using one-way ANOVA followed by Dunnett's test. The level of significance was set at 0.05.RESULTS AND DISCUSSIONThe extracts of C. grandis produced significant changes in the alloxan-induced diabetic rats (Table 1). The aqueous extracts of C. grandis reduced the glucose levels considerably. Treatment of the diabetic rats with Gliben clamide (10 mg/kg) also reduced blood glucose level. The prolonged treatment of C. grandis extracts on alloxan-induced diabetes rats produced consistent reduction in the blood glucose levels. The aqueous extract also reduced urea, protein and cholesterol during the 10 days treatment period (Tables 1 and 2).It is possible that the drug may be acting by potentiating the pancreatic secreation or increasing the glucose uptake. Hypercholesterolemia, hypertriglyceridemia and hyperurea have been reported to occur in alloxan diabetic rats (Resmi et al., 2001; Joy and Kuttan, 1999). Increase in glycogen in liver can be brought about by an increase in glycogenesis and/or decrease a glycogenolysis. Therefore, the C. grandis extract could have stimulated glycogenesisand/or inhibited glycogenolysis in diabetic rat liver. The plant extracts treated animals showed non-toxicity of the extract, which indicates that unlike insulin and other common hypoglycemic agents, overdose of the drug may not result in hypoglycemia. The increase in total protein (Table 2) may be due to changes in circulating amino acids levels, hepatic amino acids uptake, and muscle output of amino acid concentrations (Felig et al., 1977). The non-protein nitrogen compound urea is found to be increased when compared to plant extract treated rats. The level of SGPT and SGOT increased remarkably in the C. grandis extract-treated rats (Nagappa et al., 2003). Our results support Ghosh et al., (2004) who reported that transaminase activity is increased in serum of diabetics. In diabetic animals, the changes in level of serum enzymes are directly related to changes in the metabolism (Felig et al., 1977).C. grandis leaf extract showed significant anti-diabetic effect in diabetic rats after oral administration. Thus, the claim made by the Indian systems of medicine regarding the use of leaf extract of this plant in the treatment of diabetes is validated. Present efforts are directed to isolate the active constituents and elucidation of mechanism of action.ACKNOWLEDGEMENTSThe authors express their sincere gratitude to the management of RVS College of Arts and Science, Coimbatore.REFERENCE1. Asolkar LV, Kakkar KK, Chakre OJ. 1992. Second supplement to Glossary of Indian Medicinal Plants withActive Principles Part-I (A-K).Council For Scientific and Industrial Research (PID) (Part-I),New Delhi: 217 –218.2. Bailey J & Day C: Diabetes Care 12: 553 (1989).3. Farnsworth N, Akerele 0, Bingel A, Soejarto D & Guo Z: Bull WHO 63: 965 (1985).4. Felig P, Wahren J, Sherwin R, Palaiologos G. 1977. Amino acid and protein metabolism in diabetes mellitus.Arch. Int. Med. 137: 507-513.5. Ghosh R, Sharatohandra KH, Rita S, Thokchom IS. 2004. Hypoglycaemic activity of Ficus hispida (bark) innormal and diabetic albino rats. Indian J. Pharmacol. 36(4): 222-225.6. Hernandez-Galicia E, Aguilar-contreras A, Aguilar-Santamaria L, Roman-ramos R, Chavez-miranda A.A,Garcia-Vega L.M, Flores-Saenz.J.L & Alarcon-Aguilar.F.J. 2002. Studies on Hypoglycemic Activity of Mexican Medicinal Plants. Proc. West. Pharmacol. Soc. 45: 118-124.7. Joy KL, Kuttan R. 1999. Anti-diabetic activity of Picrorshiza kurso extract. J. Ethanopharmocol. 67(2): 143-148.8. Marles RJ & Farnsworth R. 1994. Economic and Medicinal Plants Re-search 6: 149 (1994).9. Nadkami KM, Nadkami AK. 1992. Indian Materia Medica 3rd Ed.(Vol-I) Popular Prakashan Pvt Ltd.,Mumbai:300-30210. Nagappa AN, Thakurdesai PA, Venkat NR, Jiwan S. 2003. Antidiabetic activity of Terminalia catappa Linnfruits. J. Ethanopharmacol. 88: 45-50.11. Rastogi,R.R, Mehrotra,B.N.,1990. Campendium of Indian Medicinal Plants. (Vol-I), New Delhi: 115.12. Resmi CR, Aneez F, Sinilal B, Latha MS. 2001. Antidiabetic effect of a Herbal Drug in alloxan-diabetic rats.Indian Drugs. 38(6): 319-322.Table 1. Glucose and cholesterol content of serum of control and experimental rat groups.Parameters(Group I)(Group II) (GroupIII)(Group V) (Group V)Glucose (mg/dl)114.71±1.60256.39±7.22***146.90 ±1.76**154.9±14.3c***160±17.10.5d***Cholesterol (mg/dl)120± 2.5244.80±6.28***115±3.40b***112.2±7.1c***117±5.9dNSTable 2. The Concentrations of urea, total protein, SGOT and SGPT in serum of control and experimental groups.Parameters (Group I) (Group II) (Group III) (Group IV) (Group V)Urea (mg/dl)44±2.861.5±5.0a***56.0±5.0b***88 ±3.2c***50.0±2.8d** SGOT (U/L)23.3±1.224.2± 3.8a***28.0±3.4b***31.5±2.7c***41.6±3.6d***SGPT (U/L)24.6±2.128.0±3.4a***32.0±2.8b***38.5±1.0c***42.0±7.1d***Total protein(g/dl)6.95±0.42 3.9±0.6a*** 2.4±0.5b***7.3±1.0c***7.9±0.8d*Values are taken as mean of five individual’s experiments and expressed asMean ± S.D.***p< 0.001, **p< 0.01 and *p< 0.05. NS = Not Significant.Group I & II - Normal and Diabetic controlGroup III - Diabetic treated with Synthetic drugGroup IV - Diabetic treated with Plant drugGroup V - Plant drug。

