2024年人教版中学七7年级下册数学期末试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024年人教版中学七7年级下册数学期末试卷(含答案)
一、选择题
1.如图所示,若平面上4条两两相交,且无三线共点的4条直线,则共有同旁内角的对数为( )
A .12对
B .15对
C .24对
D .32对
2.下列运动中,属于平移的是( )
A .冷水加热过程中,小气泡上升成为大气泡
B .急刹车时汽车在地面上的滑动
C .随手抛出的彩球运动
D .随风飘动的风筝在空中的运动 3.下列各点在第二象限的是( )
A .()3,4
B .()4,3-
C .()4,3-
D .()3,4-- 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有( )
A .1个
B .2个
C .3个
D .4个
5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )
A .35°
B .45°
C .55°
D .70°
6.若33=0x y +,则x 和y 的关系是( ).
A .x =y =0
B .x 和y 互为相反数
C .x 和y 相等
D .不能确定 7.如图,AB ∥CD ,将一块三角板(∠
E =30°)按如图所示方式摆放,若∠EFH =25°,求
∠HGD 的度数( )
A .25°
B .30°
C .55°
D .60°
8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向
正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )
A .(12,12)--
B .(15,18)
C .(15,12)-
D .(15,18)-
九、填空题
9.16的算术平方根是 _____.
十、填空题
10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.
十一、填空题
11.如图,AD ∥BC ,BD 为∠ABC 的角平分线,DE 、DF 分别是∠ADB 和∠ADC 的角平分线,且∠BDF =α,则∠A 与∠C 的等量关系是________________(等式中含有α)
十二、填空题
12.如图,AD//BC ,24,:1:2C ADB BDC ∠=∠∠=,则DBC ∠=____度.
十三、填空题
13.如图,点E 、点G 、点F 分别在AB 、AD 、BC 上,将长方形ABCD 按EF 、EG 翻折,线段EA 的对应边EA '恰好落在折痕EF 上,点B 的对应点B '落在长方形外,B 'F 与CD 交于点H ,已知∠B 'HC =134°,则∠AGE =_____°.
十四、填空题
14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.
十五、填空题
15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____.
十六、填空题
16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2021次相遇地点的坐标是_________.
十七、解答题
17.计算:
(1)3-(-5)+(-6)
(2)()211162
- 十八、解答题
18.求下列各式中的x 值:
(1)()3
101250x ++=
(2)()22360x --= 十九、解答题
19.已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F . 证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),
∴∠DGH =∠EHF =90°( ).
∴DB ∥EC ( ).
∴∠C = ( ).
∵∠C =∠D (已知),
∴∠D = ( ).
∴DF ∥AC ( ).
∴∠A =∠F ( ).
二十、解答题
20.如图,在平面直角坐标系中,()1,2--A ,()2,4B --,()4,1C --.ABC 中任意一点()00,P x y 经平移后对应点为()1001
,2P x y ++,将ABC 作同样的平移得到111A B C △.
(1)请画出111A B C △并写出点1A ,1B ,1C 的坐标;
(2)求111A B C △的面积;
(3)若点P 在y 轴上,且11A B P △的面积是1,请直接写出点P 的坐标.
二十一、解答题
21.阅读理解.

