初三数学锐角三角函数的专项培优练习题附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学锐角三角函数的专项培优练习题附详细答案
一、锐角三角函数
1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.
(1)求观察哨所A 与走私船所在的位置C 的距离;
(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)
(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)
【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截.
【解析】
【分析】
(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;
(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.
【详解】
(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=.
在Rt ABC V 中,sin AC B AB =,所以3sin 3725155
AC AB ︒=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.
(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4sin 15125
CM AC CAM =⋅∠=⨯=,3cos 1595
AM AC CAM =⋅∠=⨯=. 在Rt ADM △中,tan MD DAM AM
∠=, 所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =+=+==-=,.
设缉私艇的速度为v 海里/小时,则有2491716=,解得617v =. 经检验,617v =是原方程的解. 答:当缉私艇以每小时617海里的速度行驶时,恰好在D 处成功拦截.
【点睛】
此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
2.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:
(1)当 t 为何值时,点 E 在 BAC 的平分线上?
(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;
(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;
(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.
【答案】(1)4s t =;(2)PEGO S 四边形23
15688
t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165
t =
时,OE OQ ⊥. 【解析】
【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程
即可解决问题.
(2)根据S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE-S△OEC)构建函数关系式即可.(3)利用二次函数的性质解决问题即可.
(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出EC GQ
OC OG
=,由此构建方程即
可解决问题.
【详解】
(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC=22
108
-=6(cm),
∵OD垂直平分线段AC,
∴OC=OA=3(cm),∠DOC=90°,
∵CD∥AB,
∴∠BAC=∠DCO,
∵∠DOC=∠ACB,
∴△DOC∽△BCA,
∴AC AB BC
OC CD OD
==,
∴6108
3CD OD
==,
∴CD=5(cm),OD=4(cm),
∵PB=t,PE⊥AB,
易知:PE=3
4
t,BE=
5
4
t,
当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,
∴PE=EC,
∴3
4
t=8-
5
4
t,
∴t=4.
∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.
S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC ) =1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =28
1516(05)33
t t t -+
+<<. (3)存在. ∵2
8568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=
52
时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .
∵OE ⊥OQ ,
∴∠EOC+∠QOC=90°,
∵∠QOC+∠QOG=90°,
∴∠EOC=∠QOG ,
∴tan ∠EOC=tan ∠QOG ,
∴EC GQ OC OG =, ∴358544345
t t t -=-, 整理得:5t 2-66t+160=0,
解得165t =
或10(舍弃) ∴当165
t =秒时,OE ⊥OQ . 【点睛】
本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.
3.如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE=90°,CD=4,DE=4,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:
(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME 的度数.
(2)如图(3),在Rt △CDE 的运动过程中,当CE 经过点B 时,求BC 的长.
(3)在Rt △CDE 的运动过程中,设AC=h ,△OAB 与△CDE 的重叠部分的面积为S ,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.
【答案】(1)∠BME=15°;
(2BC=4;
(3)h≤2时,S=﹣h2+4h+8,
当h≥2时,S=18﹣3h.
【解析】
试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;
(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;
(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.
试题解析:解:(1)如图2,
∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).
∴OA=OB,
∴∠OAB=45°,
∵∠CDE=90°,CD=4,DE=4,
∴∠OCE=60°,
∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,
∴∠BME=∠CMA=15°;
如图3,
∵∠CDE=90°,CD=4,DE=4,
∴∠OBC=∠DEC=30°,
∵OB=6,
∴BC=4;
(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,
∵CD=4,DE=4,AC=h,AN=NM,
∴CN=4﹣FM,AN=MN=4+h﹣FM,
∵△CMN∽△CED,
∴,
∴,
解得FM=4﹣,
∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,
S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.
考点:1、三角形的外角定理;2、相似;3、解直角三角形
4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
【答案】(1)tan∠DBC=;
(2)P(﹣,).
【解析】
试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形
的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;
(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中
的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).
