突泉县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突泉县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( ) A

B


C

D


2. 已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )
A .
B .
C .(﹣,)
D .
3. 在函数
y=
中,若f (x )=1,则x 的值是( )
A .1
B .1
或 C .±1 D

4. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣6
5. 已知A 、B 、C
AC BC ⊥,30ABC ∠=,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为( ) A

4
B .34π
C
D .3π
6. 命题“∃x 0∈R ,x 02+2x 0+2≤0”的否定是( ) A .∀x ∈R ,x 2
+2x+2>0
B .∀x ∈R ,x 2
+2x+2≥0
C .∃x 0∈R ,x 02+2x 0+2<0
D .∃x ∈R ,x 02+2x 0+2>0
7. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M}
,则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2} 8. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )
A .6
B .0
C .2
D .2
9. 下列函数在(0,+∞)上是增函数的是( )
A .
B .y=﹣2x+5
C .y=lnx
D .y=
10.若复数满足
7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
11.若a=ln2,b=5
,c=
xdx ,则a ,b ,c 的大小关系( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A D
O
C B
A.a<b<cB B.b<a<cC C.b<c<a D.c<b<a
12.若cos(﹣α)=,则cos(+α)的值是()
A.B.﹣C.D.﹣
二、填空题
13.设变量x,y满足约束条件,则的最小值为.
14.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=.
15.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为.
16.抛物线y=x2的焦点坐标为()
A.(0,)B.(,0)C.(0,4) D.(0,2)
17.下图是某算法的程序框图,则程序运行后输出的结果是____.
18.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.
三、解答题
19.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.
(1)求数列{a n}的通项公式;
(2)令b n=n(a n+1),求数列{b n}的前n项和T n.
20.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.
(1)若a=1,求P∩Q;
(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.
21.(本小题满分12分) 设函数mx x x x f -+=
ln 2
1)(2
(0>m ). (1)求)(x f 的单调区间; (2)求)(x f 的零点个数;
(3)证明:曲线)(x f y =没有经过原点的切线.
22.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;
(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.
4天的用电量与当天气温.
(1)求线性回归方程;()
(2)根据(1)的回归方程估计当气温为10℃时的用电量.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.
24.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III)求四棱锥B﹣A1ACC1的体积.
突泉县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,
根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,
当x<0时,f(x)=x+2,
代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,
解得x<﹣,则原不等式的解集为x<﹣;
当x≥0时,f(x)=x﹣2,
代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,
解得x<,则原不等式的解集为0≤x<,
综上,所求不等式的解集为{x|x<﹣或0≤x<}.
故选B
2.【答案】A
【解析】解:函数f(x)=31+|x|﹣为偶函数,
当x≥0时,f(x)=31+x﹣
∵此时y=31+x为增函数,y=为减函数,
∴当x≥0时,f(x)为增函数,
则当x≤0时,f(x)为减函数,
∵f(x)>f(2x﹣1),
∴|x|>|2x﹣1|,
∴x2>(2x﹣1)2,
解得:x∈,
故选:A.
【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.
3.【答案】C
【解析】解:∵函数y=中,f(x)=1,
∴当x≤﹣1时,x+2=1,解得x=﹣1;
当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);
当x ≥2时,2x=1,解得x=(舍). 综上得x=±1 故选:C .
4. 【答案】C
【解析】解:由已知得f ′(x )=4x 3cosx ﹣x 4
sinx+2mx+1, 令g (x )=4x 3cosx ﹣x 4
sinx+2mx 是奇函数,
由f ′(x )的最大值为10知:g (x )的最大值为9,最小值为﹣9, 从而f ′(x )的最小值为﹣9+1=﹣8. 故选C .
【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.
5. 【答案】B
【解析】∵AC BC ⊥,∴90ACB ∠=, ∴圆心O 在平面的射影为AB D 的中点,

1
12
AB ==,∴2AB =. ∴cos303BC AC ==
当线段BC 为截面圆的直径时,面积最小,
∴截面面积的最小值为234
π
π⨯=
. 6. 【答案】A
【解析】解:因为特称命题的否定是全称命题,所以,命题“∃x 0∈R ,x 02+2x 0+2≤0”的否定是:∀x ∈R ,x 2
+2x+2>0. 故选:A .
【点评】本题考查命题的否定全称命题与特称命题的否定关系,基本知识的考查.
7. 【答案】A
【解析】解:N={x|x=2a ,a ∈M}={﹣2,0,2}, 则M ∩N={0}, 故选:A
【点评】本题主要考查集合的基本运算,求出集合N 是解决本题的关键.
8. 【答案】A
解析:解:由
作出可行域如图,
由图可得A (a ,﹣a ),B (a ,a ),

,得a=2.
∴A (2,﹣2),
化目标函数z=2x ﹣y 为y=2x ﹣z ,
∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6. 故选:A . 9. 【答案】C
【解析】解:对于A ,函数y=
在(﹣∞,+∞)上是减函数,∴不满足题意;
对于B ,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;
对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;
对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.
故选:C .
【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.
10.【答案】A 【解析】
试题分析:42731,1i i i i i ==-∴==-,因为复数满足7
1i i z +=,所以()1,1i i i i z i z
+=-∴=-,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算. 11.【答案】C
【解析】解:∵ a=ln2<lne 即,
b=5=,
c=
xdx=