Antioxydant Activity of Some Algerian Olive Oil Sa

Antioxydant Activity of Some Algerian Olive Oil Sa

Journal of Pharmacy and Pharmacology 5 (2017) 885-890doi: 10.17265/2328-2150/2017.12.006Antioxydant Activity of Some Algerian Olive Oil Samples in the Eastern and Center of AlgeriaMetlef Sarra1, Dilmi-Bouras Abdelkader2, Zidane Azdinia3 and Benali Ali41. Laboratory of Natural Bio-Ressources, Department of Biology, Faculty of Sciences, University Djillali Liabès of Sidi Belabesse, Sidi Belabesse 022002, Algeria2. Laboratory of Natural Bio-Ressources, Department of Human Nutrition and Food Sciences, Faculty of Nature and Life Sciences, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria3. Laboratory of Natural Bio-Ressources, Department of Biology, Faculty of Nature and Life Sciences, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria4. Laboratory of Biotoxicology, Department of Biology, Faculty of Sciences, University Djillali Liabès of Sidi Belabesse, Sidi Belabesse 022002, AlgeriaAbstract: This study aimed to evaluate the antioxidant activity of five Algerian olive oil samples from Chlef, Jijel, Tissemsilt, Bejaia and Tizi Ouzou regions. Thus the following results were found physicochemical caracterisation revealed that the samples are conform to standards prescribed by IOC (2013) as they are type-oleic and linoleic varies between virgin and extra virgin Chlef, Djijel and Bejaia oils are richer in carotenoids than those of Tizi Ouzou and Tissemsilt. Chlef and Tissemsilt oils are richer in phenolic compounds than other oils and have revealed very important antioxidant activity and the largest inhibitory power of peroxidation.Key words: Algeria, antioxidant activity, olive oil, phenolic extracts, standards.1. IntroductionOlive oil is obtained by natural extraction from Olea europaea L. in except of oil obtained by solvent or by rectification process and any mixture with oils of other nature [1, 2]. It is one of the oldest vegetable oils and the only one which can be consumed in its raw form without prior treatment [3]. It represents a typical source of mediterranean diet lipids with a content of 65% to 80% of monounsaturated fatty acids, represented mainly by oleic acid, 15% of unsaturated fatty acids and 10% of polyunsaturated fatty acids represented by dominant linoleic acid (Omega-6) and traces of alpha-linoleic acid (Omega-3) whose consumption has been associated with a limited incidence of cardiovascular disease, neurological disorders, and colon cancer [4]. Olive oil also containsCorresponding author: Metlef Sarra, Ph.D., research fields: biology. minor compounds which are phenols, tocopherols, carotenoids and sterols considered as highly bioavailable molecules and bioactive hatred, giving many benefits on human health. As long as they are very important antioxidants, they fight the free radicals with the deleterious effects: aggressions of the cells, modification of the DNA, oxidation of the lipids [5]. Olive oil is endowed with several biological activities (antioxidant and antimicrobial), but it is the presence of phenolic compounds and other antioxidants which give the oil a high stability against oxidation [6]. Algeria is ranked among the top ten producing countries ranking (9th), with a world production of 1% [7], more than 62 thousand tons of oil in this production is provided by several regions (east, west, central and southern part in Algeria) [8], the composition and quality of olive oils are influenced by several factors such as cultivation techniques, the knowledge of the producers and thevariety of the olive, which explain the differences in theAll Rights Reserved.Antioxydant Activity of Some Algerian Olive Oil Samples in the Eastern and Center of Algeria886biological activities between them [9, 10].In this context, our study aims to extract the polyphenols of olive oil from the east and center of Algeria and evaluate their antioxidant activity.2. Materials and MethodsThe study involved five original Algerian olive oil samples collected from the most predominant areas in olive production located in the east and center parts of Algeria: Bejaia, Chlef, Jijel, Tizi Ouzou and Tissemsilt (Fig. 1). They were obtained from conventional extraction units located in various regions and using olive by pressure extraction technique without any addition or subtraction.2.1 Determination of Carotenoids ContentDetermining the carotenoids content in our samples was carried out according to the procedure described by Ref. [11]: Seven point five grams of oil were introduced into a 25 mL volumetric flask which is subsequently filled up to the mark with cyclohexane,the absorbance of the solution of the fat obtained was measured against that of the solvent at 470 nm. The carotenes content is determined by the following formula:Carotne (ppm) =(A470 × 25 × 10,000)/(2,000 × 7.5) (1)2.2 Extraction of Total PolyphenolsThe extraction of total polyphenols in our oil samples was made following Refs. [12, 13] method Mix 20 IU (0.2 mL) of oil with 400 uL (0.4 mL) of a mixture of water/methanol (25/75). The mixture is vortexed for 1 min for the extraction of polyphenols in the methanolic medium adding 200 uL (0.2 mL) of dichloromethane. Centrifuge the mixture at 3,500 revolutions/min for 10 facilitate the collection of 200 uL (0.2 mL) of supernatant methanol.2.3 Determination of Total Polyphenols by Colorimetry The determination of total polyphenols was made according to the method in Ref. [14]:Adding 800 uL (0.8 mL) of Folin reagent diluted 10 times with phenolic extracts and allowing the mixture rested 2 min at room temperature before adding 1 mL of sodium carbonate (75 g/L) heated the mixture for 15 min at 50 °C and analyzed at 760 nm; external calibration was performed using gallic acid at different concentrations.2.4 Trapping Test Radical DPPHIn this study we followed the procedure of Ref. [15] 50 mL of each extract and different dilutions, as well as standards (BHT and ascorbic acid at 10 mg/mL, andFig. 