试题解析:
(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,
解得 x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
当x=3时,y=﹣32+3×3+4=4,
∴D(3,4).
如图,连接CD,过点D作DE⊥BC于点E.
∵C(0,4),
∴CD//AB,
∴∠BCD=∠ABC=45°.
在直角△OBC中,∵OC=OB=4,
∴BC=4.
在直角△CDE中,CD=3.
∴CE=ED=,
∴BE=BC﹣DE=.
∴tan∠DBC=;
(2)过点P作PF⊥x轴于点F.
∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC,
∴tan∠PBF=.
设P(x,﹣x2+3x+4),则=,
解得 x1=﹣,x2=4(舍去),
∴P(﹣,).
考点:1、二次函数;2、勾股定理;3、三角函数
5.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.
(1)如图1,若m=.
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).
【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).
【解析】
试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;
②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;
(2)解题要点有3个:
i)判定△ABD为等边三角形;
ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;
iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.
试题解析:(1)当m=时,抛物线C1:y=(x+)2.
∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,
∴D(a,(a+)2).
∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).
①∵OC=2,∴C(0,2).
∵点C在抛物线C2上,
∴﹣(0﹣a)2+(a+)2=2,
解得:a=,代入(I)式,
得抛物线C2的解析式为:y=﹣x2+x+2.
②在(I)式中,
令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);
令x=0,得:y=a+,∴C(0,a+).
设直线BC的解析式为y=kx+b,则有:
,解得,
∴直线BC的解析式为:y=﹣x+(a+).
假设存在满足条件的a值.
∵AP=BP,
∴点P在AB的垂直平分线上,即点P在C2的对称轴上;
∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,
∴OP⊥BC.
如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,
则OP⊥BC,OE=a.
∵点P在直线BC上,
∴P(a,a+),PE=a+.
∵tan∠EOP=tan∠BCO=,
∴,
解得:a=.
∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"
(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,
∴D(a,(a+m)2).
∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.
令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).
∵OB=2﹣m,
∴2a+m=2﹣m,
∴a=﹣m.
∴D(﹣m,3).
AB=OB+OA=2﹣m+m=2.
如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.
∵tan∠ABD=,
∴∠ABD=60°.
又∵AD=BD,∴△ABD为等边三角形.
作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,
∴P1(﹣m,1);
在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.
在Rt△BEP2中,P2E=BE•tan60°=•=3,
∴P2(﹣m,﹣3);
易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.
∴P3(﹣﹣m,3)、P4(3﹣m,3).
综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,
其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).
【考点】二次函数综合题.
6.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高3,结果精确到0.1米)
【答案】22.4m
【解析】
【分析】
首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.
【详解】
解:在Rt △AFG 中,tan ∠AFG =3, ∴FG =tan 3
AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =
AG CG , ∴CG =tan AG ACG
∠=3AG . 又∵CG ﹣FG =24m ,
即3AG ﹣3
=24m , ∴AG =123m ,
∴AB =123+1.6≈22.4m .
7.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.
(1)求k 的值;
(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);
(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.
【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .
【解析】
【分析】
(1)先求出A 的坐标,然后利用待定系数法求出k 的值;
(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证
POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;
(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.
【详解】
解:(1)把0x =代入4y kx =+,4y =,
∴4BO =,
又∵
4ABO S ∆=, ∴142
AO BO ⋅=,4AO =, ∴(4,0)A -,
把4x =-,0y =代入4y kx =+,
得044k =-+,
解得1k =.
故答案为1;
(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +
如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,
∴90PDO CEO ∠=∠=︒,
∴90POD OPD ∠+∠=︒,
∵线段OP 绕点O 顺时针旋转90°至线段OC ,
∴90POC ∠=︒,OP OC =,
∴90POD EOC ∠+∠=︒,
∴OPD EOC ∠=∠,
∴POD OCE ∆≅∆,
∴OE PD =,
4m t =+.