459253. ∴151<2

51的整数部分为1, ∴5152. 解决问题:已知a 173的整数部分,b 173的小数部分.
(1)求a ,b 的值;
(2)求(﹣a )3+(b +4)2172=17.
二十二、解答题
22.小丽想用一块面积为2
36cm的正方形纸片,如图所示,沿着边的方向裁出一块面积为2
20cm的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗为什么?
二十三、解答题
23.问题情境:
如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.
问题解决:
(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;
(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出
∠APC、α、B之间的数量关系;
(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.
二十四、解答题
24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;
(2)求∠CBD的度数;
(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;
(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.
二十五、解答题
25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.
(1)当∠A为70°时,
∵∠ACD-∠ABD=∠______
∴∠ACD-∠ABD=______°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD-∠A1BD=1
(∠ACD-∠ABD)
2
∴∠A1=______°;
(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;
(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.
(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.
【参考答案】
一、选择题
1.C
解析:C
【分析】
一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有3412
⨯=条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.
【详解】
解:平面上4条直线两两相交且无三线共点,
∴共有3412
⨯=条线段.
又每条线段两侧各有一对同旁内角,
∴共有同旁内角12224
⨯=(对).
故选:C.
【点睛】
本题考查了同旁内角的定义.解题的关键是注意在截线的同旁找同旁内角.要结合图形,
熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.
2.B
【详解】
解:A 、气泡在上升的过程中变大,不属于平移;
B 、急刹车时汽车在地面上的滑动属于平移;
C 、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D 、随风飘动的树叶在空中的运动,
解析:B
【详解】
解:A 、气泡在上升的过程中变大,不属于平移;
B 、急刹车时汽车在地面上的滑动属于平移;
C 、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D 、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.
故选B .
【点睛】
此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.C
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A .()3,4在第一象限,故本选项不合题意;
B .()4,3-在第四象限,故本选项不合题意;
C .()4,3-在第二象限,故本选项符合题意.
D .()3,4--在第三象限,故本选项不合题意;
故选:C .
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
4.C
【分析】
根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可.
【详解】
解:①对顶角相等,原命题正确;
②过直线外一点有且只有一条直线与已知直线平行,原命题错误;
③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;
④两直线平行,同旁内角互补,原命题错误.
故选:C.
【点睛】
本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键.
5.C
【分析】
由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.
【详解】
∵AB∥CD,∠BAD=35°,
∴∠ADC=∠BAD=35°,
∵AD⊥AC,
∴∠ADC+∠ACD=90°,
∴∠ACD=90°﹣35°=55°,
故选:C.
【点睛】
本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
6.B
【解析】
分析:先移项,再两边立方,即可得出x=-y,得出选项即可.
详解:

,

=
∴x=-y,
即x、y互为相反数,
故选B.
点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.
7.C
【分析】
先根据三角形外角可求∠EHB=∠EFH+∠E=55°,根据平行线性质可得∠HGD=∠EHB=55°即可.
【详解】
解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°,
∴∠EHB=∠EFH+∠E=25°+30°=55°,
∵AB∥CD,
∴∠HGD=∠EHB=55°.
故选C.
【点睛】
本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.8.B
【分析】
由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.
【详解】
解:根据题意可
解析:B
【分析】
由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.
【详解】
解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,
A9A10=30,
∴A1点坐标为(3,0),
A2点坐标为(3,6),
A3点坐标为(﹣6,6),
A4点坐标为(﹣6,﹣6),
A5点坐标为(9,﹣6),
A6点坐标为(9,12),
以此类推,A9点坐标为(15,﹣12),
所以A10点横坐标为15,纵坐标为﹣12+30=18,
∴A10点坐标为(15,18),
故选:B.
【点睛】
本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.
九、填空题
9.2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子
的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去
解析:2
【详解】
∵,4的算术平方根是2,
∴ 2.
【点睛】
16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.
十、填空题
10.(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴
解析:(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴对称,
∴点P的坐标是(2,﹣5).
故答案为:(2,﹣5).
【点睛】
本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.
十一、填空题
11.∠A=∠C+2α
【分析】
由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出
∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠解析:∠A=∠C+2α
【分析】
由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α即可得到答案.
【详解】
解:如图所示:
∵BD为∠ABC的角平分线,
∴∠ABC=2∠CBD,
又∵AD∥BC,
∴∠A+∠ABC=180°,
∴∠A+2∠CBD=180°,
又∵DF是∠ADC的角平分线,
∴∠ADC=2∠ADF,
又∵∠ADF=∠ADB+α
∴∠ADC=2∠ADB+2α,
又∵∠ADC+∠C=180°,
∴2∠ADB+2α+∠C=180°,
∴∠A+2∠CBD=2∠ADB+2α+∠C
又∵∠CBD=∠ADB,
∴∠A=∠C+2α,
故答案为:∠A=∠C+2α.
【点睛】
本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质.
十二、填空题
12.52
【分析】
根据AD//BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得.【详解】






故答案为:52.
【点睛】
本题考查了平行线的性质,三角形内角和定理,
解析:52
【分析】
根据AD//BC ,可知ADB DBC ∠=∠,根据三角形内角和定理以及24,C ∠=求得
CBD BDC ∠+∠,结合题意:1:2ADB BDC ∠∠=,即可求得DBC ∠.
【详解】
//AD BC ,
∴ADB DBC ∠=∠,
:1:2ADB BDC ∠∠=,
:1:2DBC BDC ∴∠∠=,
24,C ∠=
180********CBD BDC C ∴∠+∠=︒-∠=︒-︒=︒,
1()523
DBC CBD BDC ∴∠=∠+∠=︒. 故答案为:52.
【点睛】
本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.
十三、填空题
13.11
【分析】
由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数.
【详解】
解:如图,