1 Location of the olive oil samples areas.All Rights Reserved.Ancontrol) are solution of D was incubate absorbance anti-radical formula:D.O contrôle The comp used to de corresponds value is expr 3. Results 3.1 Results o The result olive oils c 14.04 mg/10these values Tizi Ouzou a mg/100 mg The low Tissemsilt o olives, the c the age of oi According chemical s mechanismsFig. 2 Resul ntioxydant Ac added to a vo DPPH (6,086ed 30 minutes at 517 nm activity is %e – D.O échan pletion of the etermine the to the value ressed in g/m and Discus of Carotenoid ts showed tha carotenoid c 00 g, 10.33 s are very imp and Tissemsi respectively carotenoid poils may be collection met il as is mentio g to Ref. substances i s of the oil, lts of carotenoiB c a r o t e n e c o n t e n t m g /100gctivity of Som olume of 2.9 m 6 ⨯ 10-5 mol/s, followed by m. The per estimated by %AAR = ntillon/D.O c e kinetics of concentratio of 50% inhi mL.ssionds Assayat Chlef’s, Jij composition mg/100 g, 1portant comp ilt ones with 8(Fig. 2).pigments in accorded to thods, the ret oned by Ref. [17] caroten involved in their presen ids assay in the 051015me Algerian O mL of a meth /L). This mix y measuremen rcentage of y the follow contrôle ⨯ 100this activity ons IC50. I ibition. The I jel’s and Beja are respecti 10.98 mg/10paring to thos 8.8 mg/100 g Tizi Ouzou the maturity trieval system [16]. nes are nat the oxida nce in suffic e five oil samp Olive Oil Sam hanol xturent of the wing 0 (2)was IC50IC50aia’svely 0 g, se of , 7.3and y of m, or tural ation cientquaphe qua are Cor from 3.2 T vari sam and the sam T hav Ref mg/refi con and thes part of p mg/T Orth and les.samplesples in the Ea antity in the enomena of p ality paramete consistent w rnicabra varie m 2 to 14 mg Results of Po The results iability in the mples showing d 199.974 mg richest in t mples as is sho The amounts ve been repor fs. [12-19] la /kg for extra ined oil. Depe ntact with air, d o-diphenols se relatively tially in the m phenols in oli /kg [20, 21].The polyphen ho diphenols d oleuropein) astern and C oil makes photo oxidat ers of the oil d with those o ety, which ha /kg [18]. olyphenols To summarized e total polyph g that Chlef a g of caffeic a these compo owed in Fig. of phenols p rted in the lit anced that th a virgin olive ending on the the oil is dep responsible f y water-sol margins but ge ive oil varies nols pass into s (such as hyd in olive oil ar Beja Chle Jijel Tisse Tizi Oenter of Alge it possible t tion and to during storag obtained for as carotene le otal Assayd in Fig. henol content and Tissemsilt acid/kg respec ounds compa 3.present in oliv terature are v he phenols co e oils and 6e duration of pleted of total for the antiox luble comp enerally the c s between 1 g the oil durin droxytyrosol re considerediaf emsilt Ouzou eria887to delay the preserve the ge, our results the Spanish evels ranging 3 indicated ts of the five t oils (172.91ctively) were ared to other ve oils which very variable.ontent is 23262 mg/kg for grinding and l polyphenols idant activity ounds pass concentration g/kg and 800ng extraction., caffeic acid d to be natural 7e e s h g d e e r h . 2 r d s y, s n 0 . d lAll Rights Reserved.An888Fig. 3 ResulFig. 4 Valueantioxidants giving it a b and a sensat 3.3 Antioxid Oil Samples The result the determin extracts of o demonstrate Chlef and T activities w respectively The activ important w Jijel and Tiz samples (9.4In light o ntioxydant Ac lts of determin es of concentra s that protec better stability ion of pungen dant Power of s ts of the radic nation of IC5oils are prese ed a significa Tissemsilt oi with IC50 va . vity of Bejai with an IC50 zi Ouzou we 48 and 9.76%f these resultt o t a l p o l y p h e n o l s m g o f c a f f e i ca c i d /k g246810I C 50 u g /m lctivity of Som nation of pheno ations responsi ct the oil ag y during stora ncy [22, 23]. f Phenolic Ex cal scavengin 0 values for ented in Fig. ant potential, ils have the alues of 3.6ia and Jijel of about 5.75ere lowest co %). ts, we will de 050100150200me Algerian O olic compounds ible in 50% inh gainst oxidat age, a bitter t xtracts of the F ng DPPH thro the five phen 4. These res we noticed most impor 67% and 5.7oils was alw 5, while thos ompared to o educe that Ch samplessamp IC Olive Oil Sam s in olive oils s hibition of DPP tion,taste Five ough nolic sults that rtant 74% ways se of other hlef,Tissradi by extr S poly in t [24com hyd not 4. C T reve to d T with plesC50 (µg/m ples in the Ea amples.PH radical.semsilt and B ical scavengi their high p racts.Such variatio yphenol extra the compositi ], in particula mpounds such drolysis of ole in another as Conclusion The chemical ealed that the draw the follo The important h carotenoids mL)astern and C Bejaia oils h ng activities, phenolic con on in the ant acts of oils co ion of the ex ar the presenc h as oleurope europein) and s reported by nsl characteriza ey met all the owing conclu t differences s were in Ch Beja Chle Jijel Tiss Tizi Bejaia Chlef Jijel Tissem TiziOzo acide aenter of Algehave the mos and this can ntent compar tioxidant cap ould be due t xtracts as sho ce of some ph in, tyrosol (p d hydroxytyro Refs. [25, 26ation of our standards an sions: in the contei lef, Djijel an aia ef emsilt.Ouzoumsilt ouascorbique eriast significant be explained red to other pacity of the o differences owed by Ref.henolic active product of the osol in oil and 6].samples has nd allowed us in of samples nd Bejaia oils t d r e s . e e d ss s sAll Rights Reserved.Antioxydant Activity of Some Algerian Olive Oil Samples in the Eastern and Center of Algeria 889much richer in carotenoids than Tizi Ouzou and Tissemsilt ones.Chlef and Tissemsilt samples were rich in phenolic compounds than other oils and possessed the most important antioxidant activity with IC50 values of 3.67 and 5.74 respectively.Finally, we suggest increasing the number of samples to target other regions of Algeria and to characterize phenolic compounds of the various samples of oils using HPLS-MS/MS techniques.References[1]CEE. 2003. “Characteristics of Olive and Olive PomaceOil and Their Analytical Methods, EEC Regulation1989/2003.” Official Journal of the EuropeanCommunities 295: 57-66.