∴a ,b ,c 的大小关系为:b <c <a . 故选:C .
【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.
12.【答案】B
【解析】解:∵cos(﹣α)=,
∴cos(+α)=﹣cos=﹣cos(﹣α)=﹣.
故选:B.
二、填空题
13.【答案】4.
【解析】解:作出不等式组对应的平面区域,
则的几何意义为区域内的点到原点的斜率,
由图象可知,OC的斜率最小,
由,解得,
即C(4,1),
此时=4,
故的最小值为4,
故答案为:4
【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.
14.【答案】.
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
15.【答案】
3+.
【解析】解:本小题考查归纳推理和等差数列求和公式.前n﹣1行共有正整数1+2+…+(n﹣1)个,
即个,
因此第n行第3个数是全体正整数中第
3+个,
即为
3+.
故答案为:
3+.16.【答案】D
【解析】解:把抛物线
y=x2方程化为标准形式为x2=8y,
∴焦点坐标为(0,2).
故选:D.
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.17.【答案】27
【解析】由程序框图可知:
43
符合,跳出循环.
18.【答案】[0,2].
【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);
命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).
∵q是p的充分不必要条件,
∴q⊊p,
∴,
解得0≤a≤2,
则实数a的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
三、解答题
19.【答案】解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1), 又∵a 1=1,
∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分
(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1

∴T n =1•20+2•2+…+n •2n ﹣1,
2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,
错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n
=
﹣n •2n
=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .
则所求和为12n
n - 6分
20.【答案】
【解析】解:(1)
当a=1时,Q={x|(x ﹣1)(x ﹣2)≤0}={x|1≤x ≤2}
则P ∩Q={1}
(2)∵a ≤a+1,∴Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}={x|a ≤x ≤a+1} ∵x ∈P 是x ∈Q 的充分条件,∴P ⊆Q

,即实数a 的取值范围是
【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型.
21.【答案】
【解析】(1)()f x 的定义域为(0,)+∞,211
()x mx f x x m x x
-+'=+-=.
令()0f x '=,得2
10x mx -+=.
当2
40m ≤∆=-,即02m ≤<时,()0f x ≥',∴()f x 在(0,)+∞内单调递增.
当2
40m ∆=->,即2m >时,由2
10x mx -+=解得
12m x =
,22
m x =,且120x x <<, 在区间1(0,)x 及2(,)x +∞内,()0f x '>,在12(,)x x 内,()0f x '<,
∴()f x 在区间1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减.
(2)由(1)可知,当02m ≤<时,()f x 在(0,)+∞内单调递增,∴()f x 最多只有一个零点.
又∵1
()(2)ln 2
f x x x m x =
-+,∴当02x m <<且1x <时,()0f x <; 当2x m >且1x >时,()0f x >,故()f x 有且仅有一个零点.
当2m >时,∵()f x 在1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减,
且211(()(ln
m m m m f x =+-
=+222
04
m m -+-<<,
4014
<=<=(∵2m >),
∴1()0f x <,由此知21()()0f x f x <<,
又∵当2x m >且1x >时,()0f x >,故()f x 在(0,)+∞内有且仅有一个零点. 综上所述,当0m >时,()f x 有且仅有一个零点.
(3)假设曲线()y f x =在点(,())x f x (0x >)处的切线经过原点,
则有
()()f x f x x '=,即2
1ln 2x x mx x +-1x m x =+-, 化简得:2
1ln 102x x -+=(0x >).(*)
记21()ln 12g x x x =-+(0x >),则211
()x g x x x x
-'=-=,
令()0g x '=,解得1x =.
当01x <<时,()0g x '<,当1x >时,()0g x '>,
∴3(1)2g =是()g x 的最小值,即当0x >时,213
ln 122
x x -+≥.
由此说明方程(*)无解,∴曲线()y f x =没有经过原点的切线.
22.【答案】
【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体, ∴B 1C 1⊥平面ABB 1A 1; ∵A 1B ⊂平面ABB 1A 1, ∴B 1C 1⊥A 1B .
又∵A 1B ⊥AB 1,B 1C 1∩AB 1=B 1, ∴A 1B ⊥平面ADC 1B 1,
∵A1B⊂平面A1BE,
∴平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:连接EF,EF∥,且EF=,
设AB1∩A1B=O,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B1F∥OE.
又∵B1F⊄平面A1BE,OE⊂平面A1BE,
∴B1F∥平面A1BE,
(Ⅲ)解:====.
23.【答案】
【解析】解:(1)由表可得:;又;
∴,;
∴线性回归方程为:;
(2)根据回归方程:当x=10时,y=﹣2×10+50=30;
∴估计当气温为10℃时的用电量为30度.
【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.
24.【答案】
【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,
所以,BB1⊥BC.
又因为AB⊥BC且AB∩BB1=B,
所以,BC⊥平面A1ABB1.
因为BC⊂平面BCE,
所以,平面BCE⊥平面A1ABB1.
(II)证明:取BC的中点D,连接C1D,FD.
因为E,F分别是A1C1,AB的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.。

相关文档
最新文档