故答案为4m t =+.
(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,
由(1)知,4AO BO ==,90BOA ∠=︒,
∴ABO ∆为等腰直角三角形,
∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,
∴BT TO =,
∵90BTO ∠=︒,
∴90TPO TOP ∠+∠=︒,
∵PO BM ⊥,
∴90BNO ∠=︒,
∴BQT TPO ∠=∠,
∴QTB PTO ∆≅∆,
∴QT TP =,PO BQ =,
∴PQT QPT ∠=∠,
∵PO PK KB =+,
∴QB PK KB =+,QK KP =,
∴KQP KPQ ∠=∠,
∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,
∴KPB BPN ∠=∠,
设KPB x ∠=︒,
∴BPN x ∠=︒,
∵2PMB KPB ∠=∠,
∴2PMB x ∠=︒,
45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,
∴PO PM =,
过点P 作PD x ⊥轴,垂足为点D ,
∴22OM OD t ==,
9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,
tan tan OPD BMO ∠=∠,
OD BO PD MO =,442t t t
=+, 14t =,22t =-(舍)
∴8OM =,由(2)知,48m t OM =+==,
∴CM y P 轴,
∵90PNM POC ∠=∠=︒,
∴BM OC P ,
∴四边形BOCM 是平行四边形,
∴4832BOCM S BO OM =⨯=⨯=Y .
故答案为32.
【点睛】
本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.
8.如图,直线y=1 2
x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣
1
2
x2+bx+c经过A、B两点,与x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)根据图象,直接写出满足
1
2
x+2≥﹣
1
2
x2+bx+c的x的取值范围;
(3)设点D为该抛物线上的一点、连结AD,若∠DAC=∠CBO,求点D的坐标.
【答案】(1)2
13
2
22
y x x
=--+;(2)当x≥0或x≤﹣4;(3)D点坐标为(0,2)或(2,﹣3).
【解析】
【分析】
(1)由直线y=
1
2
x+2求得A、B的坐标,然后根据待定系数法即可求得抛物线的解析式;
(2)观察图象,找出直线在抛物线上方的x的取值范围;
(3)如图,过D点作x轴的垂线,交x轴于点E,先求出CO=1,AO=4,再由∠DAC=
∠CBO,得出tan∠DAC=tan∠CBO,从而有,DE CO
AE BO
=,最后分类讨论确定点D的坐标.【详解】
解:(1)由y=
1
2
x+2可得:
当x=0时,y=2;当y=0时,x=﹣4,
∴A(﹣4,0),B(0,2),
把A、B的坐标代入y=﹣
1
2
x2+bx+c得:
3
2
2
b
c
⎧
=-
⎪
⎨
⎪=
⎩
,,
∴抛物线的解析式为:2
13
2
22
y x x
=--+
(2)当x≥0或x≤﹣4时,1
2
x+2≥﹣
1
2
x2+bx+c
(3)如图,过D点作x轴的垂线,交x轴于点E,
由2
13
2
22
y x x
=-+令y=0,
解得:x1=1,x2=﹣4,
∴CO=1,AO=4,
设点D的坐标为(m,2
13
2
22
m m
--+),
∵∠DAC=∠CBO,
∴tan∠DAC=tan∠CBO,
∴在Rt△ADE和Rt△BOC中有DE CO
AE BO
=,
当D在x轴上方时,
2
13
21
22
42
--+
=
+
m m
m
解得:m1=0,m2=﹣4(不合题意,舍去),
∴点D的坐标为(0,2).
当D在x轴下方时,
2
13
(2)1
22
42
---+
=
+
m m
m
解得:m1=2,m2=﹣4(不合题意,舍去),
∴点D的坐标为(2,﹣3),
故满足条件的D点坐标为(0,2)或(2,﹣3).
【点睛】
本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.
9.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O 于另一点D,垂足为E.设P是»AC上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB =5,¼¼AP BP
=,求PD 的长.