[2]Codex Alimentarius. 1989. “Norme codex pour les huilesd’olive vierges et raffinées et pour l’ huile de grignonsd’olive raffinée.” Codex STAN 33-1981 (Rév. 1-1989). [3]International Oleicol Council. 2013. T.15/NCn 9/Rev.6.“Commercial Norme Applicable to Olive Oil andOlive-Pomace Oils.”[4]Garcia-Villalba, R., Carrasco-Poncorbo, A.,Oliveras-Ferraros C., Vasquez-Martin A., Menéndez J. A.,Segura-Carretero, A., and Fernandez-Gutiérrez, A. 2010.“Characterisation and Quantification of PhenolicCompounds of Extra-Virgin Olive Oils with AnticancerProperties by a Rapid LC-ESI-TOF MS Method.”Journal of Pharmaceutical and Biomedical Analysis51 (2): 416-9.[5]Abu-Reidah, M. I., Yasin, M., Urbani, S., Servili, M., andMontedoro, G. 2013. “Study and Characterization ofPalestinian Monovarietal Nabali Virgin Olive Oils fromNorthern West Bank of Palestine.” Journal Food ResearchInternational 54 (2): 1959-64.[6]Servili M., Selvaggini R., Taticchi A., Esposto S., andMontedoro G. 2003. “Volatile Compounds and PhenolicComposition of Virgin Olive Oil: Optimisation ofTemperature and Time of Exposure of Olive Pastes to AirContact during the Mechanical Extraction Process.” J.Agric. Food. Chem. 27: 7980-8.[7]Barjol, J. L. 2014. “Olive Oil.” Rev: Ocl. 21 (5): D502.[8]Pinatel, C., Petit, C., Ollivier, D., and Artaud, J. 2004.“Outil pour l’amélioration organoleptique des huilesd’olive vierges.” Oléagineux, Corps Gras, Lipides 11 (3):217-22.[9]Zhu, L. I., Li, X., Liu, Z., and Weber, P. 2010.“Hydroxyterosol Protects against Oxydative Damage bySimultaneous Activation of Mitochondrial Biogenesis andPhase II Detoxifying Enzyme Systems in Retinal PigmentEpithelial Cells.” Journal of Nutritional Biochemistry 21:1089-98.[10]International Oleicol Council. 2015. COI/T.15/NCn3/Rév.8.[11]Mariod, A. A., and Ibrahimi, R. M. 2010. “AntioxydantActivities of Phenolic Rich Fraction Obtained of BlackMonchema Ciliatum.” Food Chimistry 118: 120-7.[12]Owen, R.W., Mier, W., Giacosa, A., Hull, W. E., andBartch, H. 2000. “Phenolic Compounds and Squalene inOlive Oils: The Concentration and Antioxydant Potentialof Total Phenols.” Food Chemistry Toxicol 38: 647-59. [13]Abaza, L., Taamalli, A., Nsir, H., and Zrrouk, M. 2015.“Olive Tree (Olea europeae L.) Leaves: Importance andAdvances in the Analysis of Phenolic Compounds.”Antioxidants 4: 682-98.[14]Folin, C. 1999. “Analysis of Total Phenols and OtherOxidation Substrates and Antioxidants by Means ofFolin-Ciocalteu Reagent. Oxidants and Antioxidants PartA.” Methods in Enzymology 299: 152-78.[15]Kartal, N., Sokmen, M., Tepe, B., and Polissou, M. 2007.“Investigation of the Antioxydant Properties of FerulaOrientalis L Using a Suitable Extraction Procedure.” FoodChemistry 100: 584-9.[16]Kristakis, A. K. 1998. Composition of Olive Oil. USA:Food and Nutrition Press, 113-54.[17]Djeridane, A., Yous, M., Nadjemi, B., Boutassouna, D.,Stocker, P., and Vidal, N. 2006. “Antioxidant Activity ofSome Algerian Medical Plants Extracts ContainingPhenolic Compounds.” Food Chem. 97: 654-60.[18]Lazzer, A., Cossentini, M., Khlif, M., a n d Karray, B.2006. “Etude de l’évolution des stérols, des alcoolsaliphatiques et des pigments de l’huile d’olive au cours duprocessus de maturation.” Journal de la société chimiquede Tunisie 8: 21-32.[19]Salvador, M. D., Aranda, F., Gomez Alonso, S., andFregapane, G. 2001. “Cornicabra Virgin Olive Oil: AStudy of Five Crop Seasons. Composition, Quality andOxidative Stability.” Food Chemistry 74: 267-74.[20]Kalua, C. M., Allen, M. S., Bedgood Jr, D. R., Bishop, A.G., Prenzler, P. D., and Robards, K. 2007. “Olive OilVolatile Compounds, Flavour Development and Quality:A Critical Review.” Food Chemistry 100: 273-86.[21]Baros, B., Jakabova, S., Dornyei, A., Horvath, J., andKimar, F. 2010. “Determination of PolyphenolicComponds by Liquid Chromatography Mass Spectrometry.” Journal of Chromatography 1217.[22]Alessandra, B., Lorenzo, C., Alegria, C. P., Ana Maria, G.C., Antonio Segura-C., Alberto, F. G.,and Giovanni, L.2007. “Phenolic Molecules in Virgin Olive Oils: A Surveyof Their Sensory Properties, Health Effects, AntioxidantActivity and Analytical Methods.” Molecules 12:All Rights Reserved.Antioxydant Activity of Some Algerian Olive Oil Samples in the Eastern and Center of Algeria 8901679-719.[23]Douzane, M., Tamendjari,A., Abdi, A. K., Daas, M.S.,Mehdid, F., and Bellal, M. M. 2013. “Phenolic Compounds in Mono-cultivar Extra Virgin Olive Oilsfrom Algeria.”Grasas and Aceites 64 (3): 285-94.[24]Brenes, M., Hidalgo, F. J., Garcia, A., Rios, J. J., Garcia,P., Zamora, R., and Garrido, A. 2000. “Pinoresinol and1-Acetoxy Pinoresinol, Two New Phenolic CompoundsIdentified in Olive Oil.” Journal of American OilChemist’s Society 77 (7): 715-20.[25]Brenes, M., Garcia, A., Garcia, P., Rios, J. J., a n dGarrido, A. 1999. “Phenolic Compounds in Spanish Olive Oils.” Journal of Agricultural and Food Chemistry47 (9): 3535-40.[26]Brenes, M., Garcia, A., Rios, J. J., Garcia, P., and Garrido,A. 2002. “Use of 1-Acetoxy Pinoresinol to AuthenticatePicual Olive Oils.” The International Journal of Food Science and Technology 37 (6): 615-25.All Rights Reserved.。