折叠,




故答案为:11.
解析:11
【分析】
由外角的性质和平行线的性质求出IEB ∠的度数,即可求出FEB ∠的度数,进而求出AEF

的度数,求得AEG ∠的度数,即可求出AGE ∠的度数.
【详解】
解:如图,
134B HC '∠=︒,
1349044B IH B HC B '''∴∠=∠-∠=︒-︒=︒,
//CD AB ,
44IEB B IH '∴∠=∠=︒,
折叠,
1222
BA F B IH ''∴∠=∠=︒, 18022158AEA '∴∠=︒-︒=︒,
1792
AEG AEA '∴∠=∠=︒, 180907911AGE ∴∠=︒-︒-︒=︒,
故答案为:11.
【点睛】
本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解. 十四、填空题
14.4
【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.
故答案为:4.
点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根
解析:4
【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.
点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.
十五、填空题
15.(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐
解析:(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐标为(4,0).
故答案为:(4,0).
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
十六、填空题
16.(0,2).
【分析】
利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:由已知,正方形周长为16,
∵M、N速度分别为1单
解析:(0,2).
【分析】
利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:由已知,正方形周长为16,
∵M、N速度分别为1单位/秒,3单位/秒,
则两个物体每次相遇时间间隔为
16
13
=4秒,
则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)
∵2021=4×505…1,
∴第2021次两个物体相遇位置为(0,2),
故答案为:(0,2).
【点睛】
本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.
十七、解答题
17.(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】
(1)解:3-(-5)+(-6)
=3+5-6
解析:(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.
【详解】
(1)解:3-(-5)+(-6)
=3+5-6
=2
(2)解:(-1)21 2
=1-4× 1 2
=1-2
=-1
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.十八、解答题
18.(1)x=-15;(2)x=8或x=-4
【分析】
(1)利用直接开立方法求得x的值;
(3)利用直接开平方法求得x的值.
【详解】
解:(1),
∴,
∴,
解得:x=-15;
(2),
∴,

解析:(1)x =-15;(2)x =8或x =-4
【分析】
(1)利用直接开立方法求得x 的值;
(3)利用直接开平方法求得x 的值.
【详解】
解:(1)()3
101250x ++=,
∴()310125x +=-, ∴105x +=-,
解得:x =-15;
(2)()2
2360x --=,
∴()2236x -=, ∴26x -=±,
解得:x =8或x =-4.
【点睛】
本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.
十九、解答题
19.垂直的定义;同位角相等,两直线平行;∠DBA ;两直线平行,同位角相等;∠DBA ;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
先证DB ∥EC ,得∠C =∠DBA ,再证∠D =∠DB
解析:垂直的定义;同位角相等,两直线平行;∠DBA ;两直线平行,同位角相等;∠DBA ;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
先证DB ∥EC ,得∠C =∠DBA ,再证∠D =∠DBA ,得DF ∥AC ,然后由平行线的性质即可得出结论.
【详解】
解:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),
∴∠DGH =∠EHF =90°(垂直的定义),
∴DB ∥EC (同位角相等,两直线平行),
∴∠C =∠DBA (两直线平行,同位角相等),
∵∠C =∠D (已知),
∴∠D =∠DBA (等量代换),
∴DF ∥AC (内错角相等,两直线平行),
∴∠A =∠F (两直线平行,内错角相等).
故答案为:垂直的定义;同位角相等,两直线平行;∠DBA ,两直线平行,同位角相等;∠DBA ,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键. 二十、解答题
20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或
【分析】
(1)依据点P (x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A1B
解析:(1)图见解析,()10,0A ,()11,2B --,()131C ,-;(2)3.5;(3)点P 的坐标为()02,或()0,2-
【分析】
(1)依据点P (x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A 1B 1C 1;
(2)利用割补法进行计算,即可得到△A 1B 1C 1的面积;
(3)设P (0,y ),依据△A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.
【详解】
解:(1)如图所示,111A B C △即为所求;()10,0A ,()11,2B --,()131C ,-;
(2)111A B C △的面积为:()11113313126 1.51 3.5222
+⨯-⨯⨯-⨯⨯=--=; (3)设()0,P y ,则1A P y =,
∵11A B P △的面积是1, ∴1112
y ⨯⨯=, 解得2y =±,
∴点P的坐标为()02,或()
-.
0,2
【点睛】
本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
二十一、解答题
21.(1)a=1,b=﹣4;(2)±4.
【分析】
(1)根据被开饭数越大算术平方根越大,可得a,b的值,
(2)根据开平方运算,可得平方根.
【详解】
解:(1)∴,
∴4<5,
∴1<﹣3<2,