【答案】(1)证明见解析;(2310 【解析】
【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶AD
AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;
(2)连接OP ,由¶¶AP
BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED
=,然后根据勾股定理即可得到结果.
【详解】
(1)证明:连接AD ,
∵AB ⊥CD ,AB 是⊙O 的直径,
∴¶¶AD
AC =, ∴∠ACD =∠B =∠ADC ,
∵∠FPC =∠B ,
∴∠ACD =∠FPC ,
∴∠APC =∠ACF ,
∵∠FAC =∠CAF ,
∴△PAC ∽△CAF ;
(2)连接OP ,则OA =OB =OP =1522
AB =, ∵¶¶AP
BP =, ∴OP ⊥AB ,∠OPG =∠PDC ,
∵AB 是⊙O 的直径,
∴∠ACB =90°,
∵AC =2BC ,
∴tan∠CAB=tan∠DCB=BC
AC
,
∴
1
2 CE BE
AE CE
==,
∴AE=4BE,
∵AE+BE=AB=5,
∴AE=4,BE=1,CE=2,
∴OE=OB﹣BE=2.5﹣1=1.5,
∵∠OPG=∠PDC,∠OGP=∠DGE,
∴△OPG∽△EDG,∴OG OP GE ED
=,
∴
2.5
2 OE GE OP
GE CE
-
==,
∴GE=2
3,OG=
5
6
,
∴PG=225
OP OG
6
+=,
GD=222 3
DE GE
+=,
∴PD=PG+GD=310
2
.
【点睛】
本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得
△OPG∽△EDG是解题的关键.
10.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BED=60°,3PA的长;
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.
【答案】(1)证明见解析;(2)1;(3)证明见解析.
【解析】
【分析】
(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;
(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;
(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.
【详解】
(1)直线PD为⊙O的切线,
理由如下:
如图1,连接OD,
∵AB是圆O的直径,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
又∵DO=BO,
∴∠BDO=∠PBD,
∵∠PDA=∠PBD,
∴∠BDO=∠PDA,
∴∠ADO+∠PDA=90°,即PD⊥OD,
∵点D在⊙O上,
∴直线PD为⊙O的切线;
(2)∵BE是⊙O的切线,
∴∠EBA=90°,
∵∠BED=60°,
∴∠P=30°,
∵PD为⊙O的切线,
∴∠PDO=90°,
在Rt△PDO中,∠P=30°,PD=3,
∴0 tan30
OD
PD
=,解得OD=1,
∴22
PO PD OD
=+=2,
∴PA=PO﹣AO=2﹣1=1;
(3)如图2,
依题意得:∠ADF=∠PDA,∠PAD=∠DAF,
∵∠PDA=∠PBD∠ADF=∠ABF,
∴∠ADF=∠PDA=∠PBD=∠ABF,
∵AB是圆O的直径,
∴∠ADB=90°,
设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,
∵四边形AFBD内接于⊙O,
∴∠DAF+∠DBF=180°,
即90°+x+2x=180°,解得x=30°,
∴∠ADF=∠PDA=∠PBD=∠ABF=30°,
∵BE、ED是⊙O的切线,
∴DE=BE,∠EBA=90°,
∴∠DBE=60°,∴△BDE是等边三角形,
∴BD=DE=BE,
又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,
∴△BDF是等边三角形,
∴BD=DF=BF,
∴DE=BE=DF=BF,
∴四边形DFBE为菱形.
【点睛】
本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档
题,难度较大.
11.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且32
PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S .
(1)用含t 的代数式表示线段PQ 的长.
(2)当点M 落在边BC 上时,求t 的值.