美国FDA批准Xacduro(舒巴坦+度洛巴坦)治疗鲍曼氏-醋酸钙不动杆菌复合体引起的医院获得性肺炎

美国FDA批准Xacduro(舒巴坦+度洛巴坦)治疗鲍曼氏-醋酸钙不动杆菌复合体引起的医院获得性肺炎

第4期王欣,等.我国2009-2022年药物研发与上市政策的文本量化分析学报:社会科学版,2017,16(1):114-120.[8]丁煌,杨代福.政策工具选择的视角,研究途径与模型建构[J].行政论坛,2009,16(3):21-26.[9]ROTHWELL R,ZEGVELD W.An assessment of governmentinnovation policie s[J].Rev Policy Res,1974,3(3/4):436-444.[10]韩鹏,武志昂.我国生物医药可持续创新政策体系框架研究[J].中国新药杂志,2022,31(1):1-11.[11]倪娜,崔然然,郑岩,等.审评审批管理制度改革对临床试验开展的促进作用[J].中国新药杂志,2021,30(20):1825-1829.[12]范永娴,陈龙,张行.激发创业投资支持生物和医药行业发展的路径选择[J].云南社会科学,2021,243(5):84-89. [13]崔晶,董旻,吕旭峰,等.美国FDA复杂仿制药注册沟通交流制度研究及启示[J].中国药学杂志,2022,57(24):2135-2138.[14]闫娟娟,胡安霞,裴中阳.医药制造业产学研专利合作模式与网络演化研究[J].中国药房,2021,32(13):1549-1556. [15]韩成芳.药品专利制度的现实困境及反思[J].科技进步与对策,2021,38(15):118-124.(责任编辑:陈翔)美国FDA批准Vyjuvek用于治疗营养不良型大疱性表皮松解症美国FDA于2023年5月19日批准Vyjuvek(外用软膏剂)用于治疗6岁及以上年龄段营养不良型大疱性表皮松解症(dystrophic epidermolysis bullosa,DEB)患者的创伤,适用于携带COL7A1(collagen typeⅦalpha1chain,Ⅶ型胶原α-1链)基因突变的患者。

头孢他啶-阿维巴坦对肠杆菌科细菌和铜绿假单胞菌的体外杀菌活性研究

头孢他啶-阿维巴坦对肠杆菌科细菌和铜绿假单胞菌的体外杀菌活性研究

头孢他啶-阿维巴坦对肠杆菌科细菌和铜绿假单胞菌的体外杀菌活性研究孙 玥, 郑永贵, 隗志翔, 杨 洋, 吴 湜, 郭 燕, 尹丹丹, 胡付品摘要: 目的 研究头孢他啶-阿维巴坦对肠杆菌科细菌和铜绿假单胞菌的体外杀菌活性特点。

方法 以0.5~32倍最低抑菌浓度 (MIC )的头孢他啶分别联合4 mg/L 阿维巴坦对肺炎克雷伯菌、大肠埃希菌和铜绿假单胞菌共8株受试菌进行头孢他啶-阿维巴坦体外杀菌动力学观察及记录描述,并绘制杀菌曲线。