解析:(1)a=1,b4;(2)±4.
【分析】
(1)根据被开饭数越大算术平方根越大,可得a,b的值,
(2)根据开平方运算,可得平方根.
【详解】
解:(1)∴<
∴4<5,
∴1﹣3<2,
∴a=1,b4;
(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,
∴(﹣a)
3+(b+4)2的平方根是:±4.
【点睛】
本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出45是解题关键.
二十二、解答题
22.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为x,长为2x,然后依据矩形的面积为20列方程求得x的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为2
36cm,故边长为6cm
设长方形宽为x,则长为2x
长方形面积2
=⋅==
2220
x x x
∴210
x=,
解得10
x=(负值舍去)
长为210cm6cm
>
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二十三、解答题
23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线
解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°
【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;
(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.
【详解】
解:(1)如图2,过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=α,∠CPE=β,
∴∠APC=∠APE+∠CPE=α+β.
(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,
∵AB∥CD,∠PAB=α,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD,∠PCD=β,
∴α=∠APC+β,
∴∠APC=α-β;
如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,
∵AB∥CD,∠PCD=β,
∴∠2=∠PCD=β,
∵∠2=∠PAB+∠APC,∠PAB=α,
∴β=α+∠APC,
∴∠APC=β-α;
(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,
∵AB∥CD,
∴AB∥QF∥PE∥CD,
∴∠BAP=∠APE,∠PCD=∠EPC,
∵∠APC=116°,
∴∠BAP+∠PCD=116°,
∵AQ平分∠BAP,CQ平分∠PCD,
∴∠BAQ=1
2∠BAP,∠DCQ=1
2
∠PCD,
∴∠BAQ+∠DCQ=1
2
(∠BAP+∠PCD)=58°,
∵AB∥QF∥CD,
∴∠BAQ=∠AQF,∠DCQ=∠CQF,
∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,
∴∠AQC=58°.
【点睛】
此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.
二十四、解答题
24.(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的
解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1
APB ADB
∠∠=,理由见解析;(4)29.︒
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的定义可以证明∠CBD=1
2
∠ABN,即可求出结果;
(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以
∠ABC+∠DBN=58°,则可求出∠ABC的度数.
【详解】
解:(1)①∵AM//BN,∠A=64°,
∴∠ABN=180°﹣∠A=116°,
故答案为:116°;
②∵AM//BN,
∴∠ACB=∠CBN,
故答案为:CBN;
(2)∵AM//BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°﹣64°=116°,
∴∠ABP+∠PBN=116°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=116°,
∴∠CBD=∠CBP+∠DBP=58°;
(3)不变,
∠APB:∠ADB=2:1,
∵AM//BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(4)∵AM//BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,
则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN
∴∠ABC=∠DBN,
由(1)∠ABN=116°,
∴∠CBD=58°,
∴∠ABC+∠DBN=58°,
∴∠ABC=29°,
故答案为:29°.
【点睛】
本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.
二十五、解答题
25.(1)∠A;70°;35°;
(2)∠A=2n∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD
解析:(1)∠A;70°;35°;
(2)∠A=2n∠A n
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=1
2∠ABC,∠A1CD=1
2
∠ACD,再根据三角形的一个
外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即
∠A=22∠A2,因此找出规律;
(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-
2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;
(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
【详解】
解:(1)当∠A为70°时,
∵∠ACD-∠ABD=∠A,
∴∠ACD-∠ABD=70°,
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,
∴∠A1CD-∠A1BD=1
2
(∠ACD-∠ABD)
∴∠A1=35°;
故答案为:A,70,35;
(2)∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,
∴∠BAC=2∠A1=80°,
∴∠A1=40°,
同理可得∠A1=2∠A2,
即∠BAC=22∠A2=80°,
∴∠A2=20°,
∴∠A=2n∠A n,
故答案为:∠A=2∠A n.
(3)∵∠ABC+∠DCB=360°-(∠A+∠D),
∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-
∠FBC)=180°-2∠F,
∴360°-(α+β)=180°-2∠F,
2∠F=∠A+∠D-180°,
∴∠F=1
2
(∠A+∠D)-90°,
∵∠A+∠D=230°,
∴∠F=25°;
故答案为:25°.
(4)①∠Q+∠A1的值为定值正确.
∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=
1
2
∠BAC,
∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,
∴∠QEC+∠QCE=1
2(∠AEC+∠ACE)=1
2
∠BAC,
∴∠Q=180°-(∠QEC+∠QCE)=180°-1
2
∠BAC,
∴∠Q+∠A1=180°.
【点睛】
本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.。

相关文档
最新文档