(3)当0t 1<<时,求S 与t 之间的函数关系式, (4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值
【答案】(1)23PQ t =;(2)45
;(3)2193403163t t -+-;(4) 23t = 或87
t = . 【解析】
【分析】
(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;
(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得3,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤45时,3t ,3,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当45
<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,33(5t-4),S=矩形PQMN 的面积-2△EFN 的面积,即可得出结果;
(4)分两种情况:当0<t≤45
时,△ACD 是等边三角形,AC=AD=4,得出OA=2,OG 是
△MNH的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可;
当4
5
<t≤2时,由平行线得出△OEF∽△MEQ,得出
EF OF
EQ MQ
=,即
2
3
3
EF t
t
EF t
-
=
+
,
解得EF=
2
4
3
2
3
2t t
t
-
-
,得出EQ=
2
33
2
2
3
4
t t
t
t
-
-
+,由三角形面积关系得出方程,解方
程即可.
【详解】
(1)∵在菱形ABCD中,∠B=60°,
∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,
∵PQ⊥AC,
∴△APQ是等腰三角形,
∴PF=QF,PF=PA•sin60°=2t×3
2
=3t,
∴PQ=23t;
(2)当点M落在边BC上时,如图2所示:
由题意得:△PDN是等边三角形,
∴PD=PN,
∵PN=3
2PQ=
3
2
×23t=3t,
∴PD=3t,
∵PA+PD=AD,即2t+3t=4,
解得:t=4
5
.
(3)当0<t≤4
5
时,如图1所示:
PQ=23t,PN=
3
2
PQ=
3
2
×23t=3t,
S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;
当4
5
<t<1时,如图3所示:
∵△PDN是等边三角形,
∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,
∴NE=PN-PE=3t-(4-2t)=5t-4,
∴FN=3NE=3(5t-4),
∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×1
2
×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;
(4)分两种情况:当0<t≤4
5
时,如图4所示:
∵△ACD是等边三角形,
∴AC=AD=4,
∵O是AC的中点,
∴OA=2,OG是△MNH的中位线,
∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,
∴△MNH的面积=1
2MN×NH=
1
2
3(8t-4)=
1
3
3t2,
解得:t=2
3
;
当4
5
<t≤2时,如图5所示:
∵AC ∥QM ,
∴△OEF ∽△MEQ , ∴EF OF EQ MQ =,即233t t EF t
-=+, 解得:EF=2332t t -, ∴EQ=23322
34t t t t --+, ∴△MEQ 的面积=12×3t×(23322
34t t t t --+)=13×63t 2, 解得:t=87
; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为
23或87
. 【点睛】
本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.
12.已知:如图,直线y =-x +12分别交x 轴、y 轴于A 、B 点,将△AOB 折叠,使A 点恰好落在OB 的中点C 处,折痕为DE .
(1)求AE 的长及sin ∠BEC 的值;
(2)求△CDE 的面积.
【答案】(1)2,sin ∠BEC=35;(2)754
【解析】
【分析】
(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得
∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,
CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;
(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得
S△CDE=S△AED=
2
4
AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求
出y,继而可求得答案.
【详解】
(1)如图,作CF⊥BE于F点,
由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,
又∵点C是OB中点,
∴OC=BC=6,CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,
在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,
解得:x=52,
故可得sin∠BEC=
3
5
CF
CE
,AE=52;
(2)如图,过点E作EM⊥OA于点M,
则S△CDE=S△AED=1
2
AD•EM=
1
2
AD×AEsin∠EAM=
1
2
2
AD×AE,
设AD=y,则CD=y,OD=12-y,
在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,
解得:y=15
2
,即AD=
15
2
,
故S△CDE=S△AED=2
AD×AE=
75
4
.
【点睛】
本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.
13.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,
(1)求弦AD的长;
(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?
(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.
【答案】(1)23
(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形
(3)不变,理由见解析
【解析】
【分析】
(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;
(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后
根据含30°的直角三角形三边的关系得DN=1
2
3ON=
3
3
DN=1;
当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,
又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到33;
(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得
∠PAQ=∠PDB ,∠AQC=∠P ,则∠PAQ=60°,∠CAQ=∠PAD ,易证得△AQC ≌△APD ,得到
DP=CQ ,则DP-DQ=CQ-DQ=CD ,而△ADC 为等边三角形,DP-DQ 的值.