结果 头孢他啶-阿维巴坦对肠杆菌科细菌及部分铜绿假单胞菌具有较强杀菌作用,其杀菌曲线下降趋势与时间成正相关,且不随药物浓度改变有明显变化。

7株受试菌株在其相应的4 MIC 药物浓度时,存活菌落数在6 h 内下降约3 lgCFU/mL 。

1株铜绿假单胞菌(17-W07-23)在4倍以上MIC 的药物浓度条件下,仍能观察到细菌存活数减少后再次增多,曲线出现反跳。

结论 头孢他啶-阿维巴坦对抗菌谱内的肠杆菌科细菌及部分铜绿假单胞菌具有较强的杀菌活性,属时间依赖型抗生素。

提示在临床治疗中可采取适当缩短给药间隔的方式维持其血药浓度以达到更好的疗效。

关键词: 头孢他啶-阿维巴坦; 时间-杀菌曲线; 体外杀菌效果; 肠杆菌科细菌; 铜绿假单胞菌中图分类号:R978.11;R378 文献标识码:A 文章编号:1009-7708 ( 2021 ) 03-0314-05DOI: 10.16718/j.1009-7708.2021.03.013In vitro time-kill assay of ceftazidime-avibactam against Enterobacteriaceae and Pseudomonas aeruginosaSUN Yue, ZHENG Yonggui, WEI Zhixiang, YANG Yang, WU Shi, GUO Yan, YIN Dandan, HU Fupin (Institute of Antibiotics, Huashan Hospital, Fudan University, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai 200040, China )Abstract: Objective To investigate the time-kill kinetics of ceftazidime-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa . Methods Ceftazidime-avibactam time-kill kinetics were evaluated at ceftazidime concentration of 0.5, 1, 2, 4, 8, 16, and 32-fold MIC in combination with 4 mg/L avibactam for 8 bacterial strains, including Klebsiella pneumoniae , Escherichia coli , and P . aeruginosa . Results Ceftazidime-avibactam shows potent time-dependent bactericidal activity against Enterobacteriaceae and some P . aeruginosa strains. The bacterial killing ability positively correlated with time and independent of drug concentration. The living colony-forming unit was reduced by about 3 lgCFU/mL within 6 hours for 7 test strains when the concentration of ceftazidime-avibactam was higher than 4×MIC. However, regrowth was still observed for 1 strain of P . aeruginosa (17-W07-23) even at higher than 4×MIC concentration. Conclusions Ceftazidime-avibactam shows potent time-dependent bactericidal activity against Enterobacteriaceae and some P . aeruginosa strains. It is reasonable to maintain effective blood drug concentration by shortening thedosing interval.Keywords: ceftazidime-avibactam, time-kill curve, in vitro bactericidal activity, Enterobacteriaceae , Pseudomonas aeruginosa·论著·基金项目: 国家自然科学青年基金(81902101),上海市细菌真菌耐药监测网(3030231003),CHINET 中国细菌耐药监测网(2020QD049)。

A new antibiotic kills pathogens without detectable resistance

A new antibiotic kills pathogens without detectable resistance

factors through the chambers enables growth of uncultured bacteria in their natural environment. The growth recovery by this method approaches 50%, as compared to 1% of cells from soil that will grow on a nutrient Petri dish10. Once a colony is produced, a substantial number of uncultured isolates are able to grow in vitro14. Extracts from 10,000 isolates obtained by growth in iChips were screened for antimicrobial activity on plates overlaid with S. aureus. An extract from a new species of b-proteobacteria provisionally named Eleftheria terrae showed good activity. The genome of E. terrae was sequenced (Supplementary Discussion). Based on 16S rDNA and in silico DNA/DNA hybridization, this organism belongs to a new genus related to Aquabacteria (Extended Data Fig. 2, Supplementary Discussion). This group of Gram-negative organisms is not known to produce antibiotics. A partially purified active fraction contained a compound with a molecular mass of 1,242 Da determined by mass spectrometry, which was not reported in available databases. The compound was isolated and a complete stereochemical assignment has been made based on NMR and advanced Marfey’s analysis (Fig. 1, Extended Data Figs 3 and 4 and Supplementary Discussion). This molecule, which we named teixobactin, is an unusual depsipeptide which contains enduracididine, methylphenylalanine, and four D-amino acids. The biosynthetic gene cluster (GenBank accession number KP006601) was identified using a homology search (Supplementary Discussion). It consists of two large non-ribosomal peptide synthetase (NRPS)-coding genes, which we named txo1 and txo2, respectively (Fig. 1). In accordance with the co-linearity rule, 11 modules are encoded. The in silico predicted adenylation domain specificity perfectly matches the amino acid order of teixobactin (Fig. 1), and allowed us to predict the biosynthetic pathway (Extended Data Fig. 5).

欧洲药典7.5版

欧洲药典7.5版
EUROPEAN PHARMACOPOEIA 7.5
INDEX
To aid users the index includes a reference to the supplement in which the latest version of a text can be found. For example : Amikacin sulfate...............................................7.5-4579 means the monograph Amikacin sulfate can be found on page 4579 of Supplement 7.5. Note that where no reference to a supplement is made, the text can be found in the principal volume.
English index ........................................................................ 4707
Latin index ................................................................................. 4739
EUROPEAN PHARMACOPபைடு நூலகம்EIA 7.5
Index
Numerics 1. General notices ................................................................... 7.5-4453 2.1.1. Droppers...................

ANTI-BACTERIAL ACTIVITY OF 9-HYDROXY DERIVATIVES

ANTI-BACTERIAL ACTIVITY OF 9-HYDROXY DERIVATIVES

专利名称:ANTI-BACTERIAL ACTIVITY OF 9-HYDROXY DERIVATIVES OF 6, 11-BICYCLOLIDES发明人:IYENGAR, Rajesh,WANG, Yanchun,PHAN, Ly, Tam,OR, Yat, Sun申请号:US2009043225申请日:20090508公开号:WO09/137737P1公开日:20091112专利内容由知识产权出版社提供摘要:The present invention discloses compounds of formula (I) or pharmaceutically acceptable salts, esters, or prodrugs thereof: which exhibit superior antibacterial properties, particularly against Haemophilus influenzae. The present invention further relates to pharmaceutical compositions comprising the aforementioned compounds for administration to a subject in need of antibiotic treatment. The invention also relates to methods of treating a bacterial infection in a subject by administering a pharmaceutical composition comprising the compounds of the present invention. The invention further includes process by which to make the compounds of the present invention.申请人:IYENGAR, Rajesh,WANG, Yanchun,PHAN, Ly, Tam,OR, Yat, Sun地址:500 Arsenal Street Watertown, MA 02472 US,41 Fernwood Road West Newton, MA 02465 US,283 Winchester Street Newton, MA 02461 US,221 South Central Street Quincy, MA 02170 US,169 Fayette Street Watertown, MA 02472 US国籍:US,US,US,US,US代理人:ELMORE, Carolyn, S.更多信息请下载全文后查看。

加拿大警告部分糖类药品可能干扰血糖测试仪

加拿大警告部分糖类药品可能干扰血糖测试仪

酶技术的血糖监测 系统 具有葡萄糖专一性 。 其血糖测
第 6卷 第 3期 20 0 9年 3月
中 国药物 警戒
Chn s J r a o Ph r c ii nc ie e ou n l f a ma ovgl e a
VOl . NO. 6 3
Mar , 00 ch 2 9
的指导性文件 。 ( ME E A网站 )
参 考 文献 :
s rb d sd fe to c de t i :o e e tma i n ofg y e i y c e i e e fc fi o x rn v r s i to l c m ab i
aeie iul t e 、 萄糖 氧化酶 或葡 萄糖 己糖激 d n n c oi )葡 nd e d
【]Nin usW Bmi sR Vatn ug G, ta. p gy 4 eh i A, j H, s b r e Hy o l— n e 1
c e c c m a d e t a s l l v t d gl o e v l e n a pai n a mi o u o f le y e e a e uc s a u si te t
f a g v/ b r s f t / l c a s . t d . o c e / a e y g u f e h m l
[】 Ad es v n e oti DA— AUDE o h c — e 2 vre E e tR p r n F M :R c eAc u Ch k Co o reT s Sr sE OL] mfr Cuv et tp [B/ . t i WWW. csd t. ag v a e sa f .o / c a d
加拿 大警 告部 分糖 类药 品可 能干 扰血 糖测 试 仪

Anti-PCSK9 antibodies and use thereof

Anti-PCSK9 antibodies and use thereof

专利名称:Anti-PCSK9 antibodies and use thereof 发明人:Andrew Lawrence Feldhaus,Leon F. Garcia-Martinez,Benjamin H. Dutzar,Ethan WayneOjala,Brian Robert Kovacevich,Katie OlsonAnderson,Pei Fan,Jens Billgren,Erica AnnStewart,Corinne C. Akatsuka,Patricia DianneMcNeill,Danielle Marie Mitchell,Dan ScottAllison,John A. Latham申请号:US13795674申请日:20130312公开号:US09255154B2公开日:20160209专利内容由知识产权出版社提供摘要:The present invention is directed to antibodies and fragments thereof having binding specificity for PCSK9. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the V, Vand CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-PCSK9 antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said anti-PCSK9 antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-PCSK9 antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with PCSK9.申请人:ALDERBIO HOLDINGS LLC地址:Las Vegas NV US国籍:US代理机构:LeClairRyan A Professional Corporation 代理人:Robin L. Teskin更多信息请下载全文后查看。

2023年预防骨质疏松症宣传日活动策划英文版

2023年预防骨质疏松症宣传日活动策划英文版

2023年预防骨质疏松症宣传日活动策划英文版2023 Osteoporosis Prevention Awareness Day Event PlanningTo raise awareness about osteoporosis and promote preventive measures, the 2023 Osteoporosis Prevention Awareness Day event will focus on education and outreach. The event will include informational sessions, screenings, exercise demonstrations, and interactive booths.Event Objectives:- Educate the community about the risk factors and prevention strategies for osteoporosis.- Encourage individuals to adopt healthy lifestyle habits to maintain strong bones.- Provide resources and support for those affected by osteoporosis.Event Activities:1. Informational Sessions:- Experts will give presentations on the importance of bone health and ways to prevent osteoporosis.2. Screenings:- Free bone density screenings will be offered to assess individuals' risk of osteoporosis.3. Exercise Demonstrations:- Fitness instructors will demonstrate bone-strengthening exercises that promote bone health.4. Interactive Booths:- Booths will provide educational materials, resources, and interactive activities related to osteoporosis prevention.5. Healthy Living Workshops:- Workshops on nutrition, exercise, and lifestyle choices that support bone health will be offered.Promotional Strategies:- Social Media Campaign:- Utilize social media platforms to promote the event and raise awareness about osteoporosis prevention.- Community Partnerships:- Collaborate with local organizations, healthcare providers, and fitness centers to reach a broader audience.- Flyers and Posters:- Distribute flyers and posters in high-traffic areas to attract participants to the event.Evaluation Plan:- Surveys:- Conduct surveys before and after the event to assess participants' knowledge and behavior change regarding osteoporosis prevention.- Attendance Tracking:- Track the number of attendees and gather feedback to evaluate the event's success and impact.By organizing the 2023 Osteoporosis Prevention Awareness Day event with a focus on education, outreach, and community engagement, we aim to empower individuals to take proactive steps towards better bone health and reduce the prevalence of osteoporosis in our community.。