【详解】
解:(1)∵∠BAC =90°,点D 是BC 中点,BC =
∴AD
=12
BC = (2)连DE 、ME ,如图,∵DM >DE ,
当ED 和EM 为等腰三角形EDM 的两腰,
∴OE ⊥DM ,
又∵AD =AC ,
∴△ADC 为等边三角形,
∴∠CAD =60°,
∴∠DAO =30°,
∴∠DON =60°,
在Rt △ADN 中,DN =
12AD ,
在Rt △ODN 中,ON DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;
当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,
∵AD =
∠DAE =30°,
∴DH ∠DEA =60°,DE =2,
∴△ODE 为等边三角形,
∴OE =DE =2,OH =1,
∵∠M =∠DAE =30°,
而MD =ME ,
∴∠MDE =75°,
∴∠ADM =90°﹣75°=15°,
∴∠DNO =45°,
∴△NDH 为等腰直角三角形,
∴NH
=DH
∴ON
﹣1;
综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;
(3)当⊙O 变动时DP ﹣DQ 的值不变,DP ﹣DQ =.理由如下:
连AP 、AQ ,如图2,
∵∠C =∠CAD =60°,
而DP ⊥AB ,
∴AC ∥DP ,
∴∠PDB =∠C =60°,
又∵∠PAQ =∠PDB ,
∴∠PAQ =60°,
∴∠CAQ =∠PAD ,
∵AC =AD ,∠AQC =∠P ,
∴△AQC ≌△APD ,
∴DP =CQ ,
∴DP ﹣DQ =CQ ﹣DQ =CD =23.
【点睛】
本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.
14.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:
(发现)(1)MN n
的长度为多少;
(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.
(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.
(拓展)当MN n 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.
【答案】【发现】(1)MN n 的长度为
π3;(23P 的坐标为10(,);或3 03()或23 03
-();【拓展】t 的取值范围是23t ≤<或
45t ≤<,理由见解析.
【解析】
【分析】
发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论;
(2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论;
探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;
拓展:先找出·MN
和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】
[发现]
(1)∵P (4,0),∴OP =4.
∵OA =3,∴AP =1,∴·MN 的长度为6011803ππ⨯=. 故答案为3
π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=
PA 12=,∴AQ =AP ×cos30°3=,∴S 重叠部分=S △APQ 12=PQ ×AQ 3=. 即重叠部分的面积为
38. [探究]
①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1;
∴点P 的坐标为(1,0);
②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =
,∴OP 12330cos ==︒∴点P 的坐标为(233
,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:
OP
23
3 =;
∴点P的坐标为(23
3
-,0);
[拓展]
t的取值范围是2<t≤3,4≤t<5,理由:
如图5,当点N运动到与点A重合时,·MN与Rt△ABO的边有一个公共点,此时t=2;
当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=1,∴t
41
1
-
==3,·MN与
Rt△ABO的边有两个公共点,∴2<t≤3.
如图6,当⊙P运动到PM与OB重合时,·MN与Rt△ABO的边有两个公共点,此时t=4;
直到⊙P运动到点N与点O重合时,·MN与Rt△ABO的边有一个公共点,此时t=5;
∴4≤t<5,即:t的取值范围是2<t≤3,4≤t<5.
【点睛】
本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公
式,作出图形是解答本题的关键.
15.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).
【答案】1.5米.
【解析】
试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出
在Rt△ACD中,米,CD=2AD=3
米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.
试题解析:延长OA交BC于点D.
∵AO的倾斜角是,
∴
∵
在Rt△ACD中, (米),
∴CD=2AD=3米,
又
∴△BOD是等边三角形,
∴(米),
∴BC=BD−CD=4.5−3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.。