2023年高预警药品种类明细英文版

2023年高预警药品种类明细英文版

2023年高预警药品种类明细英文版Title: Detailed List of High Alert Medications for 2023In the upcoming year of 2023, it is crucial to be aware of the various types of high alert medications. These medications require special attention due to their potential for causing significant harm if used incorrectly. It is essential for healthcare professionals to be well-informed about these medications to ensure safe and effective patient care.The following is a detailed list of high alert medications for 2023:1. Insulin: Used to treat diabetes, insulin requires careful dosing and monitoring to prevent hypoglycemia or hyperglycemia.2. Opioids: These powerful painkillers can lead to respiratory depression and overdose if not used appropriately.3. Anticoagulants: Medications such as warfarin and heparin are used to prevent blood clots but can cause serious bleeding if not managed correctly.4. Chemotherapy drugs: These medications are used to treat cancer but can have severe side effects if not administered properly.5. Sedatives: Drugs like benzodiazepines are used to induce relaxation and sleep but can cause respiratory depression and dependence if misused.6. Digoxin: Used to treat heart conditions, digoxin requires careful monitoring of blood levels to prevent toxicity.7. Antibiotics: While essential for treating infections, antibiotics can lead to antibiotic resistance and adverse reactions if not used judiciously.8. Potassium chloride: Used to treat low potassium levels, this medication can cause serious heart problems if not administered correctly.9. Intravenous opioids: These medications are potent pain relievers but can result in respiratory depression and overdose if not monitored closely.10. Chemotherapy-induced nausea and vomiting (CINV) medications: These drugs are essential for managing side effects of chemotherapy but can cause adverse reactions if not dosed correctly.It is vital for healthcare providers to be vigilant when prescribing, dispensing, and administering high alert medications to prevent medication errors and ensure patient safety. By being aware of the risks associated with these medications and following proper protocols, healthcare professionals can minimize the potential for harm and provide optimal care to their patients in the year 2023.。

聚维酮碘稀释液冲洗结膜囊联合抗菌药物治疗对白内障患者术后感染的预防效果分析

聚维酮碘稀释液冲洗结膜囊联合抗菌药物治疗对白内障患者术后感染的预防效果分析

刘媛媛:聚维酮碘稀释液冲洗结膜囊联合抗菌药物治疗对白内障患者术后感染的预防效果分析149 *临床药物应用*聚维酮碘稀释液冲洗结膜囊联合抗菌药物治疗对白内障患者术后感染的预防效果分析刘媛媛山东省鲁南眼科医院,山东临沂276000摘要目的分析探究白内障患者术后感染采取聚维酮碘稀释液冲洗结膜囊联合抗菌药物治疗的预防效果。

方法该次研究采取随机盲选法,将2018年3月一2019年4月进入该院接受手术治疗的84例白内障患者划分为两组,各42例。

对照组患者实行常规方法医治,观察组患者则实施聚维酮碘稀释液冲洗结膜囊联合抗菌药物医治,对比两组患者的细菌培养息结果及不良反应发生率°结果观察组、对照组滴眼前细菌培养结果阳率分为85.71%、88.09%,比(x2=1.322,!> 0.05);但在手术前、术后48h细菌培养阳性率观察组分别为7.14%、2.38%,则于对照组的26.19%、21.43%,两组数据有统计学意义(x2=6.325、6.548,!<0.05)。

对照组不良反应发生率为23.81%与观察组4.76%对比差异有(x2= 11.852,!<0.05)o结论在临床中,针对白内障患者,采取聚维酮碘稀释液冲洗结膜囊联合抗菌药物医治具备明显的疗效,使术后感染有效预防,不良反应发生率。

关键词聚维酮碘稀释液;抗菌药物;白内障术后感染中图分类号R856.77文献标志码A doil0.11966/j.issn.2095-994X.2020.06.07.48Analysis of the Preventive Effect of Povidone-iodine Dilute Solution on Conjunctival Sac Combined with Antibacterial Drugs for Postoperative Infection of Cataract Pa­tientsLIU Yuan-yuanShandong Lunan Eye Hospital,Linyi,Shandong Province,276000ChinaAbstract Objective To investigate the preventive effect of cataract patients with postoperative infections using povidone-iodine dilute solution to wash the conjunctival sac combined with antibacterial drugs.Methods The random blind selection method was used in this study.84cataract patients who entered the hospital from March2018to April2019for surgical treatment were divided into two groups,with an average of42in each group;Blind selection method was used.Patients in the control group adopted routine care,pa­tients in the observation group were treated with povidone-iodine dilution to wash the conjunctival sac combined with antibacterial drugs.The results of bacterial culture and the incidence of adverse reactions were compared between the two groups.Results The pos­itive rates of bacterial culture results in the observation group and the control group before eye drops were85.71%and88.09%,re­spectively,and there was no statistically significant difference(x2=1.322,!>0.05);but the positive rates of bacterial culture in the ob­servation group before operation and48h after operation were respectively The results were7.14%and2.38%,which were significant­ly lower than those of the control group,which were26.19%and21.43%.There was statistically significant difference between the two groups of data仪2=6.325,6.548,!<0.05).The incidence of adverse reactions in the control group was23.81%compared with 4.76%in the observation group,the difference was statistically significant(x2=11.852,!<0.05).Conclusion In the clinic,for patients with cataract,taking povidone-iodine dilute solution to wash the conjunctival sac combined with antibacterial drugs has obvious cura­tive effect,which can effectively prevent postoperative infection and greatly reduce the incidence of adverse reactions;therefore.Key WOfds Povidone-iodine dilution;Antibacterial drugs;Post-cataract infection收稿日期:2020-06-04;修回日期:2020-06-24作者简介:刘媛媛(19)0-),女,本科,主管药师,研究方向:眼科疾病1502020年7月第6卷第7期白内障为临床常见的一种致盲性眼部疾病,目前对于白内障患者主要采取手术方法治疗,但是如果医护不当,易导致患者岀现术后感染,进而使患者的手术预后效果无法得到有